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1 Groups, subgroups and homomorphisms

1.1 Definitions (Monoids and groups). A monoid is a set M equipped with an element
e ∈M and binary operation M ×M →M ; (a, b) 7→ a ∗ b such that the following axioms hold:

for all a ∈M, e ∗ a = a and a ∗ e = a;(Identity)

for all a, b, c ∈M, (a ∗ b) ∗ c = a ∗ (b ∗ c).(Associativity)

A monoid G is called a group if in addition:

for all a ∈ G, there exists b ∈ G such that a ∗ b = e = b ∗ a.(Inverses)

A group or monoid M is said to be abelian or commutative if:

for all a, b ∈M, a ∗ b = b ∗ a.(Commutativity)

1.2 Remarks. (i) If f ∈M satisfies the Identity Axiom (as well as e), then f = f ∗ e = e.
Hence the identity e is uniquely determined [Alg1A].

(ii) Likewise, b ∈M with a ∗ b = e = b ∗ a is uniquely determined by a ∈M [Alg1A]. If such
a b exists, a is called invertible with inverse b. Then b is invertible with inverse a.

A group G is thus a monoid in which every element is invertible.

(iii) If a1 and a2 have inverses b1 and b2 respectively, then a1 ∗ a2 has inverse b2 ∗ b1:

(a1 ∗ a2) ∗ (b2 ∗ b1) = a1 ∗ (a2 ∗ b2) ∗ b1 = a1 ∗ e ∗ b1 = a1 ∗ b1 = e

and similarly (b2 ∗ b1) ∗ (a1 ∗ a2) = e.

1.3 Definitions (Submonoids and subgroups). A submonoid of a group or monoid M is a
subset H ⊆M such that

e ∈ H and for all a, b ∈ H, a ∗ b ∈ H.

Then H is a monoid with identity e and operation H ×H → H; (a, b) 7→ a ∗ b — the Identity
and Associativity axioms hold in H because they hold in M .

We say H is a subgroup of M , written H 6 M , if H is also a group with these operations.
When M is a group G, this means that for all a ∈ H the inverse of a in G belongs to H.

1.4 Remark. By Remarks 1.2 it follows that in any monoid M , the set M× of all invertible
elements of M is a subgroup of M , i.e., G = M× is a group with the induced operations.

1.5 Examples (Monoids and groups). (i) Any ring R is an abelian group under addition
with identity e = 0. Examples: the integers Z, the set Zn of integers modulo n, and the
fields Q, R and C. The set N ⊆ Z of natural numbers (with 0 ∈ N) is a submonoid of Z,
but not a subgroup.

(ii) Any ring R is also a monoid under multiplication, with identity e = 1, and this monoid
is abelian if the ring is commutative.

The set R× of all invertible elements in R (the units of R) is called the multiplicative
(sub)group or the group of units of R. Examples: Z× = {±1}, Z×n consists of the
congruence classes [m]n with m coprime to n [Alg1A], while the multiplicative group
of a field F is F× = F r {0}, i.e., it contains all of the nonzero elements of F.
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(iii) For any set X, the set XX of all maps X → X is a monoid with e = id: X → X, the
identity map, and composition (f, g) 7→ f ◦ g as the binary operation. Then Sym(X) :=
(XX)× is the group of all invertible maps X → X (equivalently, bijections) and is called
the symmetric group on X. When X is finite, elements of Sym(X) are called permutations
and when X = {1, 2, . . . n}, Sym(X) is often denoted Symn or Sn.

(iv) Let V be a finite dimensional vector space over a field F. Then the set End(V ) of linear
maps V → V is a monoid under composition (and indeed also a ring, using addition of
linear maps [Alg2A, Alg2B]). Its group of invertible elements is a subgroup of Sym(V ),
denoted GL(V ), and called the general linear group of V over F.

The ring Mn(F) of n×n matrices over a field F is a monoid under matrix multiplication,
with multiplicative group GLn(F), the general linear group of n× n invertible matrices.

1.6 Notation. The above examples use a wide range of notations. Herein, multiplicative
notation will primarily be used: the binary operation will be written ab, with identity element
1, and a−1 will denote the inverse of a; then for n ∈ Z, an denotes the n-fold product aa · · · a
if n > 0, (a−1)−n if n < 0, and 1 if n = 0, so that anam = an+m for all n,m ∈ Z [Alg1A].

For abelian groups, additive notation is common: the binary operation is written a + b, with
identity element 0 and −a as the inverse of a; then an is written na, so that na+ma = (n+m)a.

1.7 Examples (Subgroups). Any group (or monoid) G is a subgroup (or submonoid) of itself,
and has a trivial subgroup {1}. Other subgroups H are called proper (H < G) and nontrivial
({1} < H). Here are some more interesting examples.

(i) Evidently Z 6 Q 6 R 6 C (as groups under addition). The subset nZ = {nk : k ∈ Z} is
also subgroup of Z: 0 = n0 ∈ nZ, nk1 + nk2 = n(k1 + k2) ∈ nZ, and −nk = n(−k) ∈ nZ.

(ii) Similarly Z× 6 Q× 6 R× 6 C× (under multiplication) The subset µn = {a ∈ C× : an =
1} is also subgroup of C× called the group of nth roots of unity : 1n = 1 so 1 ∈ µn, and if
a, b ∈ µn then (ab)n = anbn = 1 and (a−1)n = (an)−1 = 1, so ab ∈ µn and a−1 ∈ µn.

(iii) Recall that any permutation σ ∈ Sn is either even or odd, i.e., σ is a product of an
even number of transpositions or of an odd number (respectively), but not both. The set
An := {σ ∈ Sn : σ is even} (aka Altn) is a subgroup of Sn called the alternating group.

(iv) The set of n × n matrices A over F with det(A) = 1 is a subgroup of GLn(F) called the
special linear group SLn(F).

1.8 Definitions (Homomorphisms and isomorphisms). A map φ : G → H between groups
or monoids is a homomorphism if φ(1) = 1 and φ(ab) = φ(a)φ(b) for all a, b ∈ G. The kernel
of a homomorphism φ is kerφ := {a ∈ G : φ(a) = 1}. If φ has an inverse homomorphism
φ−1 : H → G, then it is called an isomorphism, and G is said to be isomorphic to H, written
G ∼= H. An automorphism of G is an isomorphism φ : G→ G and the set of all automorphisms
of G is denoted Aut(G).

1.9 Remarks. (i) If φ : G→ H satisfies φ(ab) = φ(a)φ(b) for all a, b ∈ G and H is a group,
then φ(1) = 1 is automatic. If a ∈ G is invertible, so is φ(a), with φ(a)−1 = φ(a−1).

(ii) By definition id : G→ G is an isomorphism and the inverse of an isomorphism is an iso-
morphism. Also if φ : G→ H and ψ : H → K are homomorphisms then their composition
ψ ◦ φ : G→ K is a homomorphism [Alg1A]. This has two important consequences.

• Aut(G) is a subgroup of Sym(G).
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• Isomorphism is reflexive (G ∼= G), symmetric (if G ∼= H then H ∼= G) and transitive
(if G ∼= H and H ∼= K then G ∼= K). There is no structural difference between
isomorphic groups: an isomorphism φ : G → H simply renames the elements of G
so that if a, b, c ∈ G with ab = c then φ(a), φ(b), φ(c) ∈ H with φ(a)φ(b) = φ(c).

(iii) For any group G and any set X, homomorphisms φ : G→ Sym(X) are called actions of
G on X (or permutation representations if X is finite); we will study them in detail.

(iv) For any group G, homomorphisms φ : G→ H with H = GL(V ) or GLn(F), where F is a
field and V is a vector space over F, are called (linear) representations of G; they form
the topic of MA40054 Representation Theory of Finite Groups.

1.10 Lemma. Let φ : G→ H be a homomorphism between groups G and H.

If A 6 G then φ(A) := {φ(a) : a ∈ A} 6 H

If B 6 H then φ−1(B) = {a ∈ G : φ(a) ∈ B} 6 G.

In particular, kerφ = φ−1({1}) 6 G and imφ = φ(G) 6 H.

Furthermore φ is an isomorphism if and only if kerφ = {1} and imφ = H.

Proof. See [Alg1A].

1.11 Examples (Homomorphisms). (i) For any n ∈ Z the map πn : Z→ Zn; m 7→ [m]n is
a surjective homomorphism with kerπn = nZ: note π(0) = [0]n is the additive identity in
Zn and [m1 +m2]n = [m1]n + [m2]n. Note that [m]n = m[1]n.

More generally, for any group G and any a ∈ G, the map pa : Z → G; m 7→ am is a
homomorphism with image 〈a〉 := {am : m ∈ Z} called the cyclic subgroup of G generated
by a. If G = 〈a〉, G is called a cyclic group. The kernel of pa is nZ, where either

• pa is injective, n = 0 (0Z = {0}), and a has infinite order o(a) =∞, or

• n is the smallest n ∈ N such that an = 1 and is called the order o(a) = n of a, in
which case 〈a〉 = {a0 = 1, a1 = a, a2, . . . an−1} is finite with |〈a〉| = o(a).

(ii) Since exp(0) = 1 and exp(x+y) = exp(x) exp(y), exp: R→ R× is a homomorphism from
the additive group R to the multiplicative group R×.

(iii) The alternating group An is the kernel of the sign homomorphism ε : Sn → µ2 = Z× =
{±1} given by ε(σ) = 1 if σ is even, and ε(σ) = −1 if σ is odd.

(iv) Since det(In) = 1 and det(AB) = det(A) det(B), det : GLn(F)→ F× is a homomorphism
with kernel the special linear group SLn(F).

2 Groups act!

2.1 Definition (Actions). A (left) action of a group or monoid G on a set X is a map

G×X → X; (a, x) 7→ a · x

such that:

for all x ∈ X, 1 · x = x;(Identity)

for all a, b ∈ G and x ∈ X, (ab) · x = a · (b · x).(Composition)

Then G acts on X and X is a (left) G-set.
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2.2 Remarks. Given an action of G on X, any a ∈ G defines a map φa : X → X by
φa(x) = a · x. Hence there is a map φ : G → XX with φ(a) = φa. In terms of φ, the Identity
Axiom says φ(1) = id and the Composition Axiom says φ(ab) = φ(a) ◦ φ(b), i.e., φ : G → XX

is a homomorphism, sometimes called the action homomorphism of the G-set X.

By Remark 1.9(i), if a ∈ G is invertible, then φa : X → X is invertible with inverse φa−1 . In
particular, if G is a group then an action (a, x) → a · x on G of X is the same thing as a
homomorphism φ : G → Sym(X): for any such φ, a · x := φ(a)(x) defines an action of G and
X. However, the notation a · x is easier to work with than φ(a)(x)!

2.3 Examples (Actions). (i) If G acts on X with action homomorphism φ, then so does
any H 6 G, with action homomorphism φ|H . Hence for any a ∈ G, 〈a〉 acts on X.

For example, for any set X, Sym(X) acts tautologically on X by σ · x = σ(x), hence so
does any G 6 Sym(X) (with action homomorphism the inclusion of G into Sym(X)).

(ii) Let G = D2n be the dihedral group of symmetries of a regular n-gon P ⊆ R2 with vertices
x1, . . . xn. Then G acts on {x1, . . . xn} by a ·xj = a(xj), hence on {1, . . . n}: if a(xj) = xk,
then a · j = k. For example, D8 is the group of symmetries of the square with vertices
x1 = (1, 0), x2 = (0, 1), x3 = (−1, 0), x4 = (0,−1), and hence D8 acts on {x1, x2, x3, x4}
and {1, 2, 3, 4}. It also acts (e.g.) on the set of diagonals {{x1, x3}, {x2, x4}}.

(iii) Let X = {∆13,24,∆12,34,∆14,23} where ∆13,24 = {{1, 3}, {2, 4}}, ∆12,34 = {{1, 2}, {3, 4}},
and ∆14,23 = {{1, 4}, {2, 3}} are the 3 partitions of the 4 element set {1, 2, 3, 4} into two 2
element subsets. Then S4 acts on X by σ · {{i, j}, {k, `}} = {{σ(i), σ(j)}, {σ(k), σ(`)}}.

(iv) If a group G acts on X, then for any set Y , G acts ‘pointwise’ on the set XY of all maps
f : Y → X by (a · f)(y) = a · (f(y)). In particular, it acts on the set X` := X{1,...`} of all
`-tuples in X by a · (x1, . . . x`) = (a · x1, . . . a · x`).

(v) Let V be an n-dimensional vector space. Then GL(V ) acts on V by linear transformations:
g ·v = g(v) for g ∈ GL(V ), v ∈ V . By (iv) it follows that GL(V ) also acts on V n. Since an
invertible linear transformation g of V sends a basis (v1, . . . vn) to a basis (g(v1), . . . g(vn)),
GL(V ) acts on the set of bases for V .

2.4 Example (Left action). Any group (or monoid) G acts on X = G by left multiplication
a · x := ax ∀ a, x ∈ G: 1 · x = 1x = x and (ab) · x = (ab)x = a(bx) = a · (b · x). The action
homomorphism λ : a 7→ λa (with λa(x) = ax) has kerλ = {1} (if λa = id then 1 = λa(1) =
a1 = a). If G is a group, Lemma 1.10 implies λ : G→ Sym(G) is injective and hence [Alg1A]:

Cayley’s Theorem (Jordan 1870). Any group G is isomorphic to a subgroup
of Sym(G).

Similarly any group G acts on X = G by right multiplication, with action homomorphism
ρ : G→ Sym(G); a 7→ ρa given by ρa(x) := xa−1.

2.5 Definition. For any group G and any a, x ∈ G the conjugate of x by a is ax := axa−1.

2.6 Proposition. Any group G acts on X = G by conjugation: a · x = ax for all a, x ∈ G,
and the action homomorphism a 7→ κa, with κa(x) = ax, is a homomorphism κ : G→ Aut(G),
i.e., for all a ∈ G, κa is an automorphism of G.

Proof. This is an action because 1x = 1x1−1 = x and

abx = (ab)x(ab)−1 = a(bxb−1)a−1 = a( bx).
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Now note that κa(1) = a1 = a1a−1 = aa−1 = 1 and

κa(xy) = axya−1 = axa−1 aya−1 = κa(x)κa(y).

Since κa is invertible (with κ−1a = κa−1), it is an automorphism of G.

2.7 Example (Similar matrices). More generally, if G is a subgroup of a monoid M , then G
acts on M by conjugation. Let G = GLn(F) and M = Mn(F). Then then there is an action of
invertible matrices P ∈ GLn(F) on matrices A ∈Mn(F) by P · A = PAP−1.

This is useful! Any A ∈ Mn(F) acts on v ∈ Fn by A · v = Av. Suppose v1, . . . vn is a basis of
eigenvectors of A and define P ∈ GLn(F) by Pei = vi (where e1, . . . en is the standard basis).
Then D := P−1 · A = P−1AP is diagonal, i.e., A = P ·D.

3 Orbits and stabilizers

3.1 Definitions (Orbits and stabilizers). If a group G acts on a set X, then the G-orbit of
x ∈ X is

orbG(x) = G · x := {a · x : a ∈ G}

and the stabilizer in G of x ∈ X is

StabG(x) = Gx := {a ∈ G : a · x = x}.

The action is called transitive if orbG(x) = X for all x ∈ X, and free if StabG(x) = {1} for all
x ∈ X; if it is both free and transitive, it is said to be regular (or simply transitive). Observe
that

⋂
x∈X StabG(x) is the kernel of the action homomorphism. If this is {1}, G is isomorphic

to a subgroup of Sym(X) and the action is called faithful. (In particular any free action is
faithful.)

3.2 Orbit Partition Theorem. LetG be a group andX be aG-set. Then {orbG(x) : x ∈ X}
is a partition of X, i.e.,

⋃
x∈X orbG(x) = X and for all x, y ∈ X either orbG(x) = orbG(y) or

orbG(x) ∩ orbG(y) = ∅.

Proof. Define a relation ∼ on X by x ∼ y iff y ∈ orbG(x). Clearly x = 1 · x ∈ orbG(x), so ∼ is
reflexive. If y = a · x ∈ orbG(x) then x = a−1 · y ∈ orbG(y) so ∼ is symmetric. Now if z = a · y
and y = b · x then z = a · (b · x) = (ab) · x so ∼ is transitive and thus an equivalence relation.
By definition, the orbits are the equivalence classes, so they partition X.

3.3 Proposition. Let G be a group acting on X. Then for all x ∈ X, StabG(x) 6 G.

Proof. Clearly 1 ∈ StabG(x), and if a, b ∈ StabG(x) then (ab) · x = a · (b · x) = a · x = x so
ab ∈ StabG(x). Finally if φ : a 7→ φa denotes the action homomorphism and φa fixes x, then so
does φa−1 = φ−1a .

3.4 Remark. A good way to show that a subset H of G is a subgroup is to exhibit it as a
stabilizer of something.

3.5 Examples (Orbits and stabilizers). Let us revisit Examples 2.3.

(i) If G acts on X and H 6 G, then orbH(x) ⊆ orbG(x) for any x ∈ X. If a ∈ G, then the
a-orbit of x ∈ X is orba(x) := orb〈a〉(x) = {φ ka (x) : k ∈ Z} where φa(x) = a · x.
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In particular, for σ ∈ Sn and j ∈ {1, . . . n}, then orbσ(j) = {σk(j) : k ∈ Z} is called a
cycle of σ with length ` = | orbσ(j)| (or an `-cycle for short). By Theorem 3.2, the action
of 〈σ〉 partitions {1, . . . n} into a disjoint union X1, X2, . . . Xm of cycles of σ with lengths
`1 > `2 > · · · > `m (wlog). Then σ has a cycle type (`1, . . . `m).

For example if σ ∈ S8 is defined by

σ =
(

1 2 3 4 5 6 7 8
3 5 4 2 1 7 6 8

)
= (1 3 4 2 5)(6 7)(8)

then σ has cycle type (5, 2, 1)

(ii) The action of D2n on the vertices {x1, . . . xn} of a regular n-gon is transitive and the
stabilizer of xk is {1, sk} where sk is the unique reflection fixing xk. Hence the action is
faithful and D2n is isomorphic to a subgroup of Sn.

(iii) The action of S4 on X = {∆13,24,∆12,34,∆14,23} is transitive, with image Sym(X) and
kernel the Klein four group V4 := {id, (1 3)(2 4), (1 2)(3 4), (1 4)(2 3)}. The stabilizer of
∆13,24 = {{1, 3}, {2, 4}} is (isomorphic to) the dihedral group D8.

(iv) If G acts on X and the action of G on {(x1, . . . x`) ∈ X` : xi 6= xj for i 6= j} is transitive,
the action of G on X is said to be `-transitive. Observe that the action of Sn on {1, . . . n}
is `-transitive for all ` 6 n.

(v) Let V be an n-dimensional vector space. Then the action of GL(V ) on bases of V is
regular: if (v1, . . . vn) is a basis for V , then for any (v′1, . . . v

′
n) ∈ V n there is a unique

linear map g with g(vj) = v′j for all j, and if (v′1, . . . v
′
n) is also a basis then g is invertible.

We now turn to the important example of the action of a group G on itself by conjugation
(Definition 2.5), where the equivalence relation defining the orbits is conjugacy.

3.6 Definitions (Conjugacy). x, y ∈ G are conjugate if y = ax := axa−1 for some a ∈ G, and
the orbit of x ∈ G under the conjugation action is the conjugacy class Gx := {ax : a ∈ G} of
x. By the Orbit Partition Theorem 3.2, G is a disjoint union of conjugacy classes. The image
of of the action homomorphism κ : G→ Aut(G) is the subgroup of inner automorphisms of G
and its kernel is

Z(G) := {a ∈ G : ∀x ∈ G, axa−1 = x} = {a ∈ G : ∀x ∈ G, ax = xa},

called the centre of G. The stabilizer of x ∈ G under conjugation is its centralizer

CG(x) := {a ∈ G : axa−1 = x} = {a ∈ G : ax = xa},

which is thus a subgroup of G, and CG(x) = G if and only if x ∈ Z(G).

3.7 Example (Conjugate permutations). Let σ ∈ Sym(X) with σ(x) = y. Then for any
γ ∈ Sym(X), (γσ)(γ(x)) = (γ◦σ◦γ−1)(γ(x)) = γ(y). For example if σ = (1 3 4 2 5)(6 7)(8) ∈ S8

then
γσ = (γ(1) γ(3) γ(4) γ(2) γ(5)) (γ(6) γ(7)) (γ(8)).

In general, if σ ∈ Sn has cycle type (`1, . . . `m), the conjugacy class Snσ consists of all permu-
tations of that type. For example if σ = (1 2)(3 4), S4σ = {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
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3.8 Example. Cayley’s Theorem (Example 2.4) shows that the action λ : G → Sym(G) of
a group G on itself by left multiplication is faithful. More is true: if a ∈ StabG(x) for some
x ∈ X = G, then ax = a · x = x and so a = axx−1 = xx−1 = 1; hence the action is free. Now
given x, y ∈ G, let a = yx−1; then a ·x = (yx−1)x = y so the action is transitive, hence regular.

Now suppose H 6 G. Then λ|H : H → Sym(G) defines a free action of H on G with orbH(x) =
Hx := {hx : h ∈ H}, a right coset of H in G. Hence by the Orbit Partition Theorem 3.2, the
right cosets of H form a partition of G. Now for any x ∈ G, the map H → Hx; h 7→ hx is a
bijection, so the right cosets all have the same cardinality as H. If G is finite, |G| (the number
of elements in G) is called the order of G and we have [Alg1A]:

Lagrange’s Theorem (Jordan 1861). Let G be a finite group with a subgroup
H. Then the order of H divides the order of G.

In particular, if H = 〈a〉 for some a ∈ G, have that o(a) divides |G|.
Using instead right multiplication ρ|H : H → Sym(G) gives the partition of G into left cosets
xH := {xh : h ∈ H}. However, since H is a subgroup, H−1 := {h−1 : h ∈ H} = H and so
(xH)−1 := {g−1 : g ∈ xH} = Hx−1. Hence inversion defines a bijection between the sets of left
and right cosets of H in G, and their cardinality is called the index [G : H] of H in G.

Lagrange’s Theorem then states that if G is a finite group, [G : H] = |G|/|H|.

3.9 Definition. For H 6 G, the set G/H := {xH : x ∈ G} of left cosets of H in G is called
the left coset space of H in G. (Similarly the set of right cosets is sometimes denoted H\G.)

3.10 Proposition. For any H 6 G, the left coset space G/H is a transitive G-set with the
action a · (xH) := (ax)H. Furthermore StabG(xH) = xHx−1 := {xhx−1 : h ∈ H}.

Proof. Clearly (1x)H = xH and ((ab)x)H = (a(bx))H = a · (bx)H, so this is an action, and
(yx−1)xH = yH so it is transitive. Now

StabG(xH) = {a ∈ G : axH = xH} = {a ∈ G : x−1ax ∈ H} = xHx−1.

3.11 Remark. In particular, for the identity coset 1H = H, StabG(H) = H. The kernel of
the action is thus the subgroup CoreG(H) :=

⋂
x∈G xHx

−1 of H, called the core of H in G.

3.12 Definition (Morphisms of G-sets). For any group G, a map Φ: X → Y between G-sets
is called a G-set morphism if for all g ∈ G, x ∈ X, Φ(g ·x) = g ·Φ(x). If Φ has an inverse (which
is automatically a G-set morphism: write x = Φ−1(y) and apply Φ−1 to Φ(g · x) = g · Φ(x))
then it is called a G-set isomorphism; X and Y are then called isomorphic G-sets, written
X ∼=G Y . A G-set automorphism of X is an isomorphism Φ: X → X and the set these is
denoted AutG(X).

3.13 Remark. If G acts on X and x ∈ X, then orbG(x) ⊆ X is a G-set, by restricting the
action, and the inclusion orbG(x) → X is a G-set morphism. Together with Proposition 3.10,
this sets the scene for an amazingly useful theorem (see Alg1A for a partial version).

3.14 Orbit–Stabilizer Theorem. Let G be a group acting on a set X and for x ∈ X, let
Gx = StabG(x) be its stabilizer. Then a · x 7→ aGx (for a ∈ G) defines a G-set isomorphism

Ψ: orbG(x)→ G/Gx.

[Aside on functions. A function f : X → Y can be viewed as a special kind of relation
R ⊆ X × Y often called the graph of f : (x, y) ∈ R if y = f(x). To yield a function f : X → Y ,
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R must be everywhere defined (every x ∈ X is related to some y ∈ Y ) and uniquely defined (if
x is related to y1 and y2 then y1 = y2). Compare these with surjectivity and injectivity.]

Proof. Clearly Ψ is everywhere defined and surjective. To show it is uniquely defined and
injective, observe that

a · x = b · x⇔ (b−1a) · x = x⇔ b−1a ∈ Gx ⇔ aGx = bGx.

Hence Ψ is a bijection. To show it is a G-set isomorphism, observe that

Ψ(g · (a · x)) = Ψ((ga) · x) = (ga)Gx = g · (aGx) = g ·Ψ(a · x).

3.15 Corollary. If a group G acts on X and orbG(x) is finite then Gx = StabG(x) has finite
index [G : Gx] = | orbG(x)|. If also G is finite, |G| = |Gx| | orbG(x)|.

3.16 Remark. The Orbit Partition Theorem 3.2 and the Orbit–Stabilizer Theorem 3.14
together imply that any G-set is, up to G-set isomorphism, a disjoint union of left coset spaces.

3.17 Examples. (i) Take G = 〈σ〉 6 S8, with σ = (1 3 4 2 5)(6 7)(8) acting on X =
{1, . . . 8} and x = 1. (Note σ5 = (6 7) and so o(σ) = 10.) Then the G-set isomorphism is

1 = σ5(1) 7→ StabG(1) = {id, σ5}, 3 = σ(1) = σ6(1) 7→ σ StabG(1) = {σ, σ6}
4 7→ {σ2, σ7}, 2 7→ {σ3, σ8}, 5 7→ {σ4, σ9}

(ii) G = D8 acts transitively on the set {x1, x2, x3, x4} of vertices of a square with StabG(x1) =
{id, s1}. The other left cosets are {r, rs1 = sv}, {r2, r2s1 = s2} and {r3, r3s1 = sh}.

(iii) G = S4 acts transitively on {∆12,34,∆13,24,∆14,23}. Then

StabG(∆13,24) = {id, (1 3), (2 4), (1 3)(2 4), (1 2 3 4), (1 4 3 2), (1 4)(2 3), (1 2)(3 4)},

which is (isomorphic to) D8 and has index 24/8 = 3.

3.18 Remark. It is often useful to distinguish the subset XG := {x ∈ X : a · x = x for all
a ∈ G} of fixed points of the G-action, i.e., x ∈ XG iff StabG(x) = G iff | orbG(x)| = 1.

3.19 Corollary. Suppose G is a group acting on a finite set X with fixed point set XG. Let
X1, . . . Xm be the (disjoint) orbits of G in X with |Xi| > 2, and let Hi be the stabilizer of a
point in Xi for each i ∈ {1, . . .m}. Then each Hi has finite index [G : Hi] in G and

|X| = |XG|+
m∑
i=1

[G : Hi].

Corollary 3.19 has an important application to the conjugation action for finite G. Here XG =
{x ∈ G : axa−1 = x for all a ∈ G} = Z(G), the centre of G.

3.20 Theorem (The Class Equation). For a finite group G,

|G| = |Z(G)|+
m∑
i=1

[G : CG(ai)]

where the sum is taken over the m conjugacy classes in G with more than one element and ai
is an element of each such class.
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3.21 Example. To compute the Class Equation for a group G, note that o(ab) = o(b) so
elements in the same conjugacy class have the same order. In Sn, σ and τ are conjugate if
and only if they have the same cycle type. A permutation is even if the number of even length
cycles is even, and permutations of the same cycle type are conjugate in An unless their cycle
lengths are distinct odd integers (exercises). Thus for G = A5, the conjugacy classes Gσ are
given in the table

σ o(σ) |Gσ| |CG(σ)|
id 1 1 60

(1 2)(3 4)(5) 2 15 4
(1 2 3)(4)(5) 3 20 3
(1 2 3 4 5) 5 12 5
(1 2 3 5 4) 5 12 5

where only the 5-cycles split into two conjugacy classes. The Class Equation of A5 is thus
60 = 1 + 15 + 20 + 12 + 12.

4 Conjugacy, normality and simplicity

4.1 Definitions (Conjugate and normal subgroups). The conjugation action κ : G→ Aut(G)
gives rise to an action of G on the set of all subsets of G by a · H = aH := {aha−1 : h ∈ H}
which is called the conjugate of H by a also denoted aHa−1: check 1H = H and for all a, b ∈ G,
a(bH) = abH.

If H 6 G, then aH 6 G because conjugation by a is an automorphism of G: 1 = a1 ∈ aH and
for g, h ∈ H, ag ah = a(gh) ∈ aH and (ah)−1 = a(h−1) ∈ aH. The orbit of H is its conjugacy
class GH := {aH : a ∈ G} of H in G. A subgroup H 6 G which is fixed by the action, i.e.,
aH = H for all a ∈ G is called normal subgroup of G, written H EG. In general, the stabilizer
of H is its normalizer

NG(H) = {a ∈ G : aH = H}.
Thus H ENG(H) 6 G. The Orbit–Stabilizer Theorem 3.14 in this case is a G-set isomorphism
between GH and G/NG(H).

4.2 Remarks. (i) To show H E G, it suffices to show H 6 G and aH ⊆ H for all a ∈ G
(because a−1 ∈ G, so a−1

H ⊆ H, which implies H ⊆ aH).

(ii) If H E G and a ∈ H, then Ga ⊆ H. Hence any normal subgroup of G is a union of
conjugacy classes of G.

(iii) For any group G, {1}EG and GEG.

(iv) H EG if and only if Ha = aH for all a ∈ G, i.e., the left and right cosets of H coincide.

(v) For any homomorphism φ : G→ G̃, kerφEG [Check!].

In particular, suppose H 6 G and the left coset space G/H can be made into a group in such a
way that φ : G→ G/H; a 7→ aH is a homomorphism. Then φ(1) = 1H, so the identity element
of G/H must be the identity coset, and the group operation must be aH bH = φ(a)φ(b) =
φ(ab) = (ab)H. Hence kerφ = {a ∈ G : aH = 1H} = H and so H EG. This has a converse.

4.3 Proposition. Suppose NEG. Then G/N is a group with identity element 1N and group
operation aN bN = (ab)N , and φ : G→ G/N ; a 7→ aN is a homomorphism.
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Proof. The main task is to show that the group operation is well-defined. For any x ∈ aN = Na
and y ∈ bN , xy = (xb)(b−1y) with xb ∈ N(ab) = (ab)N and b−1y ∈ N . Hence xy ∈ (ab)N i.e.,
(xy)N = (ab)N . The group axioms for G/N follow from those in G: (1N)(aN) = (1a)N =
aN = (a1)N = aN(1N), aN(bNcN) = (abc)N = (aNbN)cN and a−1NaN = (a−1a)N =
1N = (aa−1N) = aNa−1N . Now a 7→ aN is a homomorphism G→ G/N by construction.

4.4 Definition. G/N is called the quotient or factor group of G by N EG.

4.5 Remark. There is a bijection between normal subgroups of G and congruences on G,
which are equivalence relations ' on G such that a1 ' b1 and a2 ' b2 implies a1a2 ' b1b2.
Indeed, for any congruence on G, N := [1] E G, and conversely if N E G, then a ' b if
a−1b ∈ N defines a congruence. Since this is the equivalence relation defining the left cosets of
N , congruences provide another way to see that G/N is a group. [Tedious Exercise.]

4.6 Examples (Normal subgroups). (i) If H 6 G with index [G : H] = 2 (e.g. An 6 Sn)
then its left cosets are H and GrH, which are also the right cosets, so H EG and G/H
is the unique group up to isomorphism with 2 elements.

(ii) From Example 3.5(iii) we know V4 = {id, (1 3)(2 4), (1 2)(3 4), (1 4)(2 3)} is the kernel
of the action of S4 on the three “bisections” of {1, 2, 3, 4}, hence a normal subgroup.

(iii) If N E Sn contains a permutation of cycle type (`1, `2, . . . , `m) then by Remark 4.2(ii), it
contains all permutations of that cycle type.

4.7 First Isomorphism Theorem. Let φ : G→ H be a homomorphism and let N = kerφ.
Then aN 7→ φ(a) (for a ∈ G) defines an isomorphism

Φ: G/ kerφ→ imφ.

Proof. Clearly Φ is everywhere defined and surjective. To show it is uniquely defined and
injective, observe

aN = bN ⇔ a−1b ∈ N ⇔ 1 = φ(a−1b) = φ(a)−1φ(b) ⇔ φ(a) = φ(b).

Now
Φ(aN bN) = Φ((ab)N) = φ(ab) = φ(a)φ(b) = Φ(aN) Φ(bN),

so Φ is a homomorphism, hence an isomorphism.

4.8 Remark. G acts on H by g · h = φ(g)h with StabG(1) = kerφ and so Φ is also an
isomorphism of G-sets G/ kerφ→ imφ = orbG(1) by the Orbit–Stabilizer Theorem 3.14.

4.9 Examples (Quotients). (i) For n ∈ Z+, An = ker(ε : Sn → µ2)ESn, and Sn/An ∼= µ2.

(ii) V4 is the kernel of a homomorphism S4 → S3 and so S4/V4 ∼= S3.

(iii) If G is a group and a ∈ G with o(a) = n, then pa : Z → G;m 7→ am is a homomorphism
with ker pa = nZ and im pa = 〈a〉. Hence 〈a〉 ∼= Z/nZ = Zn.

We now introduce an important notion.

4.10 Definition. A group G is simple if G 6= {1} and the only normal subgroups of G are
{1} and G.

4.11 Remark. We shall see that simple groups are a bit like prime numbers. If g ∈ N is
not prime and n divides g with 1 < n < g, then g factorizes into smaller integers n and g/n.
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Analogously, if a group G is not simple, with N EG and 1 < N < G, then G “factorizes” into
“simpler” groups N and G/N .

4.12 Examples (Simple groups). (i) If G has prime order p, then the only subgroups of G
are {1} and G, so G is simple (and cyclic, since for all a 6= 1, o(a) = p and G = 〈a〉 ∼= Zp).

(ii) Sn is not simple for n > 3 since An E Sn; A3 is cyclic of prime order, hence simple, but
A4 is not simple, since V4 E A4.

(iii) A5 is a simple group. To see this, suppose NEA5. Then N is a union of conjugacy classes
of A5 including the identity. By the Class Equation of A5 (|A5| = 60 = 1+20+15+12+12),
|N | = 1 + 20a + 15b + 12c where a, b ∈ {0, 1} and c ∈ {0, 1, 2}. However, by Lagrange’s
Theorem, |N | is a divisor d of 60 = 22 · 3 · 5. The only such d with 12 < d < 60 are
d = 15, 20, 30 and these do not have the required form, so N = {1} or N = A5.

5 Cyclic groups and p-groups

5.1 Proposition. Let G = 〈a〉 be a finite cyclic group of order n = dm. Then 〈am〉 6 G is
the unique subgroup of G order d.

Proof. Clearly 〈am〉 is such a subgroup, so it suffices to show that if H 6 G has order d then
H ⊆ 〈am〉. If ak in H, then akd = 1 by Lagrange’s Theorem, so n = md divides kd and hence
k = rm for some r ∈ N. Now ak = (am)r ∈ 〈am〉.

5.2 Definition. The direct product of groups G1, G2, . . . G` is the group G1 ×G2 × · · · ×G`

with identity (1, 1, . . . 1) and group operation (a1, a2, . . . a`)(b1, b2, . . . b`) = (a1b1, a2b2, . . . a`b`).
(Check the axioms, noting that (a1, a2, . . . a`) has inverse (a−11 , a−12 , . . . a−1` ).)

5.3 Example. If Gi is finite of order |Gi| = ni for i ∈ {1, . . . `}, then |G1×· · ·×G`| = n1 · · ·n`,
and if also each Gi = 〈ai〉 is cyclic, then (a1, . . . a`) has order lcm(n1, . . . n`) in G1×· · ·×G`. In
particular if the ni are coprime, G1 × · · · ×G` = 〈(a1, . . . a`)〉 is also cyclic: this is the Chinese
Remainder Theorem [Alg1A]. Hence if ni = psii for si ∈ N and pi prime, and G = 〈a〉 is cyclic
of order n = ps11 · · · ps`` then (a1, . . . a`)

m 7→ am : G1 × · · · × G` → G is an isomorphism. Thus
any cyclic group is isomorphic to a product of cyclic groups with prime power orders. Groups
of prime power order play a key role in finite group theory.

5.4 Definition. Let p be a prime. A finite p-group is a group of order ps for some s ∈ N.

5.5 p-Group Action Theorem. Suppose a finite p-group G acts on a finite set X with fixed
point set XG ⊆ X. Then |XG| ≡ |X| (mod p). In particular, if |X| ≡ 0 (mod p) and XG is
nonempty, then XG has at least p elements.

Proof. This is immediate from Corollary 3.19 and the fact that if H = StabG(x) for x /∈ XG

then H 6= G and so [G : H] is divisible by p.

5.6 Corollary (p-Group Centre Theorem). For a nontrivial finite p-group G, Z(G) 6= {1}.

Indeed G acts on X = G by conjugation, with 1 ∈ Z(G) = XG and |Z(G)| ≡ |X| ≡ 0 (mod p).

5.7 Remark. This is not true for all finite groups: for example, Z(S3) = {1}.
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5.8 Lemma. Let P,H be subgroups of a group G. Then P acts on X = G/H by a · (xH) =
(ax)H for a ∈ P and x ∈ G, with fixed point set

XP = {xH ∈ X : P 6 xH}.

Proof. The action is just the restriction to P of the action of G on the left coset space G/H.
Now for any a ∈ P and x ∈ G, a · (xH) = xH if and only if x−1axH = H, i.e., x−1ax ∈ H, i.e.,
a ∈ xH. Thus XP is as stated.

Note that P 6 xH if and only if yP 6 H with y = x−1. Hence when P is a p-group, the
p-Group Action Theorem 5.5 gives the following way to count conjugates of P in H.

5.9 Corollary (p-Group Conjugacy). Let G be a finite group, p a prime, and let P,H 6 G
with P a p-group. Then

|{xH ∈ G/H : P 6 xH}| = |{y−1H ∈ G/H : yP 6 H}| ≡ [G : H] (mod p).

In particular if p does not divide the index [G : H] of H, P is conjugate to a subgroup of H.

5.10 Corollary (p-Group Normalizer Theorem). Let G be finite p-group and P < G a proper
subgroup. Then P < NG(P ).

Indeed, by Corollary 5.9 with H = P , |NG(P )/P | = |{xP ∈ G/P : P = xP}| ≡ [G : P ] mod p.

5.11 Cauchy’s Order p Theorem (1845). Let G be a finite group with order divisible by
a prime p. Then G has an element of order p.

Proof (McKay 1959). Let X = {(a1, a2, . . . ap) ∈ Gp := G × G × · · · × G : a1a2 · · · ap = 1}, so
|X| = |G|p−1 is divisible by p (observe ap = (a1a2 · · · ap−1)−1). Setting σ = (1 2 · · · p), 〈σ〉 6 Sp
acts on X by σk · (a1, a2, . . . ap) = (aσk(1), aσk(2), . . . aσk(p)): we check that aσ(1)aσ(2) · · · aσ(p) =
a2a3 · · · apa1 = a−11 (a1a2 · · · ap)a1 = a−11 1a1 = 1, and the action axioms are immediate. But
(1, . . . 1) ∈ X〈σ〉 and so the p-Group Action Theorem 5.5 (for the p-group 〈σ〉) implies the
existence of another fixed point. This must have the form (a, . . . a) for 1 6= a ∈ G, and so
ap = 1 and o(a) = p.

6 Sylow theory

6.1 Example (Converse to Lagrange fails). Lagrange’s Theorem 3.8 implies that if a finite
group G has a subgroup of order m then m divides |G|. The converse does not hold in general.
For example A4 has order 12, but if H 6 A4 has order 6, then for any σ ∈ A4, σ either preserves
or swaps the two left cosets of H, so σ2H = H, i.e., σ2 ∈ H. Since any 3-cycle is a square, all
eight 3-cycles belong to H, which is impossible. Hence A4 has no subgroup of order 6.

6.2 Definition. Let G be a finite group and p a prime. A Sylow p-subgroup is a finite p-
group P 6 G whose index [G : P ] is not divisible by p. We let Sylp(G) denote the set of Sylow
p-subgroups of G and np(G) = | Sylp(G)| the number of Sylow p-subgroups of G.

6.3 Theorem (Sylow 1872). Let G be a finite group, p a prime, and r ∈ N.

(i) If pr divides |G| then G has a subgroup of order pr; in particular Sylp(G) is nonempty.

(ii) All P ∈ Sylp(G) are conjugate, hence isomorphic, and Sylp(NG(P )) = {P}.
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(iii) np(G) = [G : NG(P )] divides [G : P ] and has the form 1+pk for some k ∈ N; furthermore
np(G) = 1 if and only if G has a normal Sylow p-subgroup.

Proof. (i) We induct on r, starting from the fact that G has a subgroup of order p0 = 1.
Suppose P 6 G is a subgroup of G of order pr.

We apply Corollary 5.9 with H = P : as in Corollary 5.10, we obtain [NG(P ) : P ] ≡ [G : P ]
(mod p). Now P ENG(P ) so NG(P )/P is a group with quotient homomorphism φ : NG(P )→
NG(P )/P (sending x ∈ NG(P ) to xP ). If pr+1 divides G, say |G| = pr+1m, then [G : P ] =
|G|/|P | = pr+1m/pr = pm is divisible by p, hence so is [NG(P ) : P ]. Therefore NG(P )/P has
a subgroup K of order p by Cauchy’s Order p Theorem 5.11.

Now φ−1(K) is a subgroup of G which is a disjoint union of p left cosets of P , hence has order
ppr = pr+1.

(ii) Suppose P,Q ∈ Sylp(G) and apply Corollary 5.9 with H = Q. Since [G : Q] is not
divisible by p, P is conjugate to a subgroup yP 6 Q, but this must be an equality because
|yP | = |P | = |Q|; now g 7→ yg is an isomorphism P → Q.

If Q ∈ Sylp(NG(P )) then Q = aP for some a ∈ NG(P ), but aP = P for any such a, so Q = P .

(iii) The number of conjugates of P is [G : NG(P )] by the Orbit–Stabilizer Theorem 3.14
applied to the conjugation action on subgroups, so (ii) implies np(G) = [G : NG(P )], which
divides [G : P ] because P 6 NG(P ).

We now apply Corollary 5.9 with H = NG(P ). Then {y−1NG(P ) ∈ X : yP 6 NG(P )} =
{NG(P )}, since if yP 6 NG(P ) then yP = P by (ii), so y ∈ NG(P ). Hence np(G) = [G : NG(P )]
is congruent to 1 modulo p.

Finally np(G) = 1 iff NG(P ) = G iff P EG.

6.4 Remarks. Parts (i), (ii) and (iii) of this Theorem (typically in the form “Sylow p-
subgroups exist”, “Sylow p-subgroups are conjugate” and “np(G) divides |G| and is congruent
to 1 mod p”) are traditionally called Sylow’s First, Second and Third Theorems. However,
Sylow originally combined these results into two theorems, not three.

When there is no ambiguity, we often write np or n(p) for np(G).

6.5 Examples (Groups which cannot be simple). By the p-Group Centre Theorem 5.6, a
group of order ps (with p prime) is simple if and only if it is abelian, hence cyclic of prime
order (i.e., s = 1). The Sylow Theorems (in particular Theorem 6.3(iii)) show that many other
groups cannot be simple.

(i) Let G be a group of order mpr where p is prime, 1 < m < p and r > 1. By the Sylow
Theorems np = | Sylp(G)| satisfies

np = 1 + pk and np divides |G|/pr = m

Since p > m, np = 1 and the unique Sylow p-subgroup is normal, so G is not simple.

(ii) Let G be a group of order p2q where p and q are distinct primes. If p > q then (i) implies
that np = 1 and we have a normal Sylow p-subgroup. Otherwise p < q and nq = 1 + qk
divides |G|/q = p2 so nq = 1 or p2. If nq = 1 we have a normal Sylow q-subgroup. On
the other hand, distinct Sylow q-subgroups Q1, Q2 have Q1 ∩ Q2 = {1}, since they are
cyclic of prime order, so if nq = p2, the Sylow q-subgroups account for p2(q− 1) elements
of order q in G. This only leaves p2 elements of order 6= q. But the Sylow p-subgroups
have order p2, so np = 1. Hence G is not simple in this case either.
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6.6 Theorem (Poincaré). If G is a simple group and {1} < H < G has finite index [G : H] =
n, then G is isomorphic to a subgroup of An, hence is finite with |G| dividing |An| = 1

2
n!.

Proof. Let φ : G → Sym(G/H) ∼= Sn be the action homomorphism of the action of G on the
left cosets of H. Then kerφ 6 H < G, so kerφ = {1} since G is simple. Hence G ∼= imφ ∼=
G′ 6 Sn. If ε|G′ : G′ → µ2 has ker ε|G′ = {1}, then |G| = |G′| 6 2, which is impossible (since
{1} < H < G). So ker ε|G′ = G′ since G′ is simple, i.e., G′ 6 An and |G| = |G′| divides |An| by
Lagrange’s Theorem.

6.7 Example. Let G be a simple group of order 36 = 22 32. Then by the Sylow Theorems G
has a Sylow 3-subgroup, which has order 9, hence index 4. By Poincaré, it follows that 36 = |G|
divides 4!/2 = 12. This is absurd, so there cannot be a simple group of order 36.

7 Finitely generated abelian groups

7.1 Remark. In this section, all groups are abelian, and we use additive notation: the identity
is 0, the group operation is +, and the inverse of a is −a. The product G1×· · ·×G` of abelian
groups G1, . . . G` may also be denoted G1 ⊕ · · · ⊕G` and called their direct sum.

7.2 Definition. For subgroups H1, H2 . . . H` of an abelian group G, H1 + · · · + H` := {a1 +
· · · + a` : aj ∈ Hj} and we say the sum is direct if ∀ aj ∈ Hj (j ∈ {1, . . . `}), a1 + · · · + a` = 0
implies aj = 0 for all j.

7.3 Proposition. Let G be abelian and suppose that G = H1 + · · · + H` is a direct sum of
subgroups H1, . . . H`. Then φ : H1⊕· · ·⊕H` → G; (a1, . . . a`)→ a1+ · · ·+a` is an isomorphism.

Proof. Clearly φ((a1, . . . a`) + (b1, . . . b`)) = φ((a1 + b1, . . . a` + b`)) = a1 + b1 + · · · + a` + b` =
a1 + · · · + a` + b1 + · · · + b` = φ((a1, . . . a`)) + φ((b1, . . . b`)), since G is abelian, so φ is a
homomorphism. Now φ is surjective with kernel {(0, . . . 0)} by definition of a direct sum, hence
an isomorphism.

7.4 Fundamental Theorem of Finite Abelian Groups. Let G be a finite abelian group.
Then G is a direct sum of cyclic subgroups of prime power order. Furthermore the number of
cyclic summands of order pr (p prime, r ∈ Z+) is uniquely determined by G.

7.5 Remarks. Together with Proposition 7.3, this theorem shows that any finite abelian
group G is isomorphic to a direct sum

(*) Zpr11 ⊕ Zpr22 ⊕ · · · ⊕ Zpr`
`
,

for some ` ∈ N, rj ∈ Z+ and primes pj (j ∈ {1, . . . `}). However, the ordering of the cyclic
summands is not uniquely determined. To classify finite abelian groups up to isomorphism, we
fix the ordering in (*) so that p1 6 p2 6 · · · 6 p` and if pi = pi+1 then ri 6 ri+1. For example if
G is a direct sum of cyclic subgroups with orders 9, 2, 4, 3, 4, then G ∼= Z2⊕Z4⊕Z4⊕Z3⊕Z9.

Finding all abelian groups of a given order n = ps11 · · · psmm , where p1 < p2 < · · · < pm are
primes, reduces then to the problem of finding, for each k ∈ {1, . . .m}, all partitions

1 6 r1 6 r2 6 . . . 6 rj (j ∈ Z+) with r1 + · · ·+ rj = sk

of sk. Each such partition gives a possible factorization pskk = pr1k · · · p
rj
k .
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7.6 Example. To find (up to isomorphism) all abelian groups of order 72, observe that
72 = 23 32. The possible factorizations of 23 are (8), (2, 4), (2, 2, 2) whereas for 32, they are are
(32), (3, 3). We then have that (up to isomorphism) the abelian groups of order 72 are

Z8 ⊕ Z9, Z2 ⊕ Z4 ⊕ Z9, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z9

Z8 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3, Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3.

7.7 Definition. For ` ∈ N, we say that a1, . . . a` ∈ G generate an abelian group G, and call
a1, . . . a` generators of G, if G = 〈a1〉+ 〈a2〉+ · · ·+ 〈a`〉. Equivalently, letting A = (a1, . . . a`),
the homomorphism φA : Z` → G; (m1, . . .m`) = m1a1 + · · ·+m`a` is surjective. We then say G
is finitely generated with `-generator presentation A, calling any R ∈ kerφA a relation on A.

7.8 Remarks. Note that a finite group G = {0, a1, . . . aN} is generated by A = (a1, . . . aN),
hence finitely generated! In general, G is generated by A = (a1, . . . a`) if and only if any a ∈ G
can be written a = m1a1 + · · ·+m`a` for some m1, . . .m` ∈ Z. This makes G look like a “vector
space” over Z “spanned” by a1, . . . a`—except that Z is not a field!

Also R = (m1, . . .m`) ∈ kerφA if and only if m1a1 + · · · + m`a` = 0, i.e., R defines a “linear
dependence relation” on a1, . . . a`. However, for m ∈ Z, a ∈ G, ma = 0 only implies that o(a)
dividesm, so we replace “linear independence” by direct sum: the sumG = 〈a1〉+〈a2〉+· · ·+〈a`〉
is direct if and only if m1a1 + · · ·+m`a` = 0 implies miai = 0 for all i ∈ {1, . . . `}.

7.9 Example. Suppose G = 〈a1〉+ 〈a2〉+ 〈a3〉+ 〈a4〉,

φA : Z4 → G; (m1,m2,m3,m4) 7→ m1a1 +m2a2 +m3a3 +m4a4

and kerφA = 〈(4, 2,−4, 0)〉+〈(1, 2,−1, 0)〉+〈(2, 0,−1, 1)〉+〈(2,−1, 0,−1)〉. Thus the generators
a1, a2, a3, a4 ∈ G satisfy the relations

4a1 + 2a2 − 4a3 = 0, a1 + 2a2 − a3 = 0, 2a1 − a3 + a4 = 0, 2a1 − a2 − a4 = 0,

and all other relations are consequences of these. By the 4th relation a4 = 2a1 − a2, so
G = 〈a1〉 + 〈a2〉 + 〈a3〉, and substituting a4 into the 3rd relation gives 4a1 − a2 − a3 = 0, so
a3 = 4a1−a2 and G = 〈a1〉+ 〈a2〉 with −12a1 + 6a2 = 0 and −3a1 + 3a2 = 0. We cannot divide
by 3 here, but we can eliminate a2 to get 6a1 = 0. If we set ã2 = a2 − a1, then G = 〈a1〉+ 〈ã2〉
with 6a1 = 0 and 3ã2 = 0, i.e., G ∼= Z6 ⊕ Z3

∼= Z2 ⊕ Z3 ⊕ Z3.

7.10 Lemma. Let G be an abelian group with an `-generator presentation. Then G is a
direct sum of a subgroup G′ with an (`− 1)-generator presentation and a cyclic subgroup G′′.

Proof. If G has an `-generator presentation A = (a1, . . . a`) with kerφA = {0}, then G is a
direct sum of G′ = 〈a1〉+ · · ·+ 〈a`−1〉 and G′′ = 〈a`〉 ∼= Z.

Otherwise, define the height of an `-generator presentation A of G to be the least norm
|m| ∈ Z+ of any nonzero coefficient m that appears in some relation R ∈ kerφA. Let
A = (a1, . . . a`) be a presentation of least height m ∈ Z+, with the generators ordered so
that R := (m1, . . .m`−1,m) ∈ kerφA, i.e., m1a1 + · · ·+m`−1a`−1 +ma` = 0 in G.

For any other relation R′ ∈ kerφA, write the coefficient m′ of a` as m′ = k′m+r with 0 6 r < m
and k′ ∈ Z. Then R′ − k′R ∈ kerφA has coefficient r < m, so r = 0 by minimality of m.

For any other generator aj, write the coefficient mj of aj in R as mj = kjm+ r with 0 6 r < m
and kj ∈ Z. Then A′ = (a1, a2, . . . a`−1, a` + kjaj) has (m1, . . .mj−1, r,mj+1, . . .m`−1,m) ∈
kerφA′ , which has coefficient r < m, so r = 0 by minimality of m.
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Thus R = m(k1, . . . k`−1, 1) and all other relations have the form R′ = (m′1, . . .m
′
`−1, k

′m), so
we may remove a` from all other relations by subtracting a multiple of R. If we set ã` :=
k1a1 + · · · k`−1a`−1 + a`, we thus obtain a presentation Ã = (a1, . . . a`−1, ã`) where kerφÃ =
K ′ + 〈(0, . . . 0,m)〉 and K ′ 6 Z`−1⊕{0}. Thus G = G′ + 〈ã`〉 = φÃ(Z`−1⊕{0}) + φÃ({0}⊕Z)
is a direct sum of G′ = 〈a1〉+ · · ·+ 〈a`−1〉 and a cyclic subgroup G′′ = 〈ã`〉 of order m.

7.11 Proposition. Any finitely generated abelian group is a direct sum of cyclic groups with
infinite and/or prime power orders.

Proof. We prove this for abelian groups G with an `-generator presentation by induction on `.
Lemma 7.10 implies that G is the direct sum of subgroups G′ and G′′, where G′ has an (`− 1)-
generator presentation and G′′ is cyclic, hence a direct sum cyclic groups as stated. If ` = 1,
G′ = {0}; otherwise we have by induction on ` that G′ is a direct sum of cyclic groups as stated.
Now a direct sum of direct sums is a direct sum: a = a′+ a′′ = (a′1 + · · ·+ a′m) + (a′′1 + · · · a′′n) =
a′1 + · · · + a′m + a′′1 + · · · a′′n and if a′1 + · · · + a′m + a′′1 + · · · a′′n = 0 then a′1 + · · · + a′m = 0 and
a′′1 + · · · a′′n = 0, hence a′j = 0 = a′′k for all j, k. Thus G is a direct sum of cyclic groups as
stated.

7.12 Definition. Let G be any abelian group and let p be a prime. The subset

Gp = {a ∈ G : o(a) is a power of p}

is called the p-primary subgroup of G.

7.13 Lemma. Gp is a subgroup of G.

Proof. As o(0) = 1 = p0, 0 ∈ Gp. Now let a, b ∈ Gp with orders pr, ps. Then pmax{r,s}(a+ b) =
pmax{r,s}a+ pmax{r,s}b = 0 + 0 = 0, so o(a+ b) divides pmax{r,s} and is thus a power of p. Hence
a+ b ∈ Gp, and as o(−a) = o(a) = pr we have −a ∈ Gp. Hence Gp 6 G.

7.14 Proposition. Let G be a finite abelian group where |G| = ps11 · · · psmm for some positive
integers s1, . . . sm. Then G is a direct sum of Gp1 , Gp2 , . . . Gpm .

Proof. Suppose that a1 + · · · + am = 0 with ai ∈ Gpi for i ∈ {1, . . .m}; then o(ai) is a power
of pi dividing |G| by Lagrange’s Theorem, so psii ai = 0. Hence if, for each i ∈ {1, . . .m}, we
define qi = |G|/psii =

∏
j 6=i p

sj
j then 0 = qi(a1 + · · · + am) = qiai, and hence ai = 0, since qi is

coprime to o(ai).

Now q1, . . . qm are also coprime, so there exist k1, . . . km ∈ Z with k1q1 + · · ·+ kmqm = 1. Thus
for any a ∈ G,

a = (k1q1 + · · ·+ kmqm)a = k1q1a+ · · ·+ kmqma.

Since psii (kiqia) = ki|G|a = 0, kiqia ∈ Gpi . Hence G = Gp1 +· · ·+Gpm and the sum is direct.

Proof of Theorem 7.4. The existence part of Theorem 7.4 follows from Proposition 7.11. For
the uniqueness, observe first that if H 6 G has order pr for a prime p, then H 6 Gp. Thus
it suffices to show that if G = Gp for some prime p, then for each r ∈ Z+, the number kr of
cyclic summands of order pr in G is uniquely determined. We proceed by induction the highest
power s with ks > 0. If s = 0, G = {0} and there is nothing to prove. Suppose now that
G = 〈a1〉+ · · ·+ 〈ak〉+G′ is a direct sum where o(ai) = ps and o(a) 6 ps−1 for all a ∈ G′.
Let φ : G→ G; a 7→ ps−1a; then kerφ = 〈pa1〉+ · · ·+ 〈pak〉+G′, where the number k′r of cyclic
summands of order pr is uniquely determined by induction, and imφ = 〈ps−1a1〉+· · ·+〈ps−1ak〉,
which is a sum of cyclic groups of order p and k = | imφ|/p is uniquely determined by G. Then
ks = k, ks−1 = k′s−1 − k and kr = k′r for r 6 s− 2 and we are done.
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8 Composition series and solvable groups

8.1 Definitions (Subnormal series and solvable groups). A subnormal series for a group G
is a series

{1} = H0 6 H1 6 · · · 6 H` = G

where Hi−1 EHi, i ∈ {1, . . . `}, and the quotient groups Hi/Hi−1 are called its factors. If the
factors are simple, the series is called a composition series and the factors are called composition
factors. We say that G is solvable if it has a subnormal series with abelian factors.

8.2 Examples (Subnormal series). For any group G, {1} 6 G is a subnormal series with
factor G/{1} ∼= G. Hence any abelian group G is solvable.

(i) Let G = 〈a〉 be cyclic of order 6. Then 〈a3〉 6 G has order 2 and index 3 and

{1} 6 〈a3〉 6 G

is a composition series with factors 〈a3〉/{1} ∼= Z2 and G/〈a3〉 ∼= Z3. Similarly

{1} 6 〈a2〉 6 G

is a composition series with factors 〈a2〉/{1} ∼= Z3 and G/〈a2〉 ∼= Z2.

(ii) S3 has a composition series {1} < A3 < S3 with factors A3/{1} ∼= Z3 and S3/A3
∼= Z2, so

S3 is solvable. Unlike the previous example, S3 has no normal subgroup of order 2.

(iii) S4 has subnormal series 1 < V4 < A4 < S4 with factors V4 ∼= Z2 × Z2, A4/V4 ∼= Z3 and
S4/A4

∼= Z2. Notice that A4/V4 6 S4/V4 is isomorphic to A3 6 S3.

(iv) If G = G1 × · · · ×G` is a direct product group then the map

φ : G1 × · · · ×G` → G`; (a1, . . . a`) 7→ a`

is a surjective homomorphism with kerφ = G1 × · · · ×G`−1 × {1} ∼= G1 × · · · ×G`−1 and
G/ kerφ ∼= G` by the First Isomorphism Theorem 4.7. Iterating this process, we obtain
a subnormal series of G with factors (isomorphic to) G1, . . . G`. In particular if G1, . . . G`

are simple groups, there is at least one group with these composition factors.

(v) Any finite p-group G (for a prime p) is solvable. Indeed this is immediate if |G| = p, while
if |G| = ps, we have seen in exercises that G has a normal subgroup N of order ps−1, and
G/N is cyclic, so the result follows by induction on s.

8.3 Definition. For K 6 G, S(G,K) := {H : K 6 H 6 G} and S(G) := S(G, {1}).

8.4 Subgroup Correspondence Theorem. Let φ : G→ H be a homomorphism. Then the
map Ψ: S(imφ)→ S(G, kerφ); B 7→ φ−1(B) is a well-defined bijection. Furthermore N E imφ
if and only if Ψ(N) EG.

Proof. If B 6 H then kerφ 6 φ−1(B) 6 G by Lemma 1.10, so Ψ is well-defined. Now for
B 6 imφ, φ(φ−1(B)) = B, while for any A 6 G, φ−1(φ(A)) = {g ∈ G : φ(g) ∈ φ(A)}, but if
φ(g) = φ(a) for some a ∈ A, then φ(a−1g) = 1 so a−1g ∈ kerφ. Hence if kerφ 6 A, g ∈ A and
φ−1(φ(A)) = A. Thus Ψ is a bijection with inverse A 7→ φ(A).

Finally for any h = φ(g) ∈ imφ,

φ(a) ∈ hN = hNh−1 ⇔ φ(g−1ag) = φ(g)−1φ(a)φ(g) ∈ N ⇔ a ∈ gΨ(N)

so N E imφ iff Ψ(N) EG.
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8.5 Third Isomorphism Theorem. Suppose that N,KEG and N 6 K. Then K/NEG/N
and

(G/N)/(K/N) ∼= G/K.

Proof. Since aN = bN implies a−1b ∈ N 6 K and hence aK = bK, there is a well-defined map

φ : G/N → G/K; aN 7→ aK.

Since
φ(aN bN) = φ(abN) = abK = aK bK = φ(aN)φ(bN),

φ is a homomorphism, and it is clearly surjective. The identity in G/K is the coset 1K = K
and

φ(aN) = K ⇔ aK = K ⇔ a ∈ K,

so kerφ = {aN : a ∈ K} = K/N . By the First Isomorphism Theorem 4.7, K/N EG/N and

(G/N)/(K/N) = (G/N)/ kerφ ∼= imφ = G/K.

8.6 Proposition. Any subnormal series {1} = H0 < H1 < · · · < H` = G for a (nontrivial)
finite group G can be refined to a composition series {1} = K0 < K1 < · · · < Km = G, i.e., for
all i ∈ {0, . . . `}, there exists j ∈ {0, . . .m} such that Hi = Kj.

Proof. We induct on |G| − ` > 0. If |G| − ` = 1, then for all 1 6 j 6 ` we have |Hj−1| = j, so `
divides |G| = `+ 1 hence ` = 1, G is cyclic of order 2 and {1} = H0 < H1 = G is a composition
series. In general, if {1} = H0 < H1 < · · · < H` = G is a composition series we are done,
otherwise some factor Hi/Hi−1 is not simple. By the Subgroup Correspondence Theorem 8.4,
Hi has a normal subgroup K with Hi−1 < K < Hi, and since Hi−1 E Hi, Hi−1 E K. By
induction on |G|− `, this longer series refines to a composition series, hence so does the original
series.

8.7 Corollary. Any nontrivial finite group G has a composition series, and is solvable if and
only if it has a composition series whose factors are cyclic of prime order.

Indeed any G 6= {1} has a subnormal series (e.g. {1} < G) which can be refined to a compo-
sition series. If the subnormal series has abelian factors, so does the refinement: if Hj/Hj−1
is abelian and Hj−1 6 K 6 Hj, then K/Hj−1 6 Hj/Hj−1 is abelian, and so is the quotient
(Hj/Hj−1)/(K/Hj−1), hence Hj/K is abelian by the third isomorphism theorem 8.5. The fac-
tors in the refinement are simple abelian, i.e., cyclic of prime order. The converse is immediate
as cyclic groups are abelian.

The Jordan–Hölder Theorem (see handout) asserts that the composition factors of a finite
group G are essentially uniquely determined.

9 Finite simple groups

9.1 Definition. An action of a group G on a set X is primitive if it is transitive and also for
any x ∈ X, StabG(x) 6 H 6 G implies H = StabG(x) or H = G.

9.2 Lemma. If an action of G on X is transitive and 2-transitive, then it is primitive.
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Proof. Suppose StabG(x) < H 6 G so ∃ y = h · x 6= x in orbH(x). We want to show any g ∈ G
is in fact in H. If g ∈ StabG(x), there is nothing to prove, so suppose not, i.e., g · x = z 6= x.
Then by 2-transitivity of G, ∃ a ∈ G with a · (x, y) = (x, z), i.e., a ∈ StabG(x) and a · y = z.
Thus g · x = z = a · y = a · (h · x) = (ah) · x and so g ∈ (ah) StabG(x) ⊆ (ah)H = H.

9.3 Regular Normal Subgroup Theorem. Let G act primitively on X, let N E G and
x ∈ X with N 6⊆ Gx := StabG(x), and let Gx act on N by conjugation. Then G = NGx and
Φ: N → X;n 7→ n·x is a surjective Gx-set morphism, which is an isomorphism if N∩Gx = {1}.

Proof. Since Gx < NGx 6 G, primitivity implies G = NGx, and if g = na with n ∈ N and
a ∈ Gx then g · x = na · x = n · x, so orbN(x) = orbG(x) = X and Φ is surjective. It is a Gx-set
morphism, since for any a ∈ Gx, Φ(a · n) = Φ(ana−1) = ana−1 · x = a · (n · x) = a · Φ(n). Now
if Φ(n1) = Φ(n2), then n−11 n2 ∈ N ∩ Gx, so if N ∩ Gx = {1} then n1 = n2, i.e., Φ is injective,
hence a Gx-set isomorphism.

9.4 Lemma. Let X be a set with |X| = n. Then the action of Alt(X) on X is m-transitive
for all m 6 n− 2.

Proof. The action of Sym(X) on X is m-transitive for all m 6 n. Hence if m 6 n− 2, for any
x = (x1, . . . xm) and y = (y1, . . . ym) with xi 6= xj and yi 6= yj for i 6= j, there exists σ ∈ Sym(X)
with σ · x = y, and there are at least two distinct z1, z2 ∈ X which are not equal to any yj. If
σ ∈ Alt(X), we are done, otherwise σ′ := (z1 z2) ◦ σ ∈ Alt(X) with σ′ · x = (z1 z2) · y = y.

9.5 Theorem (Simplicity of Alternating Groups). The group Alt(X) is simple for |X| > 5.

Proof. The result is true for |X| = 5 by Example 3.21, so suppose |X| = n > 6 and that
Alt(Y ) is simple when |Y | = n − 1. Since n > 6, the action of Alt(X) on X is m-transitive
for m 6 4 by Lemma 9.4, hence primitive by Lemma 9.2, and for x ∈ X, the action of
Gx := StabG(x) ∼= Alt(X r {x}) on X r {x} is 3-transitive.

Let N be a proper nontrivial normal subgroup of G = Alt(X). Since Gx is not normal in G,
we cannot have Gx 6 N by primitivity. Hence N ∩ Gx = {id} since Gx is simple, and so the
Regular Normal Subgroup Theorem 9.3 implies X r {x} and N∗ = N r {id} are isomorphic
Gx-sets. However, if a1 ∈ N∗, a2 ∈ N∗ r {a1, a−11 }, and a3 ∈ N∗ r {a1, a2, a1a2}, then no
automorphism of N can map (a1, a2, a1a2) to (a1, a2, a3), so the Gx action on N∗ cannot be
3-transitive, a contradiction.

9.6 Theorem. The (only) normal subgroups of Sn are {id}, An, Sn, and, for n = 4, V4.

Proof. If N E Sn, then N ∩ An E An, and so if n 6= 4, An ∩ N = An or An ∩ N = {id} as
An is simple by Theorem 9.5. In the former case An 6 N 6 Sn, so N = Sn or N = An. In
the latter case, the cosets σN with σ ∈ An are distinct, so |N | 6 2. However N is a union of
conjugacy classes of Sn, so either N = {id} or n = 2 and N = S2. The Class Equation of S4 is
24 = 1 + 3 + 8 + 6 + 6, so N = V4 is the only other possibility in this case.

9.7 Corollary. Sn is solvable if and only if n 6 4.
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