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Groups and symmetry
What is group theory?

I The mathematical study of symmetry in its most general form.

Why study group theory?

I Symmetry is everywhere: both in obvious places, and less
obvious ones.

To illustrate, we consider two kinds of symmetry: one in geometry,
one in algebra.

I Both cases have transformations that capture the
symmetries we are interested in.

I Then study symmetry properties of certain objects w.r.t.
these transformations.

I Each object has a symmetry group that describes these
properties in precise mathematical terms.
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Geometric symmetry

Transformations: Isometries.

I An isometry of the plane is a bijection f : R2 → R2 that
preserves distances, i.e., ∀ x , y ∈ R2, the distance from f (x)
to f (y) equals the distance from x to y .

Objects: Figures in the plane (i.e., subsets A ⊆ R2).

Symmetry group: Isometries that preserve the figure.

I More precisely, for any A ⊆ R2, let
GA = {isometries f : R2 → R2 st. f (A) = A}.

I GA is a group with composition f ◦ g of isometries f , g as the
group operation.
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Example G1
Let the figure be an equilateral triangle T :

3 1�
�
�
�
�

2

T
T
T
T
T

T

GT contains • three rotations r , r2 := r ◦ r and r3 = e = id, where r
is an anticlockwise rotation of 2π/3 around the centre of T , and

• three reflections s1, s2, s3 along medians of T through the
vertices 1, 2, 3 respectively.

Question. How do these symmetries act on the vertices?
r sends 1 to 2, 2 to 3 and 3 to 1: this is the permutation (1 2 3).

Similarly r2 acts by (1 3 2) and s1, s2, s3 by (2 3), (1 3), (1 2) resp.

Conclude GT = S3 = {id, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)}.
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Example G2

Let the figure be a square S :

4 1

23

S

What is the symmetry group GS and how does it act on the
vertices? Can it be all of S4?

It can’t be because a square has opposite vertices, which must be
sent to opposite vertices by any isometry!

For example any symmetry which sends 1 to 2 must send 3 to 4,
so (1 2)(3 4) is induced by a symmetry but (1 2) and (1 2 3) aren’t.
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Algebraic symmetry

Transformations: Field automorphisms.

A automorphism of a field F is a bijection f : F→ F that preserves
addition, the zero element, multiplication and the unit element:

f (a+ b) = f (a) + f (b) f (0) = 0

f (ab) = f (a)f (b) f (1) = 1.

Claim. If f is an automorphism of field F containing Q, then f fixes
all the elements in Q.

Why? Any rational number is a ratio of integers, and any integer is
plus or minus 1+ 1+ · · ·+1 (some number of times). But f (1) = 1.

Now turn this idea into a proof...
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Proof of claim
First suppose that n ∈ Z+ (i.e., a positive integer). Then

f (n) = f (1 + 1 + · · ·+ 1)

= f (1) + f (1) + · · ·+ f (1) = 1 + 1 + · · ·+ 1 = n.

Next observe that for any a ∈ F and any b 6= 0,

f (a) + f (−a) = f (a+ (−a)) = f (0) = 0,

f (b) · f (1/b) = f (b · 1/b) = f (1) = 1,and

so f (−a) = −f (a) and also f (1/b) = 1/f (b).

Hence if n is a negative integer, f (n) = −f (−n) = −(−n) = n.

Finally if q = a/b for some integers a, b, where b 6= 0, then

f (q) = f (a · 1/b) = f (a) · f (1/b) = f (a) · 1/f (b) = a/b = q

and we have proved the claim.
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Roots of polynomials
Objects: Polynomials over Q (elements of Q[x ]). Let

P(x) = anx
n + an−1x

n−1 + · · ·+ a0

be a polynomial with coefficients aj ∈ Q and roots t1, . . . tn ∈ C.

Claim. Let F be a field containing Q and t1, . . . tn. Then for any
automorphism f of F and any root t of P, f (t) is also a root of P.

P(f (t)) = anf (t)
n + an−1f (t)

n−1 + · · ·+ a0Proof.

= f (an)f (t)
n + f (an−1)f (t)

n−1 + · · ·+ f (a0)

= f (ant
n) + f (an−1t

n−1) + · · ·+ f (a0)

= f (ant
n + an−1t

n−1 + · · ·+ a0)

= f (0) = 0,

where in line two, we use aj = f (aj) since aj ∈ Q for all j .

Hence f permutes t1, . . . tn, i.e., f (tj) = tσ(j) for some σ ∈ Sn.
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The Galois group of a polynomial P

Fact. For any polynomial P over Q, there is a smallest field
FP = Q(t1, . . . tn) containing Q and the roots t1, . . . tn of P.

The symmetry group of P, called its Galois group, is defined by:

GP = {σ ∈ Sn : σ is induced by an automorphism of FP}.

Thus σ ∈ GP if ∃ an automorphism f : FP → FP such that
∀ j ∈ {1, . . . n}, f (tj) = tσ(j).

Trivial Example. Determine GP where P(x) = x2 − 3x + 2.

Solution. P(x) = x2 − 3x +2 = (x − 1)(x − 2) has roots t1 = 1 and
t2 = 2, which are in Q, hence are fixed by every automorphism.
Thus GP = {id} (and FP = Q(1, 2) = Q in this case).
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Example A1
Determine GT where T (x) = x3 − 2.

T has roots t1 =
3
√
2, t2 =

3
√
2ω and t3 =

3
√
2ω2, where ω = e2πi/3.

In this case FT = Q( 3
√
2, ω), i.e., is generated by 3

√
2 and ω.

Complex conjugation z 7→ z is a field automorphism (recall that
a+ b = a+ b and ab = a b).

Since ω2 = e4πi/3 = e−2πi/3 = ω, complex conjugation swaps t2
and t3 but fixes t1. So the permutation (2 3) is in GT .

Now consider field automorphisms f : FT → FT which fix ω (and
hence also ω2). So we only need to say what f does to t1 =

3
√
2.

Suppose f (t1) = t2 =
3
√
2ω; then to make a field automorphism we

must define f (t2) = f ( 3
√
2ω) = f ( 3

√
2)f (ω) = 3

√
2ω2 = t3. This field

automorphism thus induces the permutation (1 2 3).

By composing these symmetries, it follows that GT = S3.
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Example A2

Determine GS where S(x) = x4 − 4x2 − 2.

There are two roots for x2, given by 2±
√
6, so roots of S are

t1 =
√

2 +
√
6, t2 =

√
2−
√
6, t3 = −t1 and t4 = −t2.

What is GS? Can it be all of S4?

It can’t! We proved already that for any field automorphism f ,
f (−a) = −f (a), so two roots which are negatives of each other are
sent to two roots which are negatives of each other.

For example any automorphism sending t1 to t2 must send
t3 = −t1 to t4 = −t2. So (1 2)(3 4) ∈ GS but (1 2) and (1 2 3) aren’t.

So S(x) is just like the square, and T (x) is just like the triangle!
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From Geometry to Group Theory
Symmetry in geometry has been studied since ancient Egyptians
and Babylonians.

I Euclidean geometry studies properties that are preserved by
isometries (e.g., angle, length, area, triangles).

I During 18th and 19th centuries, ‘non-Euclidean’ geometries
were introduced (e.g., hyperbolic, spherical, affine and
projective geometries)

I Felix Klein (1872) realized that these geometries are
described by symmetries (the permitted transformations).

In contrast, the appearance of symmetry in algebra was totally
unexpected, and completely revolutionary.

This sparked the development of group theory, thanks almost
entirely to the work of one extraordinary mathematician, one night
in 1832, the night before he was killed in a duel, aged only 21.

This mathematician was Évariste Galois.
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Solving polynomials by radicals
A polynomial equation P(x) = 0 is solvable by radicals if its roots
can be computed from coefficients of P by repeatedly applying
arithmetic operations and kth root operations k

√
·

Examples. Any quadratic equation ax2 + bx + c = 0 is solvable by
radicals, using e.g. for a 6= 0 the famous formula:

x =
−b ±

√
b2 − 4ac

2a
.

The cubic equation x3 + ax2 + bx + c = 0 is solved by:

x = −a

3
+

3
√

−2a3+9ab−27c+
√

(2a3−9ab+27c)2+4(−a2+3b)3

54

+
3
√

−2a3+9ab−27c−
√

(2a3−9ab+27c)2+4(−a2+3b)3

54 .

There is also a very complicated formula for quartics!
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General quintics are not solvable by radicals
For years, many thought there would be general formulae for all
polynomials—they would just get (rapidly!) more complicated.

This was quashed by Abel in 1824, who showed that there is no
general formula for solving quintic equations by radicals...

...And Galois explained why: taking a kth root introduces
symmetry, because there are k such roots, which are permuted by
a cyclic group of order k. Galois concluded that if P is solvable by
radicals then GP must be built from cyclic groups in a specific way.
Such groups are now called solvable.

Theorem (Galois). P is solvable by radicals iff GP is solvable.

Fact. For all n ∈ Z+ there is a degree n polynomial P with GP = Sn.

Theorem. Sn is solvable iff n 6 4. (We will prove this!)

Corollary. ∀ n > 5 ∃ a degree n polynomial which is not solvable
by radicals.
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Summary: whither group theory?

Symmetry pervades mathematics. This unit makes some small
steps towards understanding the following questions.

Q1 What symmetries are out there?
In other words, what groups are there? (Classification)

Q2 What are their properties? In other words, how are these
groups built out of simpler pieces? (Structure Theory)

Any finite group is built from pieces called simple groups, and is
solvable if and only if its pieces are cyclic groups.

In 1981, it was announced that all finite simple groups had been
classified. The proof is spread across many articles by many
mathematicians, totalling more than 10000 journal pages. We
probably won’t have time to cover it in this course...

...and it is therefore not examinable.
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