1. (a) (i) Give at least one reason in each case why normal subgroups and simple groups are particularly significant in group theory.
(ii) Give an example of a nontrivial group G and G-set X for which the action of G on X is faithful but not free.
(b) Suppose that G is a group with a transitive action on a set X. Given $x \in X$ and $H \leq G$, define $\theta: H \rightarrow X$ by $\theta(h)=h \cdot x$. Prove that θ is surjective if and only if any $g \in G$ may be written $g=h a$ with $h \in H$ and $a \in \operatorname{Stab}_{G}(x)$.
(c) Suppose that G has order $2 m$, with m odd and $m>1$. Prove that G cannot be simple, explaining where each hypothesis on the order of G is used in your proof.
2. (a) (i) Give an example of a finite abelian group G which is a direct sum of nontrivial subgroups H_{1}, H_{2}, H_{3}.
(ii) Prove that a direct sum of finite cyclic groups with coprime orders is cyclic.
(b) (i) Show that \mathbb{Z}_{30} is a direct sum of cyclic subgroups of order 5 and 6 and explain why this does not contradict the existence part of the Fundamental Theorem of Finite Abelian Groups.
(ii) How many abelian groups of order $p_{1}^{5} p_{2}^{5} \cdots p_{r}^{5}$ are there up to isomorphism, where $r \in \mathbb{Z}^{+}$and $p_{1}, p_{2}, \ldots p_{r}$ are distinct prime numbers? You should justify your answer.
(c) Suppose that G is a finite p-group (with p prime) such that $G / Z(G)$ is cyclic and G has exactly one subgroup of order p. Prove that G is cyclic, explaining where each hypothesis on the group G is used in your proof.
3. (a) (i) Give an example of a group G with a subnormal series containing two proper nontrivial subgroups which is not solvable.
(ii) Which of the permutations $(12)(34),(12),(14)(23)$ and (123) are conjugate in S_{4} ? You should justify your answers.
(iii) Prove that S_{4} is a solvable group.
(d) Let $V=\mathbb{F}_{3}^{2}$ be the standard 2-dimensional vector space over the field $\mathbb{F}_{3}=\{0,1,-1\}$, let $G=\mathrm{GL}(V)$, and let $X=V \backslash\{0\}$. Define an action of G on the set $P_{2}(X)$ of two element subsets of X with two orbits X_{1} and X_{2}, where $\left|X_{1}\right|=4$ and $\left|X_{2}\right|=24$ (you should justify your definition). Hence or otherwise, prove that the quotient group $G /\left\{i d_{V},-i d_{V}\right\}$ is isomorphic to S_{4}.
[You may use results from linear algebra without proof.]
4. (a) (i) Does there exist a group G with exactly 3 Sylow 2-subgroups? Does there exist a group G with exactly 2 Sylow 3 -subgroups? (You should justify your answers.)
(ii) If G is a finite simple group with a subgroup H of index $n>1$, then the order of G divides not just n ! but also $n!/ 2$. With reference to the proof of this result, explain how the simplicity of G is used to obtain the factor 2 .
(b) Let G be a finite group, let $P, H \leq G$ with P a finite p-group, and let

$$
Y=\left\{x H \in X: P \leq{ }^{x} H\right\}
$$

Prove that $|Y| \equiv[G: H] \bmod p$, and explain how this result can be used to prove that any two Sylow p-subgroups of G are conjugate.
(c) Let G be a group of order 380 . Prove that G cannot be simple.

