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2 MA40254: DIFFERENTIAL & GEOMETRIC ANALYSIS
MOTIVATION: THE PROBLEM WITH GRAD, CURL AND DIV

Gradient. Let U C R? be open and f: U — R differentiable. Then the partial deriva-
tives of f define a vector field

T 8f/8x1
gradf: U —R* o= |ay| — | 0f/0x,
I3 af/af,Eg

i.e., (grad f)(z) is a vector at each z € U.
If v: R — U; t+— v(t) is a curve with v(0) = x, we can ask if

%(0) = (arad f)(x) ?
Now suppose we change to spherical polar coordinates by the map
r rsin @ cos
¢: (0,00) x (0,7) x (—m,7) = R 6| — | rsinf siny
Y r cosf

If U C im¢ then z, f and v are represented in spherical polar coordinates by 7 = ¢~ *(z),
f=fop:o(U)—=Randy=p toy: R — o }(U).

Problem. To have

T 0) = (arad (@) ¢ 7T (0) = (arad /)()
we cannot define
of Jor
grad f = | af /00
of /0w
but instead must set
of |or
grad f = 50 f/00
a0 /0
To understand this problem, recall that grad f(z) is related to the (Fréchet) derivative
Df, of f at x by

Df:(v) = v - (grad f)(z)
where v € R? and - denotes the Euclidean scalar /inner/dot product. Recall Df,: R® — R

is the best linear approximation to f near x, hence D f, € R* = L(R3,R), the dual space
of linear forms R® — R.

Root of problem. grad f depends on the inner product, so only transforms nicely for
diffeomorphisms which preserve the inner product, and ¢ above does not!

Solution. Work instead with

Df=df:U - R*; x+— Df,!
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Divergence and curl. If v: U — R3 is a vector field, we may define

Ovy /O3 — Ovg/Oxo
dive = + + and curlv = | Jvg/0x; — Ovy/Ox3
81)1/81‘2 — 81;2/8x1

but the transformation rules into spherical polar coordinates are even more horrible.!

We can resolve this problem by introducing differential forms: functions a on U with
values in R = AIt°(R?), R%* = Alt'(R?), Alt?(R?) and Alt*(R?), where Alt"(R?) denotes
the vector space of alternating k-multilinear forms on R3. Then we replace grad, curl and
div by the exterior derivative d between functions with values in these spaces. This more
sophisticated algebra simplifies the transformation law to

da = da.
(Also d? := d od = 0 captures in a memorable way the rules relating grad, curl and div,
and there is an obvious generalisation from R? to R™.)

Integration. In vector calculus, integration is as important as differentiation, and there
are line integrals, surface integrals and volume integrals: for example if x: U — R?
parametrises a surface S C R? (where U C R?), and 2: U — R3 describes a vector field
along the surface, then the surface integral of z along S is defined by

Jxr Ox
z-dS::/ z(u,v) - | =— X — )dudv,
/S (U,U)GU ( ) <6u a'[})

which again involves Euclidean geometry (not just the dot product, but the cross product).

Differential forms provide coordinate invariant reformulations of these definitions. In
addition, the fundamental theorem of calculus, Stokes’ theorem for surfaces, and the
divergence theorem for volumes are all special cases of Stokes’ theorem for differential
forms a on submanifolds M with boundary 9M:

/da:/ Q.
M oM

This includes in particular the Fundamental Theorem of Calculus when M = [a,b] is a

= [ f= 0= s@

a,b] dx {a,b}

closed interval:

Formulae omitted to reduce risk of ongoing post-traumatic stress from MA20223 !
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1. SMOOTH FUNCTIONS ON R"

1.1. Differentiation.

Definition 1.1. Let V, W be finite dimensional normed vector spaces (we will often take
V =R" and W = R™ with the Euclidean norm). Let U C V open. Then f: U — W is
differentiable at x € U if there exists a linear map Df, : V — W, called the derivative of
f at x, such that

flz+v) = f(z) + Dfe(v) + g(v)|v]]

where lim,_, g(v) = 0.

Remarks 1.2. It is easy to show that Df, is unique if it is exists. Since all norms are
equivalent on finite dimensional V, W, the definition is independent of the chosen norms.

Definition 1.3. If f : U — W is differentiable at every x € U, then we say f is
differentiable (on U). Then the derivative of f is the function

Df:U— LV,W), x— Df,,
where L(V, W) is the vector space of linear maps V' — W.

Remarks 1.4. Observe the distinction (conceptionally and notationally) between de-
rivative of f at a point (the linear map Df, : V — W) and the derivative function
Df:U— L(V,W).

For U CR" and f: U — R™ (21,...,2,) = (Y1,...,Ym) and & € U, the linear map

Df, : R" — R™ is represented, with respect to the standard basis, by the matrix whose
9y;
P,

entries are the partial derivatives

Example 1.5. Suppose f: U — W is the restriction to U C V of alinear map a: V' — W.
Then

flx+v) =a(z+v) =a(r) + alv) = f(z) + a(v) + 0.
Thus Df, =« and Df: U — L(V,W) is a constant function with constant value a.

Remark 1.6. Observe that £(V, ) is also a finite dimensional normed vector space, a
convenient norm being the operator norm

191lp := sup [lé(v)]

taking the supremum over all v € V with ||v|y = 1.

Y

Hence we can iterate: f is twice differentiable if D f is differentiable.

Notation 1.7. For vector spaces V, W and k € N let:

o MF(V;W) = {k-linear maps V* — W};

o ME(V) = MK(V;R) and MO(V; W) = W;

e Sym*(V; W) C M*(V; W) be the subspace of fully symmetric k-linear maps.
For n € L(V, M*=Y(V;W)) let n¥ € M*(V;W) be defined by

nY (v, ... o) = (n(vy))(va, - - ., vg)-

If f:U — Wisk > 1 times differentiable and # € U, define (recursively) D¥f, =
D(DF1f)Y € M*(V; W), where D°f = f (thus D'f = Df).
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Definition 1.8. We say f is (of class) C° if f is continuous, and (recursively) f is (of
class) CF if f is differentiable and Df is C*~!. We say f is smooth or C* if f is C* for
every k € N.

Proposition 1.9. f is C' if and only if its first order partial derivatives all exist and are
continuous, and f is smooth if and only if its partial derivatives of all orders exist.

Proposition 1.10. If f: U — W is C* on U C V, then for allx € U, D?f, is symmetric,
i.e., D2f, € Sym*(V;W). If f is C* then D*f takes values in Sym"(V; W).

Remark 1.11. If U CR” and f: U — R is twice differentiable, then D?f, is a bilinear

form and the matrix H representing D? f, with respect to the standard basis is the Hessian,
2

given by H;; = . Proposition 1.10 means that D?f, is a symmetric bilinear form,

8$i8$j

so H is a symmetric matrix, ¢.e., partial derivatives commute.

Proposition 1.12 (Chain rule). If U C V and U C W are open and f : U — U,
g : U — X are differentiable at x € U and f(z) € U respectively, then go f is differentiable
at x with D(go f)y = Dgyz) o Dfs.

Theorem 1.13 (Mean value theorem). If f : U — R is differentiable and the segment
[z,y] is contained in U, then 3¢ € [x,y] such that f(y) — f(z) = D fe(y — x).

Corollary 1.14 (Mean value inequality). If f : U — W is differentiable and [z,y] C U
then 3¢ € [z, y] such that || f(y) — f(2)|| < [[Dfe(y — )|
Hence || f(y) = f()]| < lly — | sup 1D fellop-

Recall that any normed vector space V' is a metric space with d(z,y) = ||y — z||. Hence
any subset S C V is also a metric space, whose open and closed sets are intersections
with S of open and closed subsets in V' (respectively).

Definition 1.15. For S C V| we say that f : S — W is smooth iff every x € S has an
open neighbourhood U C V' and a smooth function F': U — W such that the restriction
of F'to U NS equals f. We denote the set of such functions by C*°(S, W).

1.2. Inverse Function Theorem. For U,(~] C R" open and f : U — ﬁ, g: U—U
inverses, the differentiability of one does not imply the differentiability of the other. For

example, for U = U =R, z — 23 is differentiable but y — ¥y is not (at y = 0).
Definition 1.16. Let U C R", U C R™ be open. Then f: U — Uis a (C*) diffeomor-

phism if it is differentiable (C*) and has a differentiable (C*) inverse g: U — U.

Proposition 1.17. Let U C R”,fj C R™ be open. If f: U — U and g: U— U are
inverses, f is differentiable at x € U, and g is differentiable at y = f(x) € U, then
Df, : R" = R™ is an isomorphism with inverse Dg,; in particular, m = n.

Proof. Applying the chain rule to g o f = Idy gives D(go f), = Dg, o Df, = D(Idy), =
Idg», and similarly since f o g = Idg, the chain rule gives D(f o g), = D f, o Dg, = Idgm
since g(y) = =. Hence Df, is an isomorphism with inverse Dg, by definition. O
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We often make use of the following corollary to the rank-nullity theorem: if p: V' — W
is a linear map between vector spaces of the same dimension and ker p = {0}, then ¢ is
a linear isomorphism.

Definition 1.18. We say f: U — R" is a local diffeomorphism if D f, is an isomorphism
for all z € U.

Thus any diffeomorphism is necessarily a local diffeomorphism. This turns out to be
sufficient, at least locally.

Theorem 1.19 (Inverse function theorem). Let U C R™ be open, x € U and f be C!
on U with Df, is an isomorphism. Then x has an open neighbourhood U C U such that
U := f(U") CR" is open and the restriction f: U — U is a diffeomorphism.

We will also see later that if f is C* then f: U’ — Uis a C* diffeomorphism.

To prove the Theorem 1.19, first note that if its conclusion holds for f = Lo f for any
linear isomorphism L, it also holds for f. If we take L := (Df,)~!, then by the chain rule
Dfu = DLjuyoDf, = Lo DFf, for any u € U, so in particular Dfx = Idgn. So without
loss of generality, D f, = Idgn.

Since f is O, Df is continuous, so Df, is close to Idg» for u close to x: concretely,

dr>0 st B(z)={u:lju—z|]| <r}CU
and Vu e By(x) wehave | Idgn —Dfyllop < 3-
The plan is now to show that U’ := B, (z) satisfies the conclusions of Theorem 1.19. The

key is to observe that if we define h := Idg. —f, then for y, z € B,(x), the mean value
inequality implies that

1A(y) = R(2) < lly — 2] sup [[Tdge =D fullop < 3lly — =l (1.1)

uwEBr ()

Lemma 1.20. Ify,z € U, then
ly =2l < 2[[f(y) = f(R)I.

In particular, the restriction of f to U’ is injective.
Proof. With h(z) = z — f(z) as before, (1.1) implies

ly =zl = 1h(y) + f(y) = h(z) = F) < (1 () = FR+[[R(y) = h(z)]
<|fw) = F + 3lly = =]
This rearranges to give the stated inequality. O

Now recall the following theorem from Analysis 2A.

Theorem 1.21 (Contraction mapping theorem). Let S C R" be closed and H : S — S.
If 3¢ < 1 such thatVy,z € S, ||H(y) — H(z)|| < clly — z|| (i.e., H is a contraction), then
H has a unique fized point z € S.

Now (1.1) implies h is a contraction. Furthermore, for any w € R™, the same is true
for h,, defined by hy,(z) = h(z) + w = z — f(2) + w, since hy,(y) — hy(2) = h(y) — h(2).
On the other hand, z is a fixed point of h,, (i.e., hy(2) = z) if and only if f(z) = w. We
use this to prove that the image of U’ is open.
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Lemma 1.22. Suppose Bs(y) C U and for all z € Bs(y), || Idgn —=Df.|op < i. Then
f(Bs(y)) contains Bsa(f(y)).

Proof. Suppose w € Bs4(f(y)), and consider the restriction of h,, to z € Bss(y). Since
|lw— f(y)|]| < /4 and h,(y) =y — f(y) + w, ||z — y|| < /2 implies that
)

1P (2) = yll = (1P (2) = () + w0 = F(Y)I] < [|ho(2) = P ()| + [[w = F(y)I] < 9/2.

It follows that h,, maps S := Bs/a(y) to Bs/a(y) € S. Since S C Bs(y), hy, is a contraction
on S and so by Theorem 1.21, it has a unique fixed point z € S. Since z € Bs(y) and
hw(z) = z implies w = f(z), this completes the proof. O

Now for any v € f(U’) with U’ = B,.(z) C U, take y € U’ with f(y) = v, and § > 0
such that Bs(y) C U’. Then the above lemma applies to show f(U’) contains an open
ball centred at v = f(y). Thus f(U’) is open, f: U" — f(U’) is a bijection between open
sets, hence has an inverse g: f(U') — U’ C R".

Lemma 1.23. g is differentiable at y = f(x).

Proof. If Dg, exists then it must be (Df,)™" = Idgs, so we want to control g(w) — g(y) —
w + y for w close to y. This equals g(w) — = — f(g(w)) + f(x) and

lg(w) = = flg(w)) + f(@)I _ lg(w) =z [|/(g(w)) = f(z) — e (g(w) — )|
lw =y lw =y lg(w) — ] '

However, Lemma 1.20 shows that for w € f(U’), ||g(w) — z|| < 2||w — y||, and hence

the first factor is < 2. As w — y, also g(w) — x, so the second factor — 0 because

Df, = Id. O

We now observe that any z € U’ could have been used in place of z in Lemma 1.23.
Lemma 1.24. f is a local diffeomorphism on U’.

Proof. For any z € U’ and v € R™, |lv — Df.(v)|| < 3|v||. In particular if Df.(v) = 0,
then ||v]| =0, so ker Df, = 0 and D, is invertible by rank-nullity. O

Hence g is differentiable on U = f(U’), which completes the proof of Theorem 1.19. In
fact more is true: ¢ is as differentiable as f.

Theorem 1.25. Let U C R", U CR™ be open. If f - U — U and g : U — U are 1nuverses,
fis C%, and Df, is an isomorphism for every v € U, then g is C*.

By Theorem 1.19, g is differentiable on U, hence C°. Theorem 1.25 now follows by
induction on k using the following.

Lemma 1.26. For k > 1, if f is C* and g is C*~1, then g is C*.

Proof. By the above, g is differentiable and so Dg,, = (D fyu)) " € GL,(R) for all w € U
by Proposition 1.17. In other words Dy : U — GL,(R) C M, ,(R) is a composition of
(1) g: U — U, which is C*-1 by assumption; then
(2) Df : U — GL,(R), which is C*~! since f is C*; and then
(3) inv: GL,(R) — GL,(R), A~ A~!, which is C>. (Exercise)
By the chain rule, Dg =invo Dfog: U— GL,(R) is C*! so g is C*. O
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1.3. Implicit Function Theorem. For a differentiable function f : R? — R, we can
try to use the equation f(x,y) = 0 to “implicitly” define y as a function of z, i.e., find
h : R — R such that f(z,h(z)) = 0 and the level set f~1(0) = {(z,y) € R?| f(x,y) = 0}
is precisely graph(h) = {(z,h(z)) |2z € R}. The problem is that given a particular z,
there could be zero or multiple solutions y to the equation f(x,y) = 0. For example, let
f:R?* = R be defined by f(z,y) =z — 3* + 3y.

unique sol™ non-unique sol™ unique sol™

Y
=0
(_2’ 1)

/

Given xy and yo such that f(xg,yo) = 0, we could try instead to define y = h(z) only
for x close to xg, insisting that y is close to yo. However, this can still fail: in the example,
if we take (z¢,y0) = (—2,1), then for z < —2 there is no solution for y, while for z > —2
the solution is not unique. The problem here is that g—y = —3y?> + 3 = 0. The Implicit
Function Theorem asserts (in arbitrary dimensions) that this is the only problem.

To state it, we start with a function f: U — R™ where U is open in R = R" x R™,
and denote by D f, and D, f, be the restrictions of Df, to R” x {0} = R™ and {0} x R™ =
R™ (respectively) in R™ x R™.

Theorem 1.27. Let U C R"™™ be open and f : U — R™ be C*. Let xy € R",yy € R™
and suppose that z = (xo,yo) € U and f(z) = 0. If Dof, is an isomorphism, then there
exist open sets Uy C R, Uy C R™ with xg € Uy, yo € Uy and a C* function h : Uy — U,
such that Uy x Uy CU and {(z,y) € Uy x Us| f(x,y) =0} = {(x,h(x)) |x € Uy }.

Proof. Let F: U — R"xR™, (z,y) — (x, f(z,y)). Then DF, : R"xR™ — R" xR™ maps
(u,v) = (u, Dy fo(u) + D2 f(v)) since Df.(u,v) = Dif.(u) + Dafz(v). If DF.(u,v) =0
then v = 0 and hence D, f,(v) = 0 (since D, f, is an isomorphism); hence ker DF, = {0}
and DF, is an isomorphism by rank-nullity. The Inverse Function Theorem 1.19 and 1.25
now provide an C* inverse G : F(U') — U’ to F on an open neighbourhood U’ C U of
z. Shrinking U’ if necessary, we may assume, wlog, first that U" = U] x Us. We now
set Uy = {z € U] : (z,0) € F(U')}, which is open (and a neighbourhood of zy) because
F(U’) is open in R™™  so its intersection with R™ x {0} = R" is open in R".

Now by the form of F', G(z,y) = (z, g(z,y)) where g(z, f(z,y)) = y and f(x,g(z,y)) =
y. Hence for any (x,y) € Uy x Uy, we may define h: Uy — U, by h(z) := g(z,0). Then
f(z,y) = 0 implies h(z) = g(x,0) = g(x, f(x,y)) = y and conversely, y = h(x) implies
flz.y) = f(z,9(x,0)) = 0. O

Henceforth, we use the term “diffeomorphism” to mean smooth (C'*) diffeomorphism,
1.€., a smooth map with a smooth inverse. Using Definition 1.15, we may extend this
terminology to functions f: S — T between arbitrary subsets S C R" and 7" C R™.
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2. SUBMANIFOLDS OF R?

2.1. Submanifolds and regular values.

Definition 2.1. M C R® is an n-dimensional submanifold if Vp € M, Jan open neigh-
bourhood U C M of p and an open U’ C R™ and a diffeomorphism ¢ : U' — U.
¢ is called a (local) parametrisation, while o' : U — U’ is called a coordinate chart.

Unwinding Definition 1.15, this means that there is an open neighbourhood U C R* of
x and smooth maps F' : U — U’ and ¢ : U’ — U, with U = UN M, such that F|y = ¢~ 1.

Examples 2.2. (1) Let M C R" be open, then M is a submanifold (by taking U =
U'= M and ¢ = Idy).
(2) Let M be an n-dimensional vector subspace of R*. Take ¢ to be a linear isomor-
phism R” = M and F : R®* — R" to be any linear map such that F|y; = o1
(3) Let S? :={(z,y,2) € R¥|2? + y* + 2% = 1}. Let

U= (0,m) x (=m,m) CR®, U =R\{(z,,2) |2 <0,y =0}
so U := U N S? is an open subset of $2. Let ¢ : U’ — U be the bijection
(0,7) — (sinf cos 1, sin O sin ), cos ),

and F : U — R? by (x,y,2) — (arg(z, /22 + y?),arg(x,y)). Then ¢ and F are
both smooth and ¢~ = F|y. So ¢! is smooth and thus ¢ : U" — U is a diffeo-
morphism. Although U is not the whole of S?, there are similar parametrisations
(obtained e.g., by interchanging the roles of z,y and z) which together cover the
remaining points.

Finding parametrisations explicitly is usually rather tedious. Fortunately there is a
more convenient general method for proving that a subset M C R?® is a submanifold using
the implicit function theorem.

Definition 2.3. Let P C R® be open and f : P — R™ be differentiable. Then we call
q € R™ a regular value of f if for all p in the level set f~1(q) := {p € P: f(p) = q}, we
have that Df, : R® — R™ is surjective, i.e., rank(Df, : R® - R™) = m.

Remark 2.4. If ¢ € im(f), then it is (vacuously) a regular value.

Example 2.5. Let f : R?* — R via (2,y, 2) = 22 +y?+2% Now the matrix representation
of Dfsy» : R® = Ris [22 2y 2z] which is zero only if (z,y,z) = 0. Therefore any ¢ € R
other than f(0) = 0 is a regular value.

Theorem 2.6. If P C R"™™ 4s open, f : P — R™ is smooth and ¢ € R™ is a reqular
value of f, then f~1(q) is an n-dimensional submanifold of R™™.

Proof. For p € f~'(q), Df, : R™™™ — R™) is surjective, and so its kernel has dimension
n by rank-nullity. Precomposing f with an invertible linear map R"*™ — R"*™  we may
assume ker(Df,) = R" x {0} C R"*™. Write p = (x¢,y9) € R"™™ = R" x R™.

Then D,f, is an isomorphism, so by the implicit function theorem, there are neigh-
bourhoods U; of zy in R™ and U; of gy in R™ and a smooth function h : Uy — U, such
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that U := (U; x Us) N f~1(q) is the graph {(z,h(x))|z € Uy} (note that U is open in
).

Now define ¢ : Uy — U by x +— (z,h(z)) and F' : Uy x Uy — Uy by (z,y) — x. Then ¢
and I’ are both smooth maps, and the restriction of F' to U is clearly inverse to ¢. Thus
¢~ ! exists and is smooth, hence ¢ is a diffeomorphism. U

Example 2.7. Since 1 € R is a regular value of (x,y,2) — 22 + y® + 2%, the unit
sphere S? C R? is two-dimensional submanifold. The local parametrisations provided by
Theorem 2.6 are local graphs, such as ¢ : U — U where

U= {(x,y) € B[ +4* <1}, U= {(x.y,2) € 5|z >0},

and @(%y) = (xvya V 1- x2 - y2)

2.2. Tangent spaces and derivatives of maps between submanifolds.

Definition 2.8. Let M C R® be an n-dimensional submanifold, p € M and v € R®. Then
v is called a tangent vector to M at p if there is a smooth curve v: (—e,e) — M (for
e > 0) such that v(0) = p and 7/(0) := D7p(1) = v. The set of all tangent vectors to M
at p is called the tangent space T,M to M at p.

Lemma 2.9. Let ¢ : U — U (for U" open in R™) be a local parametrisation of M C R®
with p = ¢(x) € U. Then Dy, : R* = R® is an injective linear map with image T,M. In
particular T, M is an n-dimensional vector subspace of R®.

Proof. Because ¢ : U’ — U is a diffeomorphism there is an open set U C R? that contains
U and a smooth function F : U — R" such that F|y = ¢~!. Now F o ¢ = Idy, and by
the chain rule

D(F o), = DF,o0 Dy, = ldgn»
since p = ¢(x). Thus Dy, is injective (as it has a left-inverse).

For any w € R™, let B: (—¢,e) — U’ be the curve 5(t) = x + tw and set y(t) = ¢(B(1)).
Then by the chain rule 7/(0) = D, (8'(0)) = Dy, (w), so Dy, (w) € T,M. Conversely, if
v: (—g,e) = M is any smooth curve with 7(0) = p, then by decreasing € we may assume
~ has image in U, so that § := F o+ is a smooth curve in U’ with p o § = ~. Hence by
the chain rule 4(0) = D¢, (5'(0)) is in the image of Dy,

We conclude that Dy, : R" — T,M is a linear isomorphism. U

Examples 2.10. (1) If U € R™ is open and p € U, then parametrising by Idy, we
immediately obtain T,U = R".

(2) Let o : {(z,y) € R*|2® +¢y* < 1} — S? by (z,y) — (z,y,/1 — 22 —y?). Now
D¢z R? — R? is represented by the matrix

(1) (1) p -

_x —y
\/1—$2—y2 \/1—:1:2—3/2

The columns of Dy, are linearly independent and orthogonal to ¢(z,y), so

the image of Dy, is precisely o(z,y)t CR3. Using similar charts on other
hemispheres, 7,5% = p* for all p € S2.
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Definition 2.11. Let M C R®* and N C R’ be submanifolds. Let f : M — N be a
smooth function, p € M. The derivative of f at p is the map

Dfp : TpM — Tf(p)N
sending v = 7'(0) € T,M to D f,(v) := (f 07)"(0) € Ty N.

Lemma 2.12. Let F : U — R’ be a smooth function on an open neighbourhood U of p in
R* such that F|5.,; = . Then Df,(v) = DF,(v), hence is well-defined and linear in v.

Proof. If v =+/(0) € T,M, then Df,(v) = (F ov)'(0) = DF,(v) by the chain rule. O

Lemma 2.13. Let ¢ : Ul — Uy and ¢ : Uy — Uy be parametrisations of M and N
respectively with p = p(x) € Uy and q = f(p) = ¥ (y) € Uy. Suppose that f(Uy) C Us, so
that =1 o fop: Ul — Ul is a well-defined smooth function. Then

Df, = Diyo D(¢_1 ofop)yo (D@x>_1-

M CR?

Proof. Let F': U — R’ be a local extension of f near p as in Lemma 2.12. Then on
e (UNM), foo=Fop=1o (@ 'ofoyp),soby the chain rule, DF, o Dy, =
Dip, 0 D(¢p~ o f o p),, which rearranges to the stated formula by Lemma 2.12. O

Remark 2.14. If M C R®* and N C R’ are open then by Lemma 2.12 the definition of
Df,: T,M — TN here coincides with its usual definition as a linear map R* — R¢.

Definition 2.15. A smooth function f: M — N between submanifolds is called
(1) a local diffeomorphism if Vp € M, Df, : T,M — Ty N is an isomorphism;
(2) an immersion if Vp € M, Df, is injective; and
(3) a submersion if Vp € M, Df, is surjective.

3. DIFFERENTIAL FORMS

3.1. Motivation. Suppose U C R" is open and a: U — R™ = M!R") is smooth.
When does there exist a function f: U — R such that o = D f?

Partial answer. If « = Df, then for all p € U, (Da,)¥ = D*f,, € M?(R") is symmetric.
Hence if we define, for any smooth a: U — R™, any p € U and any v;,v3 € R",
day,(v1,v2) == (Day)Y (v1,v2) — (Do) (v2,v1), then a = D f implies Vp € U, day, =0 .

Because this is a natural question, we can expect it to behave well with respect to
smooth changes of coordinates. Indeed if : U’ — U is a (local) diffeomorphism, and we
define p*f := fop: U — R, then by the chain rule D(¢*f), = D fy@) © Dyp. Hence if
we define (¢*a),(v) := ayp) (Dyyp(v)) then a = D f if and only if p*a = D(¢* f).
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A further computation with the chain rule shows that d(¢*«), = (¢*da),, where

(¢*da)p(v1, v2) 1= do() (Dpp(v1), Dpp(va)).

Hence if do,) = 0 then d(¢*a), = 0.

Notice that da,(v,v) = 0, so that da, € M?(R™) is alternating. This calculus extends
to differential forms, which are functions with values in the vector space Alt*(R™) of alter-
nating k-linear forms on R™. In this chapter we define vector spaces Q*(U) of differential
k-forms on U, linear operators d: Q*(U) — QFFL(U), called exterior derivatives, and, for
any smooth ¢: U’ — U, linear operators ¢*: QF(U) — QF(U’) called pullbacks such that:

e QY(U) is the space of smooth functions f: U — R and df = Df € Q'(U);
e For any a € Q*(U), d(da) = 0;
e d(¢p*a) = p*da.
In addition, there is an associative multiplication on differential forms, and all of this

structure can be extended from open subsets U of R" to arbitrary submanifolds M.

3.2. Alternating forms. Recall that if V is a real vector space then M*(V) = M*(V;R)
is the vector space of maps a: V¥ — R, which are k-(multi)linear, i.e., for all 7 (etc.),

V1, -y Vi1, AU A W, Vg - k) = Aa(vr, - vg) + pe(vn, W U).

Definition 3.1. A multilinear form o € M*(V) is alternating if a(vy, ..., v;) = 0 when-
ever v; = v; for some i # j. Denote the subspace of alternating forms by AltF(V) C
M¥(V). The degree of o € AltF(V) is k.

Remark 3.2. If k = 1, then Alt'(V) = MY(V) = V* (the alternating condition is
vacuous in degree 1). Also, by definition, Alt’(V) = M%(V) = R.

Example 3.3. For vy,...,v, € R", let Det(vy,...,v,) = det(A) € R, where A is the
matrix whose columns are v;. Then Det € Alt"(R").

Recall that for each k € N, there is a symmetric group Sy of permutations o of
{1,...,k}, that any o € S is a composite of transpositions, and that the sign homo-
morphism sgn : Sy — {£1} is characterised by sgn(7) = —1 for all transpositions 7; let
Ay, = ker(sgn).

Definition 3.4. For a € M*(V) and o € S}, define o - o € M*(V) by

(0-a)(vr,...,0) = (Vs(a), - -, V(i)

and

Clearly Id -a = «, and if o, 7 € Sk, consider w; := v,(;); then w.(;) = vy(7(j)), 50

(0-(7-a))(vi,...,v) = (T-a)(wi,...,w) = (Wr), ..., Wr(r))
= a(Voor(1), - - - s Voor(k)) = (0 07) - ) (v1, ..., vp).

Hence o (7-a) = (c07) -, i.e., Sy x M¥(V) = M¥V); (0,a) — o - a defines a (left)
action of S on M*(V).
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Lemma 3.5. Let a € M*(V).
(1) alt(a) € AltF(V).
(2) If o € Alt*(V) then for all ¢ € Si, 0 - @ = sgn(o)a.
(3) If o - a = sgn(o)a for all o € Sk, then alt(a) = k! a.
Proof. (1) Suppose v; = v; for i # j, and consider the transposition 7 = (i j). Then
Sk = A UTA (a disjoint union of left cosets) and so

alt(a)(vy, ..., v) = Z(O’-&—(TOU) ~a)(vy, ..., ) =0,

O'EAk
since (too)-a=7-(c-a)and (7-(0-a))(vy,...,vx) = (0-a)(vy,...,v;) because
V; :’Uj.
(2) Since Sy is generated by transpositions, sgn is a homomorphism, and (o, @) — o -«
is an action, it suffices to check that ¢ - o = —a for o = (i j) with i < j:
0=a(vr,...,v +vj,...,0 +0j,...,0)
=a(vy, ...,V Uy, U) (U, Y, U Ug)
= a(v1,v2,...,0) + (0 @) (v1, 02, ..., vk)

as required.
(3) Immediate because |Sy| = k!, and for all o € Sy, sgn(c)? = 1. O

Corollary 3.6. For a € M*(V), we have

1
ac Alt*(V) & VoeS, o-a=sgn(o)a & a= o alt(a).

Lemma 3.7. For any o € M*(V) and any o € Sy, alt(o - a) = sgn(o) alt(a).

Proof. Since sgn is a homomorphism and (o, ) — o - v is an action, we have

alt(o - a) = Z sgn(7) 7 (0 - ) = sgn(o) Z sgn(roo)(roo) -«

TESE TESE
= sgn(o) Z sgn(7') 7 - a = sgn(o) alt(a),
T'eS
where the penultimate equality uses that 7 +— 700 = 7’ is a bijection S, — Sj. U

Definition 3.8. For a list a;,a2,...,ap € V*, we define ajag---ap € M*(V) and
g Aag A=+ Ay, € AltF(V) by

(g - ag)(vy, ..., vk) == ag(vy)as(ve) -+ - ag(vg),
ag Aag A+ Aoy = alt(aqag - - ag).

It follows from Lemma 3.7 that for any o € Sk, asa) A+ A oy = sgn(o)ar A -+ A ay.
For a multi-index I = {iy,...,i} C{1,...,n} with i; < --- <1y, let

api=ag A Aag, € AIEF(V).

Theorem 3.9. Let eq,...,e, be a basis for V with dual basis €1,...,e, € V*. Then for
k> n, Alt* (V) = {0}, while for 0 < k < n, any o € Alt*(V) may be written in the form

a:Z)\ﬁ:[ with A\ e R for 1 CA{l,...,n}, |I| =k,
\T|=k
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and then for all J = {j1,...,jx} with j1 < --- < ji, we have \; = a(e;,...,e;). In
particular, e : I C{1,...,n}, |I| =k is a basis for Alt"(V) and dim Alt*(V) = (}).

k
Proof. Suppose first that a = Zm:k Arer. Since eq,...,e, and £1,...,¢, are dual bases
i.e., €;(e;) = 0;;, it follows that if I = {iy,... 4} with ¢y <--- < and J = {j1,...,Jk}
with j; < -+ < ji, then g/(ej,,...,€j,) = drs. Thus alej,...,ej,) = AJ.

Now suppose a € Alt"(V) with & € N and set 8 = a — > 1=k (€35 - - -, €5 )er where
the sum is empty (hence zero) for £ > n. By construction §(e;,,...,e;,) = 0 whenever
J1 < -+ < ji. Hence also f(ej,,...,e;,) = 0 for any ji,...,5, € {1,...,n} as B is
alternating. Since [ is multilinear, 5(vy,...,vx) =0 for all vq,..., v, € V. d

3.3. Differential forms and pullback.

Definition 3.10. For U C R"™ open, a (smooth) differential k-form on U is a smooth
function o : U — AIt"(R"™), written p + «,. Thus if p € U and vy,...,v, € R,
then o, (v, ...,vx) € R. Let QF(U) the vector space of differential k-forms on U under
pointwise operations, i.e., (o + ), = a, + (5, and (Aa), = Aa,.

Notation 3.11. Since Alt’(R") = R, Q°(U) is the vector space of smooth functions
f: U — R. For any such f, we let df € Q'(U) denote the differential 1-form defined by
the derivative of f, i.e., df, = Df, € Alt'(R") = R™. For f € Q°(U) and a € Q*(U) we
define fa € Q%(U) by (fa), = fya, = f(p)ay, for all p € U.

Let ey, ..., e, be the standard basis of R” with dual basis €1, ...,¢,, and let z, ..., 2, :
U — R denote the coordinate functions on U, so that p = (z1(p),...,z,(p)) for all p € U.
Then for i € {1,...n}, z; = |y and hence (dz;), = &; € R™ for p € U, i.e., dz; € QY(U)
is a constant differential 1-form on U with (dx;),(e;) = d;;.

We may extend the wedge and multi-index notation from Definition 3.8 to differential
forms: for ay,...,ax € QYU), we define a; A -+ A g € QF(U) pointwise: for p € U,

(1 A Aag)y = (a1)p A A (o), € AILF(R™);
also for I = {iy,... i} with iy < -+ < iy, we let do; = da;, A+ Adzy, € QF(U), so that

(dzp), = 1 € AltF(R™). Since {; : |I| = k} is a basis of Alt*(R") by Theorem 3.9, any
a € QF(U) can be written uniquely as

a= Z aydzy (3.1)

|I|=k

for (Z) smooth functions a; : U — R. In particular, for f € Q°(U), we have

N Of 1
df = ; (%idxl e QYD)
since df,(e;) = Df,(e;) = 0f/Ox;. If n =1, then df = f'dz, where f' = df/dz (!).
Definition 3.12. For a linear map ¢ : V. — W and o € M*H(W), define ¢*a € M*(V)
by
(P a)(v1, ... vp) = a(P(vy), ..., d(vk)) Yor,...,vp € V.

Note that if & € Alt*(W), then ¢*a € Alt*(V). Hence a +— ¢*a defines a linear map
¢* - AltF (W) — AltH(V).
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Remark 3.13. If ¢ : V — W and ¢ : W — X are linear maps, then (¢ o ¢)* = ¢* o ¢*.
Hence if ¢ : V' — W is an isomorphism, then so is ¢* : Alt*(W) — Alt*(V). For p = 0,
¢*a = a, and for p = 1, ¢*: W* — V* is the transpose of ¢, and (exercise) for V=W
with p = dim V', ¢*a = det(¢)a.

Definition 3.14. Let U C R" and U C R™ be open and ¢ : U — U a smooth function
and a € Q¥(U). Then the pullback p*a € Q*(U) is defined by

(90*a)p = (D‘Pp)*o‘so(p) € Altk(Rn)

—here a,(,) € Alt*(R™), and Dy, : R* — R™ is a linear map, so (Dy,)* : Alt"(R™) —
Alt*(R™) is defined in Definition 3.12. In other words, for all p € U and vy, ..., v, € R,

(@ a)p(v1, ., vk) = ap) (Dep(v1), - - -, Dpp(vr)) € R.

Since operations on differential forms are defined pointwise, ¢* L QF(U) — QF(U) is a
linear map, and for any f € Q°(U) and a € Q*(U), o*(fa) = (¢* f)(p* ).

Lemma 3.15. Let ¢ : U — U and Y U — U’ be smooth maps between open sets.

(1) For any f € QXU), ¢*f = f o and p*df = d(¢*f).
(2) (Vo) =g oy : QXU — Q).

Proof. (1) For all p € U, (¢*f)p = fowy = (f o ¢)p; hence the chain rule gives
d(@*f)p = Dfpw) © Dpp = (Dop)"(d o)) = (¢"df)p-

(2) For o € QX(W) and p € U, (Vo) ), = (D(109),) Qy(e(p)), and (D(Yop),)* =

(D) © Dpp)* = (Dyp)* 0 (Dhyp)*, so this is (¢* (V¥ ). O

Example 3.16. Let U = {v € R?|||v]| < 1}, U = (=1,1) x R C R,

dﬂfg
—
a=1— P e QNU),
and ¢ : U — U; p — (r(p) cos 8(p), r(p) sin6(p)). Thus, as smooth functions from U to R,

p*ry =rcosf and p*ry = rsinf are the components of ¢. Using Lemma 3.15, we have

. o*(dzy) B d(rsin )
PO o —43) 1 (rcosd)? — (rsing)?
:sm€d7i—|-7“(3(51n9>:1 5 (sin@dr +rcosfdo).
—r —r

Note that ¢ is not even a local diffeomorphism, as Dy is not invertible.

3.4. The exterior derivative on open subsets. For any o € QF(U), the derivative of
« (which is smooth, by definition of Q¥(U)) at p € U in the usual sense is (Da), : R™ —
Alt*(R™). Using Notation 1.7, we then have (Do) € MFHHR™) defined by

(Da)y (v1,v2, ..., V1) == (D) (v1)(v2, . . ., Vpg1).

However, there is no reason to expect that (Da)Y is alternating (although it is alternating

P
in the last k arguments).
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Definition 3.17. For U open in R", the exterior derivative da € Q¥1(U) of a € QF(U)
is given, at each p € U, by

(da), = %alt((Da)Z) c Alt"HH(R™).

This defines a linear map d : QF(U) — QFL(U).

Remark 3.18. Note that if «v is constant (i.e., oy, = a, for all p,q € U) then Da = 0, so
« is closed. However the converse only holds (locally) when k& = 0.

In order to compute da in coordinates, we need a bit more algebra.
Definition 3.19. For o € M*(V) and 8 € M*(V), define a3 € M**(V) by
(aB)(v1, .y Upte) = V1, .. k) B(Vks1s - - oy Ukrr)-
Lemma 3.20. Let a € M*(V) and 8 € M*(V). Then
alt(alt()B) = k! alt(af) and alt(aalt(s)) = ! alt(ap)

Proof. We consider o € Sy as an element of Sy, by letting o fix each element of {k +
1,...,k+(}, so that (0 - «)p =0 - (af). Hence

alt(alt(a)f) = Z (sgnt)T- (Z(Sgnd)o’ ' (CYB))

TESk4e oc€Sp

= Y > (sen(roo))(ro0) - (af).
TESK4¢ 0ES
Now for each p € Si.y, there are precisely k! ways to write p = 7 o o for 7 € S,y and
o € Sy (we can take o to be any of the k! elements of S;, and set 7 = poo™t € S;14). In
other words, there are k! terms in the double sum with p = 7 o ¢, hence

alt(alt(«)B) = k! Z (sgnp)p- (af) = k! alt(af)

PESk+e

as required. The second equality follows by a similar argument. ([l

Proposition 3.21. For f : U - R and iy < -+ < iy, let a = fdxy A---Adx;, € Q¥(U).
Then

da =df Adzy, A--- Ady, :;a—%dxj/\dxil A Adazg,
Proof. Since dz; = dx;, A- - -Adw;, is constant, D(fdx;),(v) = D f,(v)(dz;), forany p € U,
and so D(fdx;)) € M*(R") is equal to the product (Df,)(dz;), of D f, € M!'(R") with
(dzr), = alt(e;, - - - &;,) € M*(R™). Hence
1 1
d(fdar)p = 7 alt(D(fdzr)y) = 5 alt((Dfy) alt(es, - --5,)) = alb((Dfp)ei -+ €ir)

by Lemma 3.20. Since Df, = 3,(9f/0x;)(p)e;, this is >°;(0f/0x;)(p)ej New A+ Neyy,
which is the value at p of the right hand side as required. [l
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Example 3.22. Let U = {p € R? : z;(p) # 0} and o = zodx; + dx—? € QY(U). Then

—d
da = dazg A dzy + d(xi) Adzs = —dzy Aday + 2x1 A dzs
1 xl

For another example d(zozsdzr;) = x3dxs A dxy + zodzs A dzp. Notice that applying d
again gives dxz A dxy A dzy + dag A deg A dxy = 0. This is a general fact.
Theorem 3.23. If a € QF(U), then d(da) = 0 € Q*2(U).

Proof. By linearity of the exterior derivative, it suffices to check that the claim holds when
a = fdz; for some f € Q°(U), where Proposition 3.21 computes da. Using linearity and
Proposition 3.21 once again, we obtain

1 (9@0%

d(da) =

(]

However dz; A dxj A da;, A -+ Ada;, = —da; Ada; Ada;, A--- Ada;, by Lemma 3.7,
whereas 02 f /0x;0x; is symmetric in ¢, j, so d(da) = —d(da), hence is zero. O

Definition 3.24. We say « is closed if da = 0, and ezact if o = d3 for some 8 € Q¥1(U),
which for k£ = 0 is taken to mean o = 0. Thus any exact « is closed.

The converse is false in general; however it does hold on R™ (if k£ > 0).

Theorem 3.25 (The Poincaré Lemma). Suppose k > 0 and o € QF(R™) is closed, i.e.,
da = 0. Then « s exact.

We will prove this later.

Example 3.26. Let a = (22 — 2%)dx; A dag + 22dze A dzg + 21973dry A dos+ € Q% (R3?),
which is closed, as

da = 2z3des A dzy A des 4+ 2x3daxs A dxy A dxs = 0.

To find a § such that o = df, we first find some ~ of the form v = fdz; + gdxy such

that v — dy has no terms involving dx3. Thus we choose f such that % = —2x913, say
f = —myx2, and g such that 8% = —T9, say g = —xx3. Then
dy = —d(z923) A dxy — d(2973) A day
= a:?,dxl A dxe + 2x9x3dxry A drs + xodas A das
So o = a—dy = —z?dz; Adz,y. Note that o/ is independent of x5 as well as dxs, so we can

iterate the process and eliminate the dx, term to get o/ = d(a3xedz;) (or alternatively,
o = —3d(23das)). Hence v = df3 with 8 = afaoday + v = @a(af — 23)day — zoxsdas,.

3.5. The wedge product and Leibniz rule.
Definition 3.27. For o € Alt*(V) and 8 € Alt“(V), define

1
alAf= o alt(aB) € Alt" (V).
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Lemma 3.28. For o € Alt*(V), g € Alt'(V) and v € Alt™(V), we have (a A B) Ay =
an(BA7)

Proof. By Lemma 3.20,

1
(@B Ny = G A @@8)7) = g alt(ady)
1
= R0+ )1 alt(aalt(8vy)) = a A (B A7) O

Remark 3.29. Since A is associative, we may omit brackets, and then for a; € AltY (V)
(j €{1,...k}), we have a; A--- Aoy, = alt(aq - - - ) /(€1 - - - £!), which is consistent with
Definition 3.8 when ¢; =1 for all j.

Lemma 3.30. For a € Alt"(V) and 8 € Alt'(V), we have a A B = (=1)*B A a.

Proof. Since A is bilinear, it suffices to take « = a1 A--- Aag and 8= 81 A--- A B, with
a;, B € Alt' (V). Since a; A Bj = —B; Ao, and A is associative,

A A ABLA - ABr= (=1 By Aar A ANag APy A+ A By
and iterating this process gives (—=1)*B; A+~ A By Ay A -+ A ay as required. 0

Definition 3.31. Let U C R" be open, a € Q¥(U) and 3 € QY(U). Then the wedge
product a A B € Q¥(U) is defined by (a A ), = a, A B, for all p € U.

The wedge product of differential forms is bilinear and associative. In particular, if
a = fdx; and f = gdxy then a A B = fgdx; A dxy, hence also f A S = fB and
alf=fa AlsoaAB=(-1)*BAa and there is the following Leibniz/product rule.

Theorem 3.32. For U open in R, a € Q¥(U) and 8 € Q(U), we have
d(aAB) = (da) AB+ (=) Fa A (dp) € QF ).
Proof. We first check the equation holds for k = ¢ = 0. If f, g € Q°(U), then
d(fg) = g(df) + f(dg) = df Ng+ f Ndg

by the usual Leibniz rule for the derivative of a product of real-valued functions.
In general, since A is bilinear and d is linear, it suffices to consider a« = fdx; and
B = gdz; for multi-indices I, J and f,g € Q°(U). Then by Proposition 3.21,
d(a A p)=d(fgdey Adxy) =d(fg) Adaxy Adzy = ((df)g + f(dg)) Adar Aday
=gdf ANde; ANdz; + fdg Adey Aday
=gdf Adzy Adey+ (=1)*fda; Adg Aday
= d(fdz;) A (gdzy) + (=1)*(fdz;) Ad(gday) =da A B+ (=DFaAdp. O

Remark 3.33. The exterior derivative d is characterised as a linear operator by:
(1) It f € Q°%U) (i-e., f: U — R is smooth) then df = Df as functions U — (R™)*;
(2) Ifa € QF(U) and B € QYU), then d(aAB) = (da)AB+(—1)kaA(dB) € QFFHHL(U);
(3) If a € QF(U), then d(da) = 0 € Q¥2(U).
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Indeed it follows straightforwardly from these properties that if « = f dx; then

da = Z axj ——dx; Adx;, A -+ Aday,.

3.6. Pullbacks and the exterior derivative on submanifolds.

Proposition 3.34. For U C R" and U CR™ open, for o € Q¥(U) and 8 € Q4U), and
for o: U = U smooth, o*(a A B) = p*a A @*.

Proof. 1t is a straightforward exercise to check that if ¢: R™ — R™ is a linear map and
q € U then

U (agBy) = ¥ () U7 (8y) € MMTHR™),
and for any v € M™(R®) ¢*alt(y) = alt(¢*y) € Alt™(R™), so that ¢*(a, A 5,) =
P*(ag) N Y*(5,). Hence for any p € U (taking ¢ = ¢(p) and ¢ = Dy,)

P (aAB)y= DS@;(aw(p) A Bow)) = D<P;(O‘so(p)) A DSD;(a@(p)) = (¢ a AP B)p. O
Theorem 3.35. Let U C R”, U CR™ be open and ¢ : U — U smooth. Then for any
a € QFU),

d(p*a) = ¢*(da) € Q"H(V).
Proof. By linearity of pullback and the exterior derivative, it suffices to check that the
claim holds when av = fdx;, A --- Adx;,. Then by Proposition 3.34 and Lemma 3.15,

pro= (e )@z A ANty ) = (@ f)d(@Ta) A Ad(et,),
so Theorem 3.23 (d? = 0), Theorem 3.32 (Leibniz), Proposition 3.34 and Lemma 3.15
give
d(e*a) = d(e" ) A i) A - Ad(@Tay,) = @ (df) A (p™da ) Ao A (@Tday,)
=" (df Adazy A--- Aday,) = @™ (d(f dai, A--- Aday,)) = ¢*(da). O
Let M C U C R*® with U open and M an m-dimensional submanifold. Then the
inclusion map ¢ = Idy |y : M — U is smooth, with derivative Di,: T,M — R*® for any

p € M. Motivated by pullback, for any 8 € Q*(U) we would like to define a “differential
form” o« = *f on M by

Qp = (L*B)p = (DLp)*(ﬁb(p)) = 6p|TpM’€ < Altk(TpM)

for any p € M. In order to provide o with a fixed codomain, we let

AF (R?) |_|A1t

where the disjoint union is taken over all m—dlmensmnal subspaces W C R?®. This allows
us to define differential forms on submanifolds as (local) pullbacks.

Definition 3.36. Let M C R® be a submanifold of dimension m. A (smooth) differential
k-form on M is a function o : M — A (R®); z — «, such that:
e a, € Alt*(T,M) for all p € M;
e for all p € M there is an open neighbourhood U of p in R* and 3 € Q(U) such
that for all g € UN M, ag = By|r, mr-
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We let Q%(M) be the vector space of differential k-forms on M under pointwise operations.
If o : N — M is smooth, where N C R’ is an n-dimensional submanifold then the
pullback p*a of a by ¢ is defined by (p*a), = (Dpy)* (g € Alt*(T,N) for all ¢ € N.

Remarks 3.37. (1) Recall that if M is an open subset of R™, then T, M = R™ for all
p € M. Thus the two definitions of QF(M) agree, as do the definitions of pullback.
(2) As in Lemma 3.15, the definition of pullback ensures that if ¢: N — M and

t: P — N, then (¢ o1)* = * o p* (with essentially the same proof).

Example 3.38. Let S* = {v € R?|||v]|* = 1} and let i: S' — R? be the inclusion. Then
w = i*(—zodr) + 1dze) € QY(ST). To see what w looks like, use the parametrisation

¢ :(0,21) = SN\{(1,0)}, 6~ (cosf,sin®).

Then p*w = (i 0 @)*(—z2dz; + z1dzs) = —(sinf) d(cos ) + (cos @) d(sin ) = (sin6)? df +
(cos6)?dh = do.

Lemma 3.39. Let M C U C R® and N C U C RY, where U and U are open, while M
and N are submanifolds of dimension m and n respectively. Leti: M — U and j: N — U

denote the inclusions and let ¢o: N — M be the restriction of a smooth map ¢: U—U.
Suppose that B € Q¥(U) and o = i*B € QF(M). Then ¢*a = j*y € QF(N) with

v =B € QFU), and p*i*dB = j*dy € QFFL(N).
Proof. Since ¢ 0 j = i 0 ¢, we have j*¢*8 = (po )8 = (iop)f = ¢ "8 = p*a.
Furthermore, by Theorem 3.35, ¢*i*df = j*¢*dfS = j*d(¢g* ) = j*d~. OJ

For any smooth map ¢: N — M between submanifolds M and N and any a € Q*(M),
this lemma applies to N N U and M NU for sufficiently small open neighbourhoods of any
g € N and ¢(q) € M such that a =i*fon UNM (i: UNM — U) and ¢ has a smooth
extension @: U — U. Hence g*a € QF(N), i.c., is smooth.

Secondly, suppose that ¢: U — UN M is a parametrisation of M (for U CR" open)
and a € QF(M) agrees with i*3 on UNM (i: UN M — U). Then the lemma applies

with ¢ = poi and j = idy to give ¢*i*df3 = d(¢*ar) on U and hence for any p € U N M,
(*dB), = (¢~ 1) d(¢"a)), € AU (T, M).
Thus (:*df), depends only on «, not on the choice of local extension f.

Definition 3.40. Let M be an n-dimensional submanifold of R*. Define the exterior
derivative d : QF(M) — QFFL(M) by requiring that whenever 3 € Q) is a local
extension of a € QF(M) on U N M (for U C R® open), then da = i*df on U N M, where
i: UN M — U is the inclusion.

Now for any smooth map ¢: N — M between submanifolds M and N and any o €
QF(M), applying Lemma 3.39 on sufficiently small open neighbourhoods as above, we
obtain that ¢*da = d(p*a) € Q¥(N), generalizing Theorem 3.35.
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3.7. Proof of the Poincaré Lemma. We turn the method of Example 3.26 into an
algorithm. Note first that the two lists

er: I C{l,....on—1},|I| =k and e, Aer:IC{l,....n—1},|I|=k—1.

combine to give a basis for Alt*(R"). Therefore, if for any k we let B* < Alt*(R") be the
subspace spanned by the first list, then any v € Altk(R”) can be written uniquely as

V=v+e, AN

for v € BF and n € BF™'. Hence for any a € QF(R"), there exists a unique function
L(a) : R" — B! such that for all p € R", (a — dz, A L()), € B¥. We now observe
that if o doesn’t involve dx,,, then da will be the sum of dx,, A % and some terms that
do not involve dz,,.

Oa

Tn

Lemma 3.41. If a € Q¥ 1(R") satisfies L(a) = 0, then L(da) = : R — BE-L

Proof. If L(a) = 0, then we can write o = 3~ frdx; for some real functions f; : R" —

R, where the sum is over I C {1,...,n — 1}. Then since L is linear,
0 0 0
Zz(idxwdxﬁ It 4, A ) g =99 ¢
el o, ik o, o,

Proof of Theorem 3.25. We use induction on n. If n = 0 then the claim is trivial since
QF(RY) = {0} for k& > 0, so suppose the claim holds for n = m—1 > 0, and let a € QF(R™).
Define v : R™ — B*~1 by

Im p)
p /0 L) @1 (p),oom 1 (p).) At

Then % = L(a), so Lemma 3.41 gives £(dvy) = L(a). Hence o := a — dy € QF(R™)
is closed with £(a/) = 0. Now Lemma 3.41 gives % = L(da/) = 0, i.e., the function
o : R™ — B* does not depend on ,,. Now let 7 : R™ — R™! denote the projection
map p — (z1(p),...,zm_1(p)), and let Zy,...Z,,_1 denote the coordinate functions on
R™"!. Then 7*%; = x; and hence, by Theorem 3.35, 7*dz; = dz; for j € {0,...,m —1}.
It follows from Proposition 3.34 that 7*dz; = day for I C {1,...m — 1}, and hence
™ QYR™1) — QYR™) is injective for all £ € N. Also observe that for f € Q°(R™1)
o d(f A dz;) = 7" (df ANdzy) = (7*df) Adxr = d((7*f)dZ;), so 7" od = d o 7" by
Theorem 3.35.

Since o’ does not involve z,, or dz,,, it follows that there exists @ € QF(R™!) such that
o =m*a. So 0 =da’ = dr*a = 7*da and hence & is closed. The inductive hypothesis
thus gives 8 € QF"1(R™1) such that d3 = @, and therefore o/ = m*a = 7*df = d(7*f).
Hence o = d(7*3 + ) is exact. O

4. INTEGRATION AND STOKES’ THEOREM

4.1. Submanifolds with boundary. Let H™ be the closed half-space {p € R" | z;(p) <
0}, and let 9H™ = {0} x R*™* € H". For U open in H", let U = U N OH™.

If f: H® — R™ is smooth, then Df, is well-defined at all p € H" 1nclud1ng p € oOH",
since D fp is independent of the choice of smooth local extension f U — R™ of f to an
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open neighbourhood U of p in R™: observe that for v € H" \ dH", f(p+ tv) — f(p) =
f(p+tv) — f(p) for t > 0, s0 Df,(v) is determined by f, and such v span R".

Definition 4.1. M C R® is an n-dimensional submanifold-with-boundary (SMWB) if for
every p € M there is a diffcomorphism ¢: U — U (called a parametrisation) from an
open subset U C H™ to an open neighbourhood U C M of p. The boundary of M is

OM = {p e M|p € ¢(dU) for some parametrisation ¢: U — U},

while the interior is M = M \ M. For p € M, we define T,M to be the span of 7/(0)
over all smooth curves v: (—¢,¢) — R® with v(0) = p and y(¢) € M for ¢ > 0.

Remarks 4.2. If U C H" is open, then p € U is in OU if and only if p has no open
neighbourhood U’ in R™ such that U’ C U. Hence for any diffeomorphism ) : U — U of
open subsets of H", 1/1(8[7) =0U. If M C R® is a SMWB then:
(1) the condition that p € ¢(8U) C M is independent of the choice of parametrisation
@:[7—>Uwithp€U;
(2) the interior of M is an n-dimensional submanifold of R?;
(3) the boundary OM is an (n — 1)-dimensional submanifold of R*—indeed, for any
parametrlsatmn QY U—Uof M , the restriction of ¢ to oU gives a diffeomorphism
U — AU, from an open subset OU of 9H" = R™! to an open subset dU of OM.
On the other hand, if N C R? is a submanifold, then N is also a SMWB, with ON = &.
For a SMWB M, we can define spaces of differential forms QF(M), pullbacks and
exterior derivatives in exactly the same way as for submanifolds.

4.2. Multiple integrals.

Theorem 4.3 (Heine-Borel). A subset of a finite dimensional normed vector space is
compact if and only if it is closed and bounded.

Definition 4.4. For S C R" and a function f : S — R, the support of f is

supp(f) :=={p€ S: f(p) #0} C S
(the closure in S of the set {p € S : f(p) # 0}). In other words, supp(f) is the smallest
closed subset of S that contains all p € S with f(p) # 0. We say that f has compact

support if supp(f) is compact, i.e., supp(f) is a closed and bounded subset of R" (by
Heine-Borel 4.3). Write C%(S) := {f € C°(S) : supp(f) is compact}.

We impose compact support to ensure convergence of the integrals in the following.
For f € CP(H™), we define f € CO(H™ ') as follows: for n > 2 let

f:H" ' SR, D / f(z1(p), .- xn_1(p),t)de;
R

forn =1, H' = (—00,0], and f € R is the integral of f over this interval.
Definition 4.5. For f € C°(H™), define the multiple integral of f inductively by

flzy,...,xy)dey -+ doy, = / f(xl,...,asn_l)dxl--- dr,-1 € R
Hn Hn—1

If U € H" is open and f € CJ(U), [, fdxy--- dz, is defined in the same way after
extending f by zero to H".
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Given ¢ : U—Ua diffeomorphism of open subsets of H", define the Jacobian J, : U—
R by J,(p) = det(Dyp,). Let f € C2(U) and note that supp(f o ¢) = ¢ (supp(f)) C U
is the continuous image of a compact set, and thus compact. Hence f o ¢ has compact
support, so (f o) [Jo|: pr=> f((p)|Je(p)| is in C2(U)

Theorem 4.6 (Change of variables formula for multiple integrals). Given f € CY(U) and
a diffeomorphism ¢ : U — U and Jacobian Jy .U >R defined as above, then

/fdyl n:/< o) |Jy|dxy -+ day,.

A proof of this theorem is given in Appendix B, in the case of open subsets of R" rather
than H™, but the proof in the latter case is similar.

4.3. Integration of forms. Recall that dim Alt"(R") = 1 with basis Det, and that for
any o € Alt"(R”) and linear map ¢: R" — R", ¢*a = det(¢)a (exercise). Now suppose
a= fdyy A--- ANdy, € Q”(U) where U is open in H" with coordinates v, ...,y, and
f: U — R smooth. If ¢: U—Uisa diffeomorphism for U open in H™ (with coordinates
T1,...,T,), then

(¢ )y = (@ (fdys A+ Adya))p = (Digp)" (f(9(p))Det) = f(2(p)) Iy (p)Det
= [le@) Jo(p)(dzy A -+ Adn),p.

We say ¢ is orientation-preserving if Vp € U, Jo(p) > 0; then J,(p) = |J,(p)|, so the
transformation rule for p*a resembles the change of variables formula of Theorem 4.6.
We write o € QNU) if a = fdy; A--- Ady, € Q*(U) with f € C2(U).

Definition 4.7. For U C H™ an open subset and a € Q2 (U), we define

/a::/fdyl---dynE]R
U U

where f € CY(U) is such that a = fdy; A--- A dy,.

Theorem 4.8 (Change of variables for differential forms). Suppose ¢ : U — U is an
orientation-preserving diffeomorphism and o € Q(U); then

o[

Proof. If & = fdy; A --- A dy,, we have seen that p*a = (f o ¢)J,dx; A---dx,. Since ¢
is orientation-preserving, |J,(p)| = J,(p) > 0, so Theorem 4.6 gives

/ng*oz:/~(fogp)<]¢,dx1---dmn:/fdyl---dyn:/a. OJ
U U U U

4.4. Orientations. An orientation of an n-dimensional real vector space V' is an element
of the 2 element set (Alt"(V)\{0})/ ~, where a ~ & if @ = A« for some A € R*.

Definition 4.9. Let M C R?® be an n-dimensional SMWB.

(1) We call w € Q*(M) an orientation form if w never vanishes, i.e., Vp € M, w, # 0;

(2) M is orientable if an orientation form exists;

(3) An orientation on M an equivalence class [w] € N/~, where N is the set of
orientation forms on M, and w ~ w if for all p € M, w,, ~ w,,.
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An oriented SMWB is a SMWB M together with a choice of orientation [w].

Remarks 4.10. Thus an orientation form w on a SMWB M defines an orientation |w,)]
on T,M for each p € M, with equivalent orientation forms defining the same pointwise
orientation. Smoothness of w means that the orientations of 7,M are “consistent” (i.e.,
they do not change discontinuously). The intermediate value theorem can be used to
show that if M is connected and orientable, it has exactly 2 orientations [w] and [—w].
(If w and @ are orientation forms then w = fw with f(p) # 0 for all p € M and f cannot
change sign if M is connected.)

Example 4.11. If U C H" is an open subset, then w = dz; A --- Adx, € Q*(U) is
an orientation form, called the standard orientation of U. The standard orientation of
oU is dy; A -++ A dy,—1 where the inclusion QU — U is defined by i(y1,...,yn—1) =

(07 Yty - - 7yn*1)'
Proposition 4.12. If a SMWB M is oriented, then OM 1is oriented.

Proof. For p € OM let v(p) € T,M be the outward unit normal to OM; thus |[v(p)|| =1
and v(p) - w = 0 for all w € T,(0M), which determines v(p) up to sign, and the sign
is fixed by v(p) being “outward pointing”. Then v: 0M — R® is smooth: indeed, if
Q: U— Uis a parametrisation with inverse ¢v: U — U C H" C R" then on ou,
v = grad(z; o) /|| grad(xy 0 ¢)||, so v has local smooth extensions (because ¢ does).
Now suppose M is oriented by an orientation form w, and, for p € OM, define
B, € Alt""Y(T,0M) by By(vi,. .., vn 1) = wp(v(p),v1,...,v51). Then 8 € Q""HIM): if
v and @ are smooth local extensions of v and w, then v W, with (v_.1@),(vy,...,v,-1) =
Wp(V(p), v1,...,05—1), locally extends §. Finally, for all p € OM, B, # 0, since if
U1,...,0,—1 is a basis for T,(0M), it follows that v(p),vy,...,v,—1 is a basis for T,M
and so wy(v(p), v1, ..., Us—1) IS nONZETO. O

The outward normal convention ensures that for U C H"™ the standard orientation of
U induces the standard orientation of 0U.

Definition 4.13. Let ¢ : N — M be local diffeomorphism of oriented SMWBs. Then
@ is orientation-preserving if for an orientation form w € Q"(M) defining the chosen
orientation of M, the pullback ¢*w defines the chosen orientation on V.

In particular, a parametrlsatlon p: U — U C M is orientation- preserving (or oriented)
if p*w = fdxy A-- /\danQ”(U) with f: U — RF.

Proposition 4.14. If M is oriented, we can cover M by images U; of oriented parametri-
sations @; : Ul — Uj.

Proof. Cover M by images of some parametrisations @; : U, — U;. Without loss of

generality the U; are connected. Now either ©; is oriented (and we take U] = = U; and
©i = @i), or Piw = —fdxy A--- Adx, with f : U; — RT. In the latter case let 7,, =
(X1, ..., Tp-1,—x,) and U] = T;l(Ui). Then p; = @; o7, is an oriented parametrisation

of M with the same image Us. U
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4.5. The integration map. For a SMWB M and o € QF(M), we let supp(a) =
{peM:a,+#0} CM,and write a € Q¥(M) if supp(a) is compact.

Definition 4.15. Let M C R?® be an oriented SMWB of dimension n. Then an integration
map on M is a linear map

/M (M) =R

such that if ¢ : U — U is an oriented parametrisation and o € Q(M) with supp(a) C U,

then
/a:/go*ozeR (4.1)
M U

To prove the existence and uniqueness of integration maps, we need a technical tool.

Definition 4.16. Let U; : © € I be an open cover of S C R®*. A partition of unity on S
subordinate to U; : i € I is a indexed family p; : ¢ € I such that

(1) each p; is a nonnegative smooth function S — R;

(2) supp(p;) C U, for all i € I

(3) each p € S has a neighbourhood U C S such that U N supp(p;) # @ only for
finitely many ¢ € I; and

(4) for each p € S, Y .., pi(p) = L.

Remark 4.17. If [ is finite, then (3) is vacuous. In general, (3) ensures that the sum in
(4) is well-defined (since only finitely many terms are nonzero).

Theorem 4.18. Let M C R® be a SMWB. Then for any open cover of M, there exists a
subordinate partition of unity.

A proof is given in Appendix A.
Theorem 4.19. For any oriented SMWB M, there is a unique integration map.

Proof. Let ; : i € I be oriented parametrisations ¢; : [7@ — U, such that U; : i € I cover
M. Let p; : i € I be a partition of unity on M subordinate to this cover. For aw € Q7 (M),
Definition 4.16 (3) implies that each p € supp(«) has an open neighbourhood which meets
supp(p;) for only finitely many i; since supp(«) is compact, this open cover has a finite
subcover, so supp(a) meets supp(p;) for only finitely many i. Hence o = >, pia is a
finite sum with supp(p;a)) C U;. Then linearity and (4.1) imply

[a=% / (o) € R (12)

el

So if there exists a map [,, satisfying (4.1), then it is unique.
It remains to prove that if we define [, by (4.2)—which is clearly linear in a—then
(4.1) holds. Suppose ¢ : U — U is an oriented parametrisation with supp(a) C U.
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¢~ H(supp(pir)) -

~1(su el ~
¢;  (supp(picv)) O

supp(p;cx) - “supp(p;) € U

Then (see above diagram) supp(p;a) € U; N U. Note that
supp (i} (i) = ¢, (supp(pia)) € ;Ui NU) C T
and
or(pia) = (7' o) (" (picv)) € Al (p; " (U N D))
The function =t o ¢; : ;1 (U; NU) — o 1(U; N U) is orientation-preserving since ¢ and
@; are both oriented. Hence

/~ ©; (piar) = / ©; (piar) = / " (piar) = /~ @ (picv)
U; o7 HU:ND) o~ (U;ND) U

where the second equality follows by Theorem 4.8. Hence
Z/~ soé‘(pia)=Z/~s@*(pia)=/~so*(2ma> =/~90*047
ier Ui ier YU U iel U
as required. O

Remark 4.20. Note that the expression (4.2) for the integration map apparently depends
upon the choice of parametrisations and partition of unity. By the second part of the proof,

any other choice @;: [7; — U}, pj : j € J will also define an integration map
an Y [ Fio).
jet 7Uj
However, by the first part of the proof, this integration map is equal to the one defined

by (4.2). So in fact all such formula compute the same integrals.

Example 4.21. Let S' = {v € R?|||v]|? = 1}. Now equip S* with an orientation form
w € QY(S!) defined as the pullback of —zodzy + z1dxy € QY(R?). The parametrisations

¢ :(0,21) — SN\{(1,0)}, 0 +— (cosf,sinf)
Vi (—m,7) = SN{(=1,0)}, > (cos p,sin )

are both oriented and cover S'. Now we claim that for any o € Q'(S'), we can compute

/ « as / o*a. Let f: R — R be a smooth function such that
St (0,27)

=4 =0
o, t<1/2
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For e > 0, define p1 ¢, pac : ST = Rby p1.(¢) = f(72]lg—(1,0)|]?) and p2(q) = 1—p1.(q).
Then for any € € (0,1), we have that p;., po. is a partition of unity subordinate to
Uy := S"N\{(1,0)} and U, := S"\{(—1,0)}, and so

/ «Q —/ (pre ) + V(P2 )
S1 0,27) —7,m)

Ase — 0, p1. tends to 1 except at ¢ = (1,0). Hence the first term converges to f(()’%) Yo
and the second term converges to 0, proving the claim.

Now let @ € Q!(S') be the pullback of z;dxy € Q'(R?). Then p*a = cosfd(sinf) =
(cos 0)%df and so

2m 2m
/ a= / o= / (cos6)*do = / (cos(26) +1)do = 7.
St (0,2m) 0 0

Remark 4.22. The above example illustrates a general principle. When evaluating in-
tegrals in practice, we don’t have to use partitions of unity: we can just find an oriented
parametrisation ¢ : U — U on M such that U is dense and evaluate fﬁ Yra.

4.6. Stokes’ theorem. Let i : OM — M denote the inclusion of the boundary of an
oriented SMWB M; then any a € QF(M) has a pullback i*a € QF(OM), and if o €
QF(M), then i*a € QF(OM). In particular, if 3 € QP"1(M), then d3 € Q*(M) and
i*B € Q71 (OM) can be integrated on M and dM respectively.

Theorem 4.23. Let i: OM — M be an oriented SMWB and 3 € Q"~Y(M), Then

/Mdﬂz/aMi*B.

Example 4.24. Let 5: R — R be a smooth function such that G(p) = 0 for p < —1 and
B(p) =1 for p > 1. Then supp(df) C [-1,1], so d3 € QL(R), and

/dﬁ /—da:— 1) - B(~1) = 1.

Example 4.25. Let M := {v € R? : |jv||* < 1}, and let
6 =x1drg € Ql(M)

Since M itself is compact, automatically 5 € QL(M). Now df = dzy A dx,, so f,,df is
simply the double integral of the constant function 1 over the unit disc, which is .
This agrees the integral of i*3 on S, evaluated in Example 4.21.

To prove Stokes’ theorem, we may as well assume that supp(f) is contained in U for
some oriented parametrisation ¢ : U — U, since any  can be written (using a partition
of unity) as a sum of such forms. Then

| as= [ ewn = [

and (with ig: dU — U being the inclusion)

/i*B: ~i*l7g0*ﬂ.
oM aU
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The theorem now follows by applying the next lemma to v € Q7?1 (H") defined by
oy = (¢*B)y forpe U
g 0 for p € H™ \ supp(¢*3).
Lemma 4.26. For any v € Q" Y(H") and i: OH" — H™ the inclusion,

R
n OH™

Proof. We may write vy as v 5 (day A -+ Adx,) with v(p) = > 7", fi(p)e;. Then

0fi

d =
i 1 ax,

day A+ Adz, € QNH")

and
iy =gdy; A+ Ady,_, € QY OH™),
where g(y1, ..., Yn—1) = f1(0,41,...,Yn—1). Thus it remains to prove

31
E/af dxz,, :/ gdy; - - - dy,—_1.
n :EZ Rn—1

By Theorem 4.6, we may evaluate the multiple integrals in any order. For 2 < i < n,

o Af; . .
f_oo or (x1,...,2,)dz; = 0 for each fixed x1,...,2; 1, %11, ..., %,, since f; has compact

support. Hence the sum reduces to the first term, which is

09
/ / oh ——(z1,...,2,)dx; | d2y---dxy, = f1(0, 29, ..., 2, )dey - - - day,
w1 \J oo 0 -

= / gdyy -+ - dyp_1. O
Rnfl

Corollary 4.27 (Boundaryless case of Stokes’ theorem). Let M be an oriented n-manifold
and B € Q1 (M). Then
/dﬁza
M

Remarks 4.28. Stokes’ theorem provides further justification for the importance of the
exterior derivative. Notice that its proof reduces to a fairly straightforward application of
the fundamental theorem of calculus. The hard work is really in setting up the definition
of the integral in a diffeomorphism-invariant way, and the diffeomorphism invariance of
the exterior derivative plays a crucial role.

If M is compact, then Q7 (M) = Q"(M), so (if M is oriented) [,, o is defined for any
a € Q*(M). Compact submanifolds (without boundary) are also called closed manifolds
(although, as subsets of R®  they are not only closed, but also bounded). If M is not
compact and 3 € Q"1(M), then it could be that d has compact support even if 3 does
not. In that case [ 1 4B could be non-zero, even if M has no boundary.
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APPENDIX A. EXISTENCE OF PARTITIONS OF UNITY

Let U; : i € Z be an open cover of M. For each UZ, there is by definition an open
subset U; C R* such that U; = M N U;. Let M = UZEZU (an open subset of R*). Then
any partition of unity on M subordinate to U, 4 € Z induces a partition of unity on M
subordinate to U; : © € Z, so without loss, we can assume that M is open in R®.

Step 1: cover by a countable set of balls. Let V be the set of subsets V' C M such that:
e there exist 7, z1,...x € Q such that V = B,(x) where x = (z1,...xy);
e the closure V in R® is contained in U; for some j € 7.

V is a countable set, so we may enumerate its elements as V; : j € Z*.

Claim 1. For any open subset W with W C M and any p € M\ W, there is some V € V
such that VAW =@ andp € V.

Proof. Pick some i € T such that p € U;. Then (M \ W) N U; is an open subset of R®
containing p, so it contains some open ball Bg(p). Choose x € Bpjs(p) with rational
coordinates and r € Q with |z — p| < r < R/2. Then p € B,(z) and B,(z) C Bg(p) so
we may take V = B,(z) € V. O

Set Wy =@, Ag =V and, for m € Z7,
Wyp=ViU---UV,, and A, ={VeVv:VnWw, =09}
Then Claim 1, with W = W,,, shows that A,, covers M \ W,,: indeed |J A, = M \ W,,,.

Step 2: making the cover locally finite. We now define inductively for m € N, a finite
subset B,, C V, such that By = @, and for m € Z*, B, covers W,,, so that A,, U B
covers M. To do this, observe that W,, C M is a closed and bounded subset of R*, hence
compact by Heine-Borel 4.3. Since (inductively) A,, 1 U B,,_1 covers M, it has a finite
subset B, which covers W,,.

We now set B = (J,,en
also “locally finite”: any p € M belongs to W,, for some m € N and so if V' € B with
VW, #@,then V¢ A, andsoV &€ B U---UB,,_1, which is finite.

B,,, which is an open cover of |J,,.y Wm = M. However, it is

Step 3: defining the partition of unity. For each V' = B,(x) € B, choose j(V) € T with
V C Ujwy, and define py : M — R by

() :
= X _—_
pV y p 7"2 _ |l‘ . y|2
fory € B,.(z), and py(y) = 0 for y € B.(z). Then py is smooth (exercise) with supp(py) =

V and py positive on V. Since B is locally finite, each p € M has an open neighbourhood
W C M with V N W # @ for only finitely many V' € B. Hence the functions
— Z pv(xz) and oy(z) = Z pv ()
veB VeB:j(V)=i

(for i € 7) are well-defined and smooth because only finitely many py are nonzero on an
open neighbourhood of any point. Furthermore ¢ is nonvanishing, supp(co;) C U;, and
any point has an open neighbourhood which meets supp(o;) for only finitely many i € Z.
Hence p;(x) := 0;(z)/o(x) defines a partition of unity subordinate to U; : i € Z.
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APPENDIX B. PROOF OF THE CHANGE OF VARIABLES FORMULA

For a diffeomorphism ¢ : V' — U of open subset of R™, let C'(¢) be the statement:

/U F(y)dyn - d / P ()| day - (B.1)

for all f € C%(V). We wish to prove that C(p) holds for any . Main steps:

(1) C(p) and C(¥) = Clpov)

(2) ¢ a permutation of coordinates = C(p)

B)n=1 = Clp

(4) ¢ of the form (z1,...,2,) — (T1, ..., Tp_1, h(z1,...,2,)) = C(p).

(5) for any ¢, any = € V has an open neighbourhood V' C V such that ¢|y is a
composite of maps of the form (2) and (4).

(6) using a partition of unity C(¢) holds for any ¢.

Step 1. Let U,V,WW C R"™ be open subsets, and let ¢ : V. — U and ¢y : W — V be
diffeomorphisms. Then

Joop(x) = det(D(pot)),) = det(Dpy(r) 0 Dy) = det(Dpy(s)) det(Drhy) = Jo(¢(x)) Jy ().
Now suppose C(v)), i.e.,

/W (@) o) dey - da, = /V o(y) dys - - dy,

for any g € C%(V). Now if f € C%(U), then assuming C(y) and applying C(1)) with
g=(fop)|J,| € COV), we obtain that

/f )ydzy - - /f y)|dyr - dyy

/ fle To (W ()| Ty ()| day -+ dz,

/f 0 0 D))o (a)| dar - .
which gives C'(p o ).

Step 2. We want to show C(p) when Jo € 5, such that p(z1,...,2,) = (To@1)s - - - To(m))-
Since this map is the restriction of a diffeomorphism s, : R™ — R", we can assume without
loss that U = V = R™. Since |J,, (z)| = 1 for all z, to establish C(s,), we need to show
that we can change the order of the multiple integrals.

Let P C CY(R") be the set of functions f : R™ — R such that f(zq,...,2,) =
fi(z1) -+ fulzy,) for some fi,..., f, € C2(R). Observe that for any such f,

dzy --- dz, = = dt - -- Oond: 0s,)dz; - - day,
Rnf(x) 1 x /—oofl(t)t /_Oof(t)t /Rn(f S, ) dxq x

since each one-variable integral above is a real number, and multiplication is commutative.
Hence (B.1) holds for all f € P. By linearity of integration, it follows that (B.1) holds
for all f € span(P), the linear span of P.

To establish C(s,), i.e., that (B.1) holds for all f € CY(R™), we suppose ¢ > 0 and
apply the following special case of the Stone—Weierstrass theorem.
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Theorem. The span of P is uniformly dense in C?(R"), i.e., for any f € C(R") and
e > 0, there exists g € span(P) such that ¥z € R" we have |f(z) — g(z)| < e.

Evidently this also implies that Vo € R", |f(s,(z)) — g(ss(z))| < €. Since g € span(P)
we now have

flz)dzy - da, — f(so(x))day -+ dzy
Rr R™

/n(f(x) —g(x))dwzy--- dz, — /n(f(s(,(x)) — g(s(2))) day - - - dy,

<

< 2V,

[ (r(@) = @) oy -+ o+

| (Foao) = glsa@)) oy - da,

where V' is the volume of a ball containing the supports of f, g, f o s, and g o s, (which
exists as these functions all have compact support). Since € > 0 is arbitrary, the left-hand
side is zero. In other words C(s,) holds.

Step 3. Suppose n = 1, s0 ¢ : V. — U for V,U C R disjoint unions of open intervals,
and J,(z) = $£. Now given f € CO(U), then there exists a finite union of bounded open
intervals V' Q V such that supp(f o ¢) C V'. Therefore without loss of generality, V' is
a single bounded interval (a,b) C R and U = ¢((a,b)). Then by the change of variables
formula for functions of one variable

©(b) d
/f Jay== [ rwdy= /f )% .
w(a)

where the sign is positive if p(a) < ¢(b) and negative if ¢(b) < ¢(a). However, this sign
is also the sign of dg at all = € (a,b), so the right hand side is

/f “O‘dx

Step 4. Suppose ¢ : V — U has the form (xy,...,2,) — (z1,..., 251, h(x1,...,2,)) for
some function h. Fix (zy,...,2,_1) € R" ! and set

as required.

U={seR|(z1,...,2n-1,8) €U}, and V' ={teR]|(zy1,...,20-1,t) €V}
and ¢' : V' = U, t — h(z1,...,2,-1,t). Then

de’  Oh
Tl =37 =3¢ =
and so for any f € CO(U), C(¢') (Step 3) implies

Lp(il,'l, ce ,.I'nfl,t>

f(ml,...,xn_l) = f(:nl,...,xn_l,s)ds:/ g(T1, .., Ty, ) dt
U/ !

where g = (f o ¢)|J,| € C2(V). However, extending both integrands by zero to R, the
multiple integral of f over R" is the multiple integral of f over R"!, which therefore
equals the multiple integral of g over R", proving C(¢p).
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Step 5. A diffeomorphism ¢ : V' — U is called a k-graph if it is of the form

p(r) = @(T1,. .., o) = (T1, -+ s Tk Prby1(T), -+, P (T)).
So
e pis a 0-graph & p = 1Id;
e pis a l-graph < ¢ is a diffeomorphism of the form (4);
e any ( is an n-graph.

We are interested in the k = n case of the following claim.

Lemma B.1. For any k < n, if ¢ is a k-graph, then any x € V has a neighbourhood
V! CV such that ¢|y is a composite of permutation maps and 1-graphs.

Proof. The cases k = 0 and k£ = 1 are trivial. Now suppose the claim holds for £k — 1. Let
¢ be a k-graph and x € V. Then det(Dy,) # 0 since ¢ is a diffeomorphism, so there is
an integer i € [n — k + 1, n] such that (31% # 0 at x. Let o be the transposition (n i) € S,
and V' = s;1(V). Then ¢/ = pos,: V' — U is a k-graph and has % #0aty=s,'(z).

Now define g : V' — R™ by (y1,---,Un) = (Y1, Yn—1,90(Y1,---,Yn)). Then g is
a l-graph, and det(Dg,) = %(y) # 0. So by the inverse function theorem, y has a
neighbourhood W C V' such that g|y defines a diffeomorphism W — g(W), with g(W)

open in R, Let ¢ = ¢ og~!: g(W) — U. Then 1 has the form

(21, oy 2n) = (21, oo Zneky Ynks1 (215 oy Zn)y o ooy U1 (215 - o4 20)s 2n)

where 21, ..., 2, are fixed since ¢ and g both fix the first n — k coordinates. If 7 € S,
is the transposition (n k + 1), then ¢/ = s, o¢p: g(W) — s,(U) is (k — 1)-fixed. So
by the inductive hypothesis, g(y) has a neighbourhood W’ C g(W) such that ¢/'|y is a
composite of permutation maps and 1-graphs. Hence so is the restriction of ¢ = ¢yogos, =

s,ot ogos, tos; (g (W)). 0

Step 6. Let ¢ : V — U be any diffeomorphism. The preceding steps show that any x € V
has a neighbourhood V’ C V such that C(¢|y+). Equivalently, for any f € C°(U) such
that supp(f) C im(¢(V’)) we have

/(foso)(fﬁ)lefw(ﬂf)ldwl-“dxn=/f(y)dy1---dyn
1% U

Let U; : © € Z be the family of images of such V. Then U; is an open cover of M. Let
pi : i € I be a partition of unity subordinate this cover. Then any f € C%(U) can be
written as f = >, p;f. Since supp(p;f) C U;, then

[iwan-an =3 [Gpwan- =Y [ (n)ep@l )] dar- dz,

— [ (Fo)@)lJu(@)] doi - da.
:

This concludes the proof of the change of variables formula.



