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4. Integration and Stokes’ Theorem 21

4.1. Submanifolds with boundary 21

4.2. Multiple integrals 22

4.3. Integration of forms 23

4.4. Orientations 23

4.5. The integration map 25

4.6. Stokes’ theorem 27

Appendix A. Existence of partitions of unity 29

Appendix B. Proof of the change of variables formula 30

1



2 MA40254: DIFFERENTIAL & GEOMETRIC ANALYSIS

Motivation: the problem with grad, curl and div

Gradient. Let U ⊆ R3 be open and f : U → R differentiable. Then the partial deriva-

tives of f define a vector field

grad f : U → R3; x =

x1x2
x3

 7→
∂f/∂x1∂f/∂x2
∂f/∂x3


i.e., (grad f)(x) is a vector at each x ∈ U .

If γ : R→ U ; t 7→ γ(t) is a curve with γ(0) = x, we can ask if

dγ

dt
(0) = (grad f)(x) ?

Now suppose we change to spherical polar coordinates by the map

ϕ : (0,∞)× (0, π)× (−π, π)→ R3;

rθ
ψ

 7→
r sin θ cosψ

r sin θ sinψ

r cos θ


If U ⊆ imϕ then x, f and γ are represented in spherical polar coordinates by x̃ = ϕ−1(x),

f̃ = f ◦ ϕ : ϕ−1(U)→ R and γ̃ = ϕ−1 ◦ γ : R→ ϕ−1(U).

Problem. To have

dγ

dt
(0) = (grad f)(x) ⇔ dγ̃

dt
(0) = (grad f̃)(x̃)

we cannot define

grad f̃ =

∂f̃/∂r∂f̃/∂θ

∂f̃/∂ψ


but instead must set

grad f̃ =

 ∂f̃/∂r
1
r2
∂f̃/∂θ

1
r2(sin θ)2

∂f̃/∂ψ

 .

To understand this problem, recall that grad f(x) is related to the (Fréchet) derivative

Dfx of f at x by

Dfx(v) = v · (grad f)(x)

where v ∈ R3 and · denotes the Euclidean scalar/inner/dot product. Recall Dfx : R3 → R
is the best linear approximation to f near x, hence Dfx ∈ R3∗ = L(R3,R), the dual space

of linear forms R3 → R.

Root of problem. grad f depends on the inner product, so only transforms nicely for

diffeomorphisms which preserve the inner product, and ϕ above does not!

Solution. Work instead with

Df = df : U → R3∗; x 7→ Dfx !
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Divergence and curl. If v : U → R3 is a vector field, we may define

div v =
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

and curl v =

∂v2/∂x3 − ∂v3/∂x2∂v3/∂x1 − ∂v1/∂x3
∂v1/∂x2 − ∂v2/∂x1


but the transformation rules into spherical polar coordinates are even more horrible.1

We can resolve this problem by introducing differential forms : functions α on U with

values in R = Alt0(R3), R3∗ = Alt1(R3), Alt2(R3) and Alt3(R3), where Altk(R3) denotes

the vector space of alternating k-multilinear forms on R3. Then we replace grad, curl and

div by the exterior derivative d between functions with values in these spaces. This more

sophisticated algebra simplifies the transformation law to

dα̃ = d̃α.

(Also d2 := d ◦ d = 0 captures in a memorable way the rules relating grad, curl and div,

and there is an obvious generalisation from R3 to Rn.)

Integration. In vector calculus, integration is as important as differentiation, and there

are line integrals, surface integrals and volume integrals: for example if x : U → R3

parametrises a surface S ⊆ R3 (where U ⊆ R2), and z : U → R3 describes a vector field

along the surface, then the surface integral of z along S is defined by∫
S

z · dS :=

∫
(u,v)∈U

z(u, v) ·
(∂x
∂u
× ∂x

∂v

)
du dv,

which again involves Euclidean geometry (not just the dot product, but the cross product).

Differential forms provide coordinate invariant reformulations of these definitions. In

addition, the fundamental theorem of calculus, Stokes’ theorem for surfaces, and the

divergence theorem for volumes are all special cases of Stokes’ theorem for differential

forms α on submanifolds M with boundary ∂M :∫
M

dα =

∫
∂M

α.

This includes in particular the Fundamental Theorem of Calculus when M = [a, b] is a

closed interval: ∫
[a,b]

df

dx
dx =

∫
{a,b}

f = f(b)− f(a).

1Formulae omitted to reduce risk of ongoing post-traumatic stress from MA20223 !
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1. Smooth functions on Rn

1.1. Differentiation.

Definition 1.1. Let V,W be finite dimensional normed vector spaces (we will often take

V = Rn and W = Rm with the Euclidean norm). Let U ⊆ V open. Then f : U → W is

differentiable at x ∈ U if there exists a linear map Dfx : V → W , called the derivative of

f at x, such that

f(x+ v) = f(x) +Dfx(v) + g(v)‖v‖
where limv→0 g(v) = 0.

Remarks 1.2. It is easy to show that Dfx is unique if it is exists. Since all norms are

equivalent on finite dimensional V,W , the definition is independent of the chosen norms.

Definition 1.3. If f : U → W is differentiable at every x ∈ U , then we say f is

differentiable (on U). Then the derivative of f is the function

Df : U → L(V,W ), x 7→ Dfx,

where L(V,W ) is the vector space of linear maps V → W .

Remarks 1.4. Observe the distinction (conceptionally and notationally) between de-

rivative of f at a point (the linear map Dfx : V → W ) and the derivative function

Df : U → L(V,W ).

For U ⊂ Rn and f : U → Rm, (x1, . . . , xn) 7→ (y1, . . . , ym) and x ∈ U , the linear map

Dfx : Rn → Rm is represented, with respect to the standard basis, by the matrix whose

entries are the partial derivatives ∂yi
∂xj

.

Example 1.5. Suppose f : U → W is the restriction to U ⊂ V of a linear map α : V → W .

Then

f(x+ v) = α(x+ v) = α(x) + α(v) = f(x) + α(v) + 0.

Thus Dfx = α and Df : U → L(V,W ) is a constant function with constant value α.

Remark 1.6. Observe that L(V,W ) is also a finite dimensional normed vector space, a

convenient norm being the operator norm

‖φ‖op := sup
v
‖φ(v)‖,

taking the supremum over all v ∈ V with ‖v‖V = 1.

Hence we can iterate: f is twice differentiable if Df is differentiable.

Notation 1.7. For vector spaces V,W and k ∈ N let:

• Mk(V ;W ) = {k-linear maps V k → W};
• Mk(V ) =Mk(V ;R) and M0(V ;W ) = W ;

• Symk(V ;W ) ⊆Mk(V ;W ) be the subspace of fully symmetric k-linear maps.

For η ∈ L(V,Mk−1(V ;W )) let η∨ ∈Mk(V ;W ) be defined by

η∨(v1, . . . , vk) = (η(v1))(v2, . . . , vk).

If f : U → W is k ≥ 1 times differentiable and x ∈ U , define (recursively) Dkfx =

D(Dk−1f)∨x ∈Mk(V ;W ), where D0f = f (thus D1f = Df).
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Definition 1.8. We say f is (of class) C0 if f is continuous, and (recursively) f is (of

class) Ck if f is differentiable and Df is Ck−1. We say f is smooth or C∞ if f is Ck for

every k ∈ N.

Proposition 1.9. f is C1 if and only if its first order partial derivatives all exist and are

continuous, and f is smooth if and only if its partial derivatives of all orders exist.

Proposition 1.10. If f : U → W is C2 on U ⊆ V , then for all x ∈ U , D2fx is symmetric,

i.e., D2fx ∈ Sym2(V ;W ). If f is Ck then Dkf takes values in Symk(V ;W ).

Remark 1.11. If U ⊆ Rn and f : U → R is twice differentiable, then D2fx is a bilinear

form and the matrixH representingD2fx with respect to the standard basis is the Hessian,

given by Hij =
∂2f

∂xi∂xj
. Proposition 1.10 means that D2fx is a symmetric bilinear form,

so H is a symmetric matrix, i.e., partial derivatives commute.

Proposition 1.12 (Chain rule). If U ⊆ V and Ũ ⊆ W are open and f : U → Ũ ,

g : Ũ → X are differentiable at x ∈ U and f(x) ∈ Ũ respectively, then g◦f is differentiable

at x with D(g ◦ f)x = Dgf(x) ◦Dfx.

Theorem 1.13 (Mean value theorem). If f : U → R is differentiable and the segment

[x, y] is contained in U , then ∃ξ ∈ [x, y] such that f(y)− f(x) = Dfξ(y − x).

Corollary 1.14 (Mean value inequality). If f : U → W is differentiable and [x, y] ⊂ U

then ∃ξ ∈ [x, y] such that ‖f(y)− f(x)‖ ≤ ‖Dfξ(y − x)‖.
Hence ‖f(y)− f(x)‖ ≤ ‖y − x‖ sup

ξ∈U
‖Dfξ‖op.

Recall that any normed vector space V is a metric space with d(x, y) = ‖y−x‖. Hence

any subset S ⊆ V is also a metric space, whose open and closed sets are intersections

with S of open and closed subsets in V (respectively).

Definition 1.15. For S ⊆ V , we say that f : S → W is smooth iff every x ∈ S has an

open neighbourhood U ⊆ V and a smooth function F : U → W such that the restriction

of F to U ∩ S equals f . We denote the set of such functions by C∞(S,W ).

1.2. Inverse Function Theorem. For U, Ũ ⊆ Rn open and f : U → Ũ , g : Ũ → U

inverses, the differentiability of one does not imply the differentiability of the other. For

example, for U = Ũ = R, x 7→ x3 is differentiable but y 7→ 3
√
y is not (at y = 0).

Definition 1.16. Let U ⊆ Rn, Ũ ⊆ Rm be open. Then f : U → Ũ is a (Ck) diffeomor-

phism if it is differentiable (Ck) and has a differentiable (Ck) inverse g : Ũ → U .

Proposition 1.17. Let U ⊆ Rn, Ũ ⊆ Rm be open. If f : U → Ũ and g : Ũ → U are

inverses, f is differentiable at x ∈ U , and g is differentiable at y = f(x) ∈ Ũ , then

Dfx : Rn → Rm is an isomorphism with inverse Dgy; in particular, m = n.

Proof. Applying the chain rule to g ◦ f = IdU gives D(g ◦ f)x = Dgy ◦Dfx = D(IdU)x =

IdRn , and similarly since f ◦ g = IdŨ , the chain rule gives D(f ◦ g)y = Dfx ◦Dgy = IdRm

since g(y) = x. Hence Dfx is an isomorphism with inverse Dgy by definition. �
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We often make use of the following corollary to the rank-nullity theorem: if ϕ : V → W

is a linear map between vector spaces of the same dimension and kerϕ = {0}, then ϕ is

a linear isomorphism.

Definition 1.18. We say f : U → Rn is a local diffeomorphism if Dfx is an isomorphism

for all x ∈ U .

Thus any diffeomorphism is necessarily a local diffeomorphism. This turns out to be

sufficient, at least locally.

Theorem 1.19 (Inverse function theorem). Let U ⊆ Rn be open, x ∈ U and f be C1

on U with Dfx is an isomorphism. Then x has an open neighbourhood U ′ ⊆ U such that

Ũ := f(U ′) ⊆ Rn is open and the restriction f : U ′ → Ũ is a diffeomorphism.

We will also see later that if f is Ck then f : U ′ → Ũ is a Ck diffeomorphism.

To prove the Theorem 1.19, first note that if its conclusion holds for f̃ = L ◦ f for any

linear isomorphism L, it also holds for f . If we take L := (Dfx)
−1, then by the chain rule

Df̃u = DLf(u) ◦Dfu = L ◦Dfu for any u ∈ U , so in particular Df̃x = IdRn . So without

loss of generality, Dfx = IdRn .

Since f is C1, Df is continuous, so Dfu is close to IdRn for u close to x: concretely,

∃ r > 0 s.t. Br(x) := {u : ‖u− x‖ < r} ⊆ U

and ∀u ∈ Br(x) we have ‖ IdRn −Dfu‖op < 1
2
.

The plan is now to show that U ′ := Br(x) satisfies the conclusions of Theorem 1.19. The

key is to observe that if we define h := IdRn −f , then for y, z ∈ Br(x), the mean value

inequality implies that

‖h(y)− h(z)‖ ≤ ‖y − z‖ sup
u∈Br(x)

‖ IdRn −Dfu‖op ≤ 1
2
‖y − z‖ (1.1)

Lemma 1.20. If y, z ∈ U ′, then

‖y − z‖ ≤ 2‖f(y)− f(z)‖.

In particular, the restriction of f to U ′ is injective.

Proof. With h(z) = z − f(z) as before, (1.1) implies

‖y − z‖ = ‖h(y) + f(y)− h(z)− f(z)‖ ≤ ‖f(y)− f(z)‖+ ‖h(y)− h(z)‖
≤ ‖f(y)− f(z)‖+ 1

2
‖y − z‖

This rearranges to give the stated inequality. �

Now recall the following theorem from Analysis 2A.

Theorem 1.21 (Contraction mapping theorem). Let S ⊆ Rn be closed and H : S → S.

If ∃c < 1 such that ∀ y, z ∈ S, ‖H(y)−H(z)‖ ≤ c‖y − z‖ (i.e., H is a contraction), then

H has a unique fixed point z ∈ S.

Now (1.1) implies h is a contraction. Furthermore, for any w ∈ Rn, the same is true

for hw defined by hw(z) = h(z) + w = z − f(z) + w, since hw(y) − hw(z) = h(y) − h(z).

On the other hand, z is a fixed point of hw (i.e., hw(z) = z) if and only if f(z) = w. We

use this to prove that the image of U ′ is open.
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Lemma 1.22. Suppose Bδ(y) ⊆ U and for all z ∈ Bδ(y), ‖ IdRn −Dfz‖op < 1
2
. Then

f(Bδ(y)) contains Bδ/4(f(y)).

Proof. Suppose w ∈ Bδ/4(f(y)), and consider the restriction of hw to z ∈ Bδ/2(y). Since

‖w − f(y)‖ < δ/4 and hw(y) = y − f(y) + w, ‖z − y‖ ≤ δ/2 implies that

‖hw(z)− y‖ = ‖hw(z)− hw(y) + w − f(y)‖ ≤ ‖hw(z)− hw(y)‖+ ‖w − f(y)‖ < δ/2.

It follows that hw maps S := Bδ/2(y) to Bδ/2(y) ⊆ S. Since S ⊆ Bδ(y), hw is a contraction

on S and so by Theorem 1.21, it has a unique fixed point z ∈ S. Since z ∈ Bδ(y) and

hw(z) = z implies w = f(z), this completes the proof. �

Now for any v ∈ f(U ′) with U ′ = Br(x) ⊆ U , take y ∈ U ′ with f(y) = v, and δ > 0

such that Bδ(y) ⊆ U ′. Then the above lemma applies to show f(U ′) contains an open

ball centred at v = f(y). Thus f(U ′) is open, f : U ′ → f(U ′) is a bijection between open

sets, hence has an inverse g : f(U ′)→ U ′ ⊆ Rn.

Lemma 1.23. g is differentiable at y = f(x).

Proof. If Dgy exists then it must be (Dfx)
−1 = IdRn , so we want to control g(w)− g(y)−

w + y for w close to y. This equals g(w)− x− f(g(w)) + f(x) and

‖g(w)− x− f(g(w)) + f(x)‖
‖w − y‖

=
‖g(w)− x‖
‖w − y‖

‖f(g(w))− f(x)− IdRn(g(w)− x)‖
‖g(w)− x‖

.

However, Lemma 1.20 shows that for w ∈ f(U ′), ‖g(w) − x‖ ≤ 2‖w − y‖, and hence

the first factor is ≤ 2. As w → y, also g(w) → x, so the second factor → 0 because

Dfx = Id. �

We now observe that any z ∈ U ′ could have been used in place of x in Lemma 1.23.

Lemma 1.24. f is a local diffeomorphism on U ′.

Proof. For any z ∈ U ′ and v ∈ Rm, ‖v − Dfz(v)‖ ≤ 1
2
‖v‖. In particular if Dfz(v) = 0,

then ‖v‖ = 0, so kerDfz = 0 and Dfz is invertible by rank-nullity. �

Hence g is differentiable on Ũ = f(U ′), which completes the proof of Theorem 1.19. In

fact more is true: g is as differentiable as f .

Theorem 1.25. Let U ⊆ Rn, Ũ ⊆ Rm be open. If f : U → Ũ and g : Ũ → U are inverses,

f is Ck, and Dfx is an isomorphism for every x ∈ U , then g is Ck.

By Theorem 1.19, g is differentiable on Ũ , hence C0. Theorem 1.25 now follows by

induction on k using the following.

Lemma 1.26. For k ≥ 1, if f is Ck and g is Ck−1, then g is Ck.

Proof. By the above, g is differentiable and so Dgw = (Dfg(w))
−1 ∈ GLn(R) for all w ∈ Ũ

by Proposition 1.17. In other words Dg : Ũ → GLn(R) ⊂Mn,n(R) is a composition of

(1) g : Ũ → U , which is Ck−1 by assumption; then

(2) Df : U → GLn(R), which is Ck−1 since f is Ck; and then

(3) inv : GLn(R)→ GLn(R), A 7→ A−1, which is C∞. (Exercise)

By the chain rule, Dg = inv ◦Df ◦ g : Ũ → GLn(R) is Ck−1, so g is Ck. �
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1.3. Implicit Function Theorem. For a differentiable function f : R2 → R, we can

try to use the equation f(x, y) = 0 to “implicitly” define y as a function of x, i.e., find

h : R→ R such that f(x, h(x)) = 0 and the level set f−1(0) = {(x, y) ∈ R2 | f(x, y) = 0}
is precisely graph(h) = {(x, h(x)) |x ∈ R}. The problem is that given a particular x,

there could be zero or multiple solutions y to the equation f(x, y) = 0. For example, let

f : R2 → R be defined by f(x, y) = x− y3 + 3y.

x

y

f = 0

(−2, 1)

· · · · · ·
non-unique soln unique solnunique soln

Given x0 and y0 such that f(x0, y0) = 0, we could try instead to define y = h(x) only

for x close to x0, insisting that y is close to y0. However, this can still fail: in the example,

if we take (x0, y0) = (−2, 1), then for x < −2 there is no solution for y, while for x > −2

the solution is not unique. The problem here is that ∂f
∂y

= −3y2 + 3 = 0. The Implicit

Function Theorem asserts (in arbitrary dimensions) that this is the only problem.

To state it, we start with a function f : U → Rm where U is open in Rn+m ∼= Rn×Rm,

and denote by D1fz and D2fz be the restrictions of Dfz to Rn×{0} ∼= Rn and {0}×Rm ∼=
Rm (respectively) in Rn × Rm.

Theorem 1.27. Let U ⊆ Rn+m be open and f : U → Rm be Ck. Let x0 ∈ Rn, y0 ∈ Rm

and suppose that z := (x0, y0) ∈ U and f(z) = 0. If D2fz is an isomorphism, then there

exist open sets U1 ⊆ Rn, U2 ⊆ Rm with x0 ∈ U1, y0 ∈ U2 and a Ck function h : U1 → U2

such that U1 × U2 ⊆ U and {(x, y) ∈ U1 × U2 | f(x, y) = 0} = {(x, h(x)) |x ∈ U1}.

Proof. Let F : U → Rn×Rm, (x, y) 7→ (x, f(x, y)). Then DFz : Rn×Rm → Rn×Rm maps

(u, v) 7→ (u,D1fz(u) +D2fz(v)) since Dfz(u, v) = D1fz(u) + D2fz(v). If DFz(u, v) = 0

then u = 0 and hence D2fz(v) = 0 (since D2fz is an isomorphism); hence kerDFz = {0}
and DFz is an isomorphism by rank-nullity. The Inverse Function Theorem 1.19 and 1.25

now provide an Ck inverse G : F (U ′) → U ′ to F on an open neighbourhood U ′ ⊆ U of

z. Shrinking U ′ if necessary, we may assume, wlog, first that U ′ = U ′1 × U2. We now

set U1 = {x ∈ U ′1 : (x, 0) ∈ F (U ′)}, which is open (and a neighbourhood of x0) because

F (U ′) is open in Rn+m, so its intersection with Rn × {0} ∼= Rn is open in Rn.

Now by the form of F , G(x, y) = (x, g(x, y)) where g(x, f(x, y)) = y and f(x, g(x, y)) =

y. Hence for any (x, y) ∈ U1 × U2, we may define h : U1 → U2 by h(x) := g(x, 0). Then

f(x, y) = 0 implies h(x) = g(x, 0) = g(x, f(x, y)) = y and conversely, y = h(x) implies

f(x, y) = f(x, g(x, 0)) = 0. �

Henceforth, we use the term “diffeomorphism” to mean smooth (C∞) diffeomorphism,

i.e., a smooth map with a smooth inverse. Using Definition 1.15, we may extend this

terminology to functions f : S → T between arbitrary subsets S ⊆ Rn and T ⊆ Rm.
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2. Submanifolds of Rs

2.1. Submanifolds and regular values.

Definition 2.1. M ⊆ Rs is an n-dimensional submanifold if ∀ p ∈ M , ∃ an open neigh-

bourhood U ⊆M of p and an open U ′ ⊆ Rn and a diffeomorphism ϕ : U ′ → U .

ϕ is called a (local) parametrisation, while ϕ−1 : U → U ′ is called a coordinate chart.

Unwinding Definition 1.15, this means that there is an open neighbourhood Ũ ⊆ Rs of

x and smooth maps F : Ũ → U ′ and ϕ : U ′ → U , with U = Ũ ∩M , such that F |U = ϕ−1.

Examples 2.2. (1) Let M ⊆ Rn be open, then M is a submanifold (by taking U =

U ′ = M and ϕ = IdM).

(2) Let M be an n-dimensional vector subspace of Rs. Take ϕ to be a linear isomor-

phism Rn ∼= M and F : Rs → Rn to be any linear map such that F |M = ϕ−1.

(3) Let S2 := {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}. Let

U ′ := (0, π)× (−π, π) ⊆ R2, Ũ := R3\{(x, y, z) |x ≤ 0, y = 0}

so U := Ũ ∩ S2 is an open subset of S2. Let ϕ : U ′ → U be the bijection

(θ, ψ) 7→ (sin θ cosψ, sin θ sinψ, cos θ),

and F : Ũ → R2 by (x, y, z) 7→ (arg(z,
√
x2 + y2), arg(x, y)). Then ϕ and F are

both smooth and ϕ−1 = F |U . So ϕ−1 is smooth and thus ϕ : U ′ → U is a diffeo-

morphism. Although U is not the whole of S2, there are similar parametrisations

(obtained e.g., by interchanging the roles of x, y and z) which together cover the

remaining points.

Finding parametrisations explicitly is usually rather tedious. Fortunately there is a

more convenient general method for proving that a subset M ⊆ Rs is a submanifold using

the implicit function theorem.

Definition 2.3. Let P ⊆ Rs be open and f : P → Rm be differentiable. Then we call

q ∈ Rm a regular value of f if for all p in the level set f−1(q) := {p ∈ P : f(p) = q}, we

have that Dfp : Rs → Rm is surjective, i.e., rank(Dfp : Rs → Rm) = m.

Remark 2.4. If q 6∈ im(f), then it is (vacuously) a regular value.

Example 2.5. Let f : R3 → R via (x, y, z) 7→ x2+y2+z2. Now the matrix representation

of Df(x,y,z) : R3 → R is [2x 2y 2z] which is zero only if (x, y, z) = 0. Therefore any q ∈ R
other than f(0) = 0 is a regular value.

Theorem 2.6. If P ⊆ Rn+m is open, f : P → Rm is smooth and q ∈ Rm is a regular

value of f , then f−1(q) is an n-dimensional submanifold of Rn+m.

Proof. For p ∈ f−1(q), Dfp : Rn+m → Rm) is surjective, and so its kernel has dimension

n by rank-nullity. Precomposing f with an invertible linear map Rn+m → Rn+m, we may

assume ker(Dfp) = Rn × {0} ⊆ Rn+m. Write p = (x0, y0) ∈ Rn+m ∼= Rn × Rm.

Then D2fp is an isomorphism, so by the implicit function theorem, there are neigh-

bourhoods U1 of x0 in Rn and U2 of y0 in Rm and a smooth function h : U1 → U2 such
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that U := (U1 × U2) ∩ f−1(q) is the graph {(x, h(x)) |x ∈ U1} (note that U is open in

f−1(q)).

Now define ϕ : U1 → U by x 7→ (x, h(x)) and F : U1 ×U2 → U1 by (x, y) 7→ x. Then ϕ

and F are both smooth maps, and the restriction of F to U is clearly inverse to ϕ. Thus

ϕ−1 exists and is smooth, hence ϕ is a diffeomorphism. �

Example 2.7. Since 1 ∈ R is a regular value of (x, y, z) 7→ x2 + y2 + z2, the unit

sphere S2 ⊂ R3 is two-dimensional submanifold. The local parametrisations provided by

Theorem 2.6 are local graphs, such as ϕ : U ′ → U where

U ′ := {(x, y) ∈ R2 |x2 + y2 < 1}, U := {(x, y, z) ∈ S2 | z > 0},

and ϕ(x, y) := (x, y,
√

1− x2 − y2).

2.2. Tangent spaces and derivatives of maps between submanifolds.

Definition 2.8. Let M ⊆ Rs be an n-dimensional submanifold, p ∈M and v ∈ Rs. Then

v is called a tangent vector to M at p if there is a smooth curve γ : (−ε, ε) → M (for

ε > 0) such that γ(0) = p and γ′(0) := Dγ0(1) = v. The set of all tangent vectors to M

at p is called the tangent space TpM to M at p.

Lemma 2.9. Let ϕ : U ′ → U (for U ′ open in Rn) be a local parametrisation of M ⊆ Rs

with p = ϕ(x) ∈ U . Then Dϕx : Rn → Rs is an injective linear map with image TpM . In

particular TpM is an n-dimensional vector subspace of Rs.

Proof. Because ϕ : U ′ → U is a diffeomorphism there is an open set Ũ ⊆ Rs that contains

U and a smooth function F : Ũ → Rn such that F |U = ϕ−1. Now F ◦ ϕ = IdU ′ , and by

the chain rule

D(F ◦ ϕ)x = DFp ◦Dϕx = IdRn

since p = ϕ(x). Thus Dϕx is injective (as it has a left-inverse).

For any w ∈ Rn, let β : (−ε, ε)→ U ′ be the curve β(t) = x+ tw and set γ(t) = ϕ(β(t)).

Then by the chain rule γ′(0) = Dϕx(β
′(0)) = Dϕx(w), so Dϕx(w) ∈ TpM . Conversely, if

γ : (−ε, ε)→M is any smooth curve with γ(0) = p, then by decreasing ε we may assume

γ has image in U , so that β := F ◦ γ is a smooth curve in U ′ with ϕ ◦ β = γ. Hence by

the chain rule γ′(0) = Dϕx(β
′(0)) is in the image of Dϕx.

We conclude that Dϕx : Rn → TpM is a linear isomorphism. �

Examples 2.10. (1) If U ⊆ Rn is open and p ∈ U , then parametrising by IdU , we

immediately obtain TpU = Rn.

(2) Let ϕ : {(x, y) ∈ R2 |x2 + y2 < 1} → S2 by (x, y) 7→ (x, y,
√

1− x2 − y2). Now

Dϕ(x,y) : R2 → R3 is represented by the matrix

p
 1 0

0 1
−x√

1−x2−y2
−y√

1−x2−y2

 S2

The columns of Dϕ(x,y) are linearly independent and orthogonal to ϕ(x, y), so

the image of Dϕ(x,y) is precisely ϕ(x, y)⊥ ⊆ R3. Using similar charts on other

hemispheres, TpS
2 = p⊥ for all p ∈ S2.
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Definition 2.11. Let M ⊆ Rs and N ⊆ R` be submanifolds. Let f : M → N be a

smooth function, p ∈M . The derivative of f at p is the map

Dfp : TpM → Tf(p)N

sending v = γ′(0) ∈ TpM to Dfp(v) := (f ◦ γ)′(0) ∈ Tf(p)N .

Lemma 2.12. Let F : Ũ → R` be a smooth function on an open neighbourhood Ũ of p in

Rs such that F |Ũ∩M = f . Then Dfp(v) = DFp(v), hence is well-defined and linear in v.

Proof. If v = γ′(0) ∈ TpM , then Dfp(v) = (F ◦ γ)′(0) = DFp(v) by the chain rule. �

Lemma 2.13. Let ϕ : U ′1 → U1 and ψ : U ′2 → U2 be parametrisations of M and N

respectively with p = ϕ(x) ∈ U1 and q = f(p) = ψ(y) ∈ U2. Suppose that f(U1) ⊆ U2, so

that ψ−1 ◦ f ◦ ϕ : U ′1 → U ′2 is a well-defined smooth function. Then

Dfp = Dψy ◦D(ψ−1 ◦ f ◦ ϕ)x ◦ (Dϕx)
−1.

M ⊆ Rs
N ⊆ R`

U ′1

x

U ′2
y

U1

p
q

f(U1) U2
f

ϕ ψ

ψ−1 ◦ f ◦ ϕ

Proof. Let F : Ũ → R` be a local extension of f near p as in Lemma 2.12. Then on

ϕ−1(Ũ ∩M), f ◦ ϕ = F ◦ ϕ = ψ ◦ (ψ−1 ◦ f ◦ ϕ), so by the chain rule, DFp ◦ Dϕx =

Dψy ◦D(ψ−1 ◦ f ◦ ϕ)x, which rearranges to the stated formula by Lemma 2.12. �

Remark 2.14. If M ⊆ Rs and N ⊆ R` are open then by Lemma 2.12 the definition of

Dfp : TpM → Tf(p)N here coincides with its usual definition as a linear map Rs → R`.

Definition 2.15. A smooth function f : M → N between submanifolds is called

(1) a local diffeomorphism if ∀ p ∈M , Dfp : TpM → Tf(p)N is an isomorphism;

(2) an immersion if ∀ p ∈M , Dfp is injective; and

(3) a submersion if ∀ p ∈M , Dfp is surjective.

3. Differential forms

3.1. Motivation. Suppose U ⊆ Rn is open and α : U → Rn∗ = M1(Rn) is smooth.

When does there exist a function f : U → R such that α = Df?

Partial answer. If α = Df , then for all p ∈ U , (Dαp)
∨ = D2fp ∈M2(Rn) is symmetric.

Hence if we define, for any smooth α : U → Rn∗, any p ∈ U and any v1, v2 ∈ Rn,

dαp(v1, v2) := (Dαp)
∨(v1, v2)− (Dαp)

∨(v2, v1), then α = Df implies ∀ p ∈ U , dαp = 0 .

Because this is a natural question, we can expect it to behave well with respect to

smooth changes of coordinates. Indeed if ϕ : U ′ → U is a (local) diffeomorphism, and we

define ϕ∗f := f ◦ ϕ : U ′ → R, then by the chain rule D(ϕ∗f)p = Dfϕ(p) ◦Dϕp. Hence if

we define (ϕ∗α)p(v) := αϕ(p)(Dϕp(v)) then α = Df if and only if ϕ∗α = D(ϕ∗f).
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A further computation with the chain rule shows that d(ϕ∗α)p = (ϕ∗dα)p, where

(ϕ∗dα)p(v1, v2) := dαϕ(p)(Dϕp(v1), Dϕp(v2)).

Hence if dαϕ(p) = 0 then d(ϕ∗α)p = 0.

Notice that dαp(v, v) = 0, so that dαp ∈ M2(Rn) is alternating. This calculus extends

to differential forms, which are functions with values in the vector space Altk(Rn) of alter-

nating k-linear forms on Rn. In this chapter we define vector spaces Ωk(U) of differential

k-forms on U , linear operators d: Ωk(U)→ Ωk+1(U), called exterior derivatives, and, for

any smooth ϕ : U ′ → U , linear operators ϕ∗ : Ωk(U)→ Ωk(U ′) called pullbacks such that:

• Ω0(U) is the space of smooth functions f : U → R and df = Df ∈ Ω1(U);

• For any α ∈ Ωk(U), d(dα) = 0;

• d(ϕ∗α) = ϕ∗dα.

In addition, there is an associative multiplication on differential forms, and all of this

structure can be extended from open subsets U of Rn to arbitrary submanifolds M .

3.2. Alternating forms. Recall that if V is a real vector space thenMk(V ) =Mk(V ;R)

is the vector space of maps α : V k → R, which are k-(multi)linear, i.e., for all i (etc.),

α(v1, . . . , vi−1, λvi + µwi, vi+1, . . . , vk) = λα(v1, . . . , vk) + µα(v1, . . . , wi, . . . , vk).

Definition 3.1. A multilinear form α ∈Mk(V ) is alternating if α(v1, . . . , vk) = 0 when-

ever vi = vj for some i 6= j. Denote the subspace of alternating forms by Altk(V ) ⊆
Mk(V ). The degree of α ∈ Altk(V ) is k.

Remark 3.2. If k = 1, then Alt1(V ) = M1(V ) = V ∗ (the alternating condition is

vacuous in degree 1). Also, by definition, Alt0(V ) =M0(V ) = R.

Example 3.3. For v1, . . . , vn ∈ Rn, let Det(v1, . . . , vn) = det(A) ∈ R, where A is the

matrix whose columns are vi. Then Det ∈ Altn(Rn).

Recall that for each k ∈ N, there is a symmetric group Sk of permutations σ of

{1, . . . , k}, that any σ ∈ Sk is a composite of transpositions, and that the sign homo-

morphism sgn : Sk → {±1} is characterised by sgn(τ) = −1 for all transpositions τ ; let

Ak = ker(sgn).

Definition 3.4. For α ∈Mk(V ) and σ ∈ Sk, define σ · α ∈Mk(V ) by

(σ · α)(v1, . . . , vk) = α(vσ(1), . . . , vσ(k))

and

alt(α) =
∑
σ∈Sk

sgn(σ)σ · α ∈Mk(V ).

Clearly Id ·α = α, and if σ, τ ∈ Sk, consider wi := vσ(i); then wτ(j) = vσ(τ(j)), so

(σ · (τ · α))(v1, . . . , vk) = (τ · α)(w1, . . . , wk) = α(wτ(1), . . . , wτ(k))

= α(vσ◦τ(1), . . . , vσ◦τ(k)) = ((σ ◦ τ) · α)(v1, . . . , vk).

Hence σ · (τ · α) = (σ ◦ τ) · α, i.e., Sk ×Mk(V )→Mk(V ); (σ, α) 7→ σ · α defines a (left)

action of Sk on Mk(V ).
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Lemma 3.5. Let α ∈Mk(V ).

(1) alt(α) ∈ Altk(V ).

(2) If α ∈ Altk(V ) then for all σ ∈ Sk, σ · α = sgn(σ)α.

(3) If σ · α = sgn(σ)α for all σ ∈ Sk, then alt(α) = k!α.

Proof. (1) Suppose vi = vj for i 6= j, and consider the transposition τ = (i j). Then

Sk = Ak ∪ τAk (a disjoint union of left cosets) and so

alt(α)(v1, . . . , vk) =
∑
σ∈Ak

(σ · α− (τ ◦ σ) · α)(v1, . . . , vk) = 0,

since (τ ◦σ) ·α = τ · (σ ·α) and (τ · (σ ·α))(v1, . . . , vk) = (σ ·α)(v1, . . . , vk) because

vi = vj.

(2) Since Sk is generated by transpositions, sgn is a homomorphism, and (σ, α) 7→ σ ·α
is an action, it suffices to check that σ · α = −α for σ = (i j) with i < j:

0 = α(v1, . . . , vi + vj, . . . , vi + vj, . . . , vk)

= α(v1, . . . , vi, . . . , vj, . . . , vk) + α(v1, . . . , vj, . . . , vi, . . . , vk)

= α(v1, v2, . . . , vk) + (σ · α)(v1, v2, . . . , vk)

as required.

(3) Immediate because |Sk| = k!, and for all σ ∈ Sk, sgn(σ)2 = 1. �

Corollary 3.6. For α ∈Mk(V ), we have

α ∈ Altk(V ) ⇔ ∀σ ∈ Sk, σ · α = sgn(σ)α ⇔ α =
1

k!
alt(α).

Lemma 3.7. For any α ∈Mk(V ) and any σ ∈ Sk, alt(σ · α) = sgn(σ) alt(α).

Proof. Since sgn is a homomorphism and (σ, α) 7→ σ · α is an action, we have

alt(σ · α) =
∑
τ∈Sk

sgn(τ) τ · (σ · α) = sgn(σ)
∑
τ∈Sk

sgn(τ ◦ σ) (τ ◦ σ) · α

= sgn(σ)
∑
τ ′∈Sk

sgn(τ ′) τ ′ · α = sgn(σ) alt(α),

where the penultimate equality uses that τ 7→ τ ◦ σ = τ ′ is a bijection Sk → Sk. �

Definition 3.8. For a list α1, α2, . . . , αk ∈ V ∗, we define α1α2 · · ·αk ∈ Mk(V ) and

α1 ∧ α2 ∧ · · · ∧ αk ∈ Altk(V ) by

(α1α2 · · ·αk)(v1, . . . , vk) := α1(v1)α2(v2) · · ·αk(vk),
α1 ∧ α2 ∧ · · · ∧ αk := alt(α1α2 · · ·αk).

It follows from Lemma 3.7 that for any σ ∈ Sk, ασ(1) ∧ · · · ∧ ασ(k) = sgn(σ)α1 ∧ · · · ∧ αk.
For a multi-index I = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik, let

αI := αi1 ∧ · · · ∧ αik ∈ Altk(V ).

Theorem 3.9. Let e1, . . . , en be a basis for V with dual basis ε1, . . . , εn ∈ V ∗. Then for

k > n, Altk(V ) = {0}, while for 0 ≤ k ≤ n, any α ∈ Altk(V ) may be written in the form

α =
∑
|I|=k

λIεI with λI ∈ R for I ⊆ {1, . . . , n}, |I| = k,
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and then for all J = {j1, . . . , jk} with j1 < · · · < jk, we have λJ = α(ej1 , . . . , ejk). In

particular, εI : I ⊆ {1, . . . , n}, |I| = k is a basis for Altk(V ) and dim Altk(V ) =
(
n
k

)
.

Proof. Suppose first that α =
∑
|I|=k λIεI . Since e1, . . . , en and ε1, . . . , εn are dual bases

i.e., εi(ej) = δij, it follows that if I = {i1, . . . , ik} with i1 < · · · < ik and J = {j1, . . . , jk}
with j1 < · · · < jk, then εI(ej1 , . . . , ejk) = δIJ . Thus α(ej1 , . . . , ejk) = λJ .

Now suppose α ∈ Altk(V ) with k ∈ N and set β = α −
∑
|I|=k α(ei1 , . . . , eik)εI where

the sum is empty (hence zero) for k > n. By construction β(ej1 , . . . , ejk) = 0 whenever

j1 < · · · < jk. Hence also β(ej1 , . . . , ejk) = 0 for any j1, . . . , jk ∈ {1, . . . , n} as β is

alternating. Since β is multilinear, β(v1, . . . , vk) = 0 for all v1, . . . , vk ∈ V . �

3.3. Differential forms and pullback.

Definition 3.10. For U ⊆ Rn open, a (smooth) differential k-form on U is a smooth

function α : U → Altk(Rn), written p 7→ αp. Thus if p ∈ U and v1, . . . , vk ∈ Rn,

then αp(v1, . . . , vk) ∈ R. Let Ωk(U) the vector space of differential k-forms on U under

pointwise operations, i.e., (α + β)p = αp + βp and (λα)p = λαp.

Notation 3.11. Since Alt0(Rn) = R, Ω0(U) is the vector space of smooth functions

f : U → R. For any such f , we let df ∈ Ω1(U) denote the differential 1-form defined by

the derivative of f , i.e., dfp = Dfp ∈ Alt1(Rn) = Rn∗. For f ∈ Ω0(U) and α ∈ Ωk(U) we

define fα ∈ Ωk(U) by (fα)p = fpαp = f(p)αp for all p ∈ U .

Let e1, . . . , en be the standard basis of Rn with dual basis ε1, . . . , εn, and let x1, . . . , xn :

U → R denote the coordinate functions on U , so that p = (x1(p), . . . , xn(p)) for all p ∈ U .

Then for i ∈ {1, . . . n}, xi = εi|U and hence (dxi)p = εi ∈ Rn∗ for p ∈ U , i.e., dxi ∈ Ω1(U)

is a constant differential 1-form on U with (dxi)p(ej) = δij.

We may extend the wedge and multi-index notation from Definition 3.8 to differential

forms: for α1, . . . , αk ∈ Ω1(U), we define α1 ∧ · · · ∧ αk ∈ Ωk(U) pointwise: for p ∈ U ,

(α1 ∧ · · · ∧ αk)p = (α1)p ∧ · · · ∧ (αk)p ∈ Altk(Rn);

also for I = {i1, . . . , ik} with i1 < · · · < ik, we let dxI = dxi1 ∧ · · · ∧dxik ∈ Ωk(U), so that

(dxI)p = εI ∈ Altk(Rn). Since {εI : |I| = k} is a basis of Altk(Rn) by Theorem 3.9, any

α ∈ Ωk(U) can be written uniquely as

α =
∑
|I|=k

αI dxI (3.1)

for
(
n
k

)
smooth functions αI : U → R. In particular, for f ∈ Ω0(U), we have

df =
n∑
i=1

∂f

∂xi
dxi ∈ Ω1(U)

since dfp(ej) = Dfp(ej) = ∂f/∂xj. If n = 1, then df = f ′ dx, where f ′ = df/dx (!).

Definition 3.12. For a linear map φ : V → W and α ∈ Mk(W ), define φ∗α ∈ Mk(V )

by

(φ∗α)(v1, . . . , vk) = α(φ(v1), . . . , φ(vk)) ∀v1, . . . , vk ∈ V.
Note that if α ∈ Altk(W ), then φ∗α ∈ Altk(V ). Hence α 7→ φ∗α defines a linear map

φ∗ : Altk(W )→ Altk(V ).
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Remark 3.13. If φ : V → W and ψ : W → X are linear maps, then (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.
Hence if φ : V → W is an isomorphism, then so is φ∗ : Altk(W ) → Altk(V ). For p = 0,

φ∗α = α, and for p = 1, φ∗ : W ∗ → V ∗ is the transpose of φ, and (exercise) for V = W

with p = dimV , φ∗α = det(φ)α.

Definition 3.14. Let U ⊆ Rn and Ũ ⊆ Rm be open and ϕ : U → Ũ a smooth function

and α ∈ Ωk(Ũ). Then the pullback ϕ∗α ∈ Ωk(U) is defined by

(ϕ∗α)p = (Dϕp)
∗αϕ(p) ∈ Altk(Rn)

—here αϕ(p) ∈ Altk(Rm), and Dϕp : Rn → Rm is a linear map, so (Dϕp)
∗ : Altk(Rm) →

Altk(Rn) is defined in Definition 3.12. In other words, for all p ∈ U and v1, . . . , vk ∈ Rn,

(ϕ∗α)p(v1, . . . , vk) = αϕ(p)(Dϕp(v1), . . . , Dϕp(vk)) ∈ R.

Since operations on differential forms are defined pointwise, ϕ∗ : Ωk(Ũ) → Ωk(U) is a

linear map, and for any f ∈ Ω0(Ũ) and α ∈ Ωk(Ũ), ϕ∗(fα) = (ϕ∗f)(ϕ∗α).

Lemma 3.15. Let ϕ : U → Ũ and ψ : Ũ → U ′ be smooth maps between open sets.

(1) For any f ∈ Ω0(Ũ), ϕ∗f = f ◦ ϕ and ϕ∗df = d(ϕ∗f).

(2) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ : Ωk(U ′)→ Ωk(U).

Proof. (1) For all p ∈ U , (ϕ∗f)p = fϕ(p) = (f ◦ ϕ)p; hence the chain rule gives

d(ϕ∗f)p = Dfϕ(p) ◦Dϕp = (Dϕp)
∗(dfϕ(p)) = (ϕ∗df)p.

(2) For α ∈ Ωk(W ) and p ∈ U , ((ψ◦ϕ)∗α)p = (D(ψ◦ϕ)p)
∗αψ(ϕ(p)), and (D(ψ◦ϕ)p)

∗ =

(Dψϕ(p) ◦Dϕp)∗ = (Dϕp)
∗ ◦ (Dψϕ(p))

∗, so this is (ϕ∗(ψ∗α))p. �

Example 3.16. Let Ũ = {v ∈ R2 | ‖v‖ < 1}, U = (−1, 1)× R ⊆ R2,

α =
dx2

1− x21 − x22
∈ Ω1(Ũ),

and ϕ : U → Ũ ; p 7→ (r(p) cos θ(p), r(p) sin θ(p)). Thus, as smooth functions from U to R,

ϕ∗x1 = r cos θ and ϕ∗x2 = r sin θ are the components of ϕ. Using Lemma 3.15, we have

ϕ∗α =
ϕ∗(dx2)

ϕ∗(1− x21 − x22)
=

d(r sin θ)

1− (r cos θ)2 − (r sin θ)2

=
sin θ dr + rd(sin θ)

1− r2
=

1

1− r2
(sin θ dr + r cos θ dθ) .

Note that ϕ is not even a local diffeomorphism, as Dϕ0 is not invertible.

3.4. The exterior derivative on open subsets. For any α ∈ Ωk(U), the derivative of

α (which is smooth, by definition of Ωk(U)) at p ∈ U in the usual sense is (Dα)p : Rn →
Altk(Rn). Using Notation 1.7, we then have (Dα)∨p ∈Mk+1(Rn) defined by

(Dα)∨p (v1, v2, . . . , vk+1) := (Dα)p(v1)(v2, . . . , vk+1).

However, there is no reason to expect that (Dα)∨p is alternating (although it is alternating

in the last k arguments).
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Definition 3.17. For U open in Rn, the exterior derivative dα ∈ Ωk+1(U) of α ∈ Ωk(U)

is given, at each p ∈ U , by

(dα)p =
1

k!
alt((Dα)∨p ) ∈ Altk+1(Rn).

This defines a linear map d : Ωk(U)→ Ωk+1(U).

Remark 3.18. Note that if α is constant (i.e., αp = αq for all p, q ∈ U) then Dα = 0, so

α is closed. However the converse only holds (locally) when k = 0.

In order to compute dα in coordinates, we need a bit more algebra.

Definition 3.19. For α ∈Mk(V ) and β ∈M`(V ), define αβ ∈Mk+`(V ) by

(αβ)(v1, . . . , vk+`) := α(v1, . . . , vk)β(vk+1, . . . , vk+`).

Lemma 3.20. Let α ∈Mk(V ) and β ∈M`(V ). Then

alt(alt(α)β) = k! alt(αβ) and alt(α alt(β)) = `! alt(αβ)

Proof. We consider σ ∈ Sk as an element of Sk+` by letting σ fix each element of {k +

1, . . . , k + `}, so that (σ · α)β = σ · (αβ). Hence

alt(alt(α)β) =
∑

τ∈Sk+`

(sgn τ) τ ·
(∑
σ∈Sp

(sgnσ)σ · (αβ)

)
=
∑

τ∈Sk+`

∑
σ∈Sk

(sgn(τ ◦ σ)) (τ ◦ σ) · (αβ).

Now for each ρ ∈ Sk+`, there are precisely k! ways to write ρ = τ ◦ σ for τ ∈ Sk+` and

σ ∈ Sk (we can take σ to be any of the k! elements of Sk and set τ = ρ ◦ σ−1 ∈ Sk+`). In

other words, there are k! terms in the double sum with ρ = τ ◦ σ, hence

alt(alt(α)β) = k!
∑

ρ∈Sk+`

(sgn ρ) ρ · (αβ) = k! alt(αβ)

as required. The second equality follows by a similar argument. �

Proposition 3.21. For f : U → R and i1 < · · · < ik, let α = f dxi1 ∧ · · · ∧dxik ∈ Ωk(U).

Then

dα = df ∧ dxi1 ∧ · · · ∧ dxik =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

Proof. Since dxI = dxi1∧· · ·∧dxik is constant, D(fdxI)p(v) = Dfp(v)(dxI)p for any p ∈ U ,

and so D(fdxI)
∨
p ∈Mk+1(Rn) is equal to the product (Dfp)(dxI)p of Dfp ∈M1(Rn) with

(dxI)p = alt(εi1 · · · εik) ∈Mk(Rn). Hence

d(fdxI)p =
1

k!
alt(D(fdxI)p) =

1

k!
alt((Dfp) alt(εi1 · · · εik)) = alt((Dfp)εi1 · · · εik)

by Lemma 3.20. Since Dfp =
∑

j(∂f/∂xj)(p)εj, this is
∑

j(∂f/∂xj)(p)εj ∧ εi1 ∧ · · · ∧ εik ,
which is the value at p of the right hand side as required. �
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Example 3.22. Let U = {p ∈ R2 : x1(p) 6= 0} and α = x2dx1 + dx2
x1
∈ Ω1(U). Then

dα = dx2 ∧ dx1 + d( 1
x1

) ∧ dx2 = −dx1 ∧ dx2 +
−dx1
x21
∧ dx2

= −(1 + 1
x21

)dx1 ∧ dx2

For another example d(x2x3dx1) = x3dx2 ∧ dx1 + x2dx3 ∧ dx1. Notice that applying d

again gives dx3 ∧ dx2 ∧ dx1 + dx2 ∧ dx3 ∧ dx1 = 0. This is a general fact.

Theorem 3.23. If α ∈ Ωk(U), then d(dα) = 0 ∈ Ωk+2(U).

Proof. By linearity of the exterior derivative, it suffices to check that the claim holds when

α = f dxI for some f ∈ Ω0(U), where Proposition 3.21 computes dα. Using linearity and

Proposition 3.21 once again, we obtain

d(dα) =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik

However dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik = −dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxik by Lemma 3.7,

whereas ∂2f/∂xi∂xj is symmetric in i, j, so d(dα) = −d(dα), hence is zero. �

Definition 3.24. We say α is closed if dα = 0, and exact if α = dβ for some β ∈ Ωk−1(U),

which for k = 0 is taken to mean α = 0. Thus any exact α is closed.

The converse is false in general; however it does hold on Rn (if k > 0).

Theorem 3.25 (The Poincaré Lemma). Suppose k > 0 and α ∈ Ωk(Rn) is closed, i.e.,

dα = 0. Then α is exact.

We will prove this later.

Example 3.26. Let α = (x23 − x21)dx1 ∧ dx2 + x2dx2 ∧ dx3 + 2x2x3dx1 ∧ dx3+ ∈ Ω2(R3),

which is closed, as

dα = 2x3dx3 ∧ dx1 ∧ dx2 + 2x3dx2 ∧ dx1 ∧ dx3 = 0.

To find a β such that α = dβ, we first find some γ of the form γ = fdx1 + gdx2 such

that α − dγ has no terms involving dx3. Thus we choose f such that ∂f
∂x3

= −2x2x3, say

f = −x2x23, and g such that ∂g
∂x3

= −x2, say g = −x2x3. Then

dγ = −d(x2x
2
3) ∧ dx1 − d(x2x3) ∧ dx2

= x23dx1 ∧ dx2 + 2x2x3dx1 ∧ dx3 + x2dx2 ∧ dx3

So α′ = α−dγ = −x21dx1∧dx2. Note that α′ is independent of x3 as well as dx3, so we can

iterate the process and eliminate the dx2 term to get α′ = d(x21x2dx1) (or alternatively,

α′ = −1
3
d(x31dx2)). Hence α = dβ with β = x21x2dx1 + γ = x2(x

2
1 − x23)dx1 − x2x3dx2.

3.5. The wedge product and Leibniz rule.

Definition 3.27. For α ∈ Altk(V ) and β ∈ Alt`(V ), define

α ∧ β =
1

k!`!
alt(αβ) ∈ Altk+`(V ).
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Lemma 3.28. For α ∈ Altk(V ), β ∈ Alt`(V ) and γ ∈ Altm(V ), we have (α ∧ β) ∧ γ =

α ∧ (β ∧ γ)

Proof. By Lemma 3.20,

(α ∧ β) ∧ γ =
1

(k + `)!m! k!`!
alt(alt(αβ)γ) =

1

k!`!m!
alt(αβγ)

=
1

k!(`+m)! `!m!
alt(α alt(βγ)) = α ∧ (β ∧ γ) �

Remark 3.29. Since ∧ is associative, we may omit brackets, and then for αj ∈ Alt`j(V )

(j ∈ {1, . . . k}), we have α1∧· · ·∧αk = alt(α1 · · ·αk)/(`1! · · · `k!), which is consistent with

Definition 3.8 when `j = 1 for all j.

Lemma 3.30. For α ∈ Altk(V ) and β ∈ Alt`(V ), we have α ∧ β = (−1)k`β ∧ α.

Proof. Since ∧ is bilinear, it suffices to take α = α1 ∧ · · · ∧ αk and β = β1 ∧ · · · ∧ βq with

αi, βj ∈ Alt1(V ). Since αi ∧ βj = −βj ∧ αi and ∧ is associative,

α1 ∧ · · · ∧ αk ∧ β1 ∧ · · · ∧ β` = (−1)kβ1 ∧ α1 ∧ · · · ∧ αk ∧ β2 ∧ · · · ∧ β`

and iterating this process gives (−1)k`β1 ∧ · · · ∧ β` ∧ α1 ∧ · · · ∧ αk as required. �

Definition 3.31. Let U ⊆ Rn be open, α ∈ Ωk(U) and β ∈ Ω`(U). Then the wedge

product α ∧ β ∈ Ωk+`(U) is defined by (α ∧ β)p = αp ∧ βp for all p ∈ U .

The wedge product of differential forms is bilinear and associative. In particular, if

α = fdxI and β = gdxJ then α ∧ β = fg dxI ∧ dxJ , hence also f ∧ β = fβ and

α ∧ f = fα. Also α ∧ β = (−1)k`β ∧ α and there is the following Leibniz/product rule.

Theorem 3.32. For U open in Rn, α ∈ Ωk(U) and β ∈ Ω`(U), we have

d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ) ∈ Ωk+`+1(U).

Proof. We first check the equation holds for k = ` = 0. If f, g ∈ Ω0(U), then

d(fg) = g(df) + f(dg) = df ∧ g + f ∧ dg

by the usual Leibniz rule for the derivative of a product of real-valued functions.

In general, since ∧ is bilinear and d is linear, it suffices to consider α = f dxI and

β = g dxJ for multi-indices I, J and f, g ∈ Ω0(U). Then by Proposition 3.21,

d(α ∧ β) = d(fg dxI ∧ dxJ) = d(fg) ∧ dxI ∧ dxJ = ((df)g + f(dg)) ∧ dxI ∧ dxJ

= g df ∧ dxI ∧ dxJ + f dg ∧ dxI ∧ dxJ

= g df ∧ dxI ∧ dxJ + (−1)kf dxI ∧ dg ∧ dxJ

= d(fdxI) ∧ (g dxJ) + (−1)k(f dxI) ∧ d(g dxJ) = dα ∧ β + (−1)kα ∧ dβ. �

Remark 3.33. The exterior derivative d is characterised as a linear operator by:

(1) If f ∈ Ω0(U) (i.e., f : U → R is smooth) then df = Df as functions U → (Rn)∗;

(2) If α ∈ Ωk(U) and β ∈ Ω`(U), then d(α∧β) = (dα)∧β+(−1)kα∧(dβ) ∈ Ωk+`+1(U);

(3) If α ∈ Ωk(U), then d(dα) = 0 ∈ Ωk+2(U).
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Indeed it follows straightforwardly from these properties that if α = f dxI then

dα =
n∑
j=1

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik .

3.6. Pullbacks and the exterior derivative on submanifolds.

Proposition 3.34. For U ⊆ Rn and Ũ ⊆ Rm open, for α ∈ Ωk(Ũ) and β ∈ Ω`(Ũ), and

for ϕ : U → Ũ smooth, ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β.

Proof. It is a straightforward exercise to check that if ψ : Rn → Rm is a linear map and

q ∈ Ũ then

ψ∗(αqβq) = ψ∗(αq)ψ
∗(βq) ∈Mk+`(Rn),

and for any γ ∈ Mm(Rs) ψ∗ alt(γ) = alt(ψ∗γ) ∈ Altm(Rn), so that ψ∗(αq ∧ βq) =

ψ∗(αq) ∧ ψ∗(βq). Hence for any p ∈ U (taking q = ϕ(p) and ψ = Dϕp)

ϕ∗(α ∧ β)p = Dϕ∗p(αϕ(p) ∧ βϕ(p)) = Dϕ∗p(αϕ(p)) ∧Dϕ∗p(αϕ(p)) = (ϕ∗α ∧ ϕ∗β)p. �

Theorem 3.35. Let U ⊆ Rn, Ũ ⊆ Rm be open and ϕ : U → Ũ smooth. Then for any

α ∈ Ωk(Ũ),

d(ϕ∗α) = ϕ∗(dα) ∈ Ωk+1(U).

Proof. By linearity of pullback and the exterior derivative, it suffices to check that the

claim holds when α = f dxi1 ∧ · · · ∧ dxik . Then by Proposition 3.34 and Lemma 3.15,

ϕ∗α = (ϕ∗f)(ϕ∗dxi1 ∧ · · · ∧ ϕ∗dxik) = (ϕ∗f)d(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik),

so Theorem 3.23 (d2 = 0), Theorem 3.32 (Leibniz), Proposition 3.34 and Lemma 3.15

give

d(ϕ∗α) = d(ϕ∗f) ∧ d(ϕ∗xi1) ∧ · · · ∧ d(ϕ∗xik) = ϕ∗(df) ∧ (ϕ∗dxi1) ∧ · · · ∧ (ϕ∗dxik)

= ϕ∗(df ∧ dxi1 ∧ · · · ∧ dxik) = ϕ∗(d(f dxi1 ∧ · · · ∧ dxik)) = ϕ∗(dα). �

Let M ⊆ U ⊆ Rs with U open and M an m-dimensional submanifold. Then the

inclusion map ι = IdU |M : M → U is smooth, with derivative Dιp : TpM → Rs for any

p ∈M . Motivated by pullback, for any β ∈ Ωk(U) we would like to define a “differential

form” α = ι∗β on M by

αp = (ι∗β)p = (Dιp)
∗(βι(p)) = βp|TpMk ∈ Altk(TpM)

for any p ∈M . In order to provide α with a fixed codomain, we let

Akm(Rs) :=
⊔
W

Altk(W ),

where the disjoint union is taken over all m-dimensional subspaces W ⊆ Rs. This allows

us to define differential forms on submanifolds as (local) pullbacks.

Definition 3.36. Let M ⊆ Rs be a submanifold of dimension m. A (smooth) differential

k-form on M is a function α : M → Akm(Rs);x 7→ αp such that:

• αp ∈ Altk(TpM) for all p ∈M ;

• for all p ∈ M there is an open neighbourhood U of p in Rs and β ∈ Ωk(U) such

that for all q ∈ U ∩M , αq = βq|TqMk .
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We let Ωk(M) be the vector space of differential k-forms on M under pointwise operations.

If ϕ : N → M is smooth, where N ⊆ R` is an n-dimensional submanifold then the

pullback ϕ∗α of α by ϕ is defined by (ϕ∗α)q = (Dϕq)
∗αϕ(q) ∈ Altk(TqN) for all q ∈ N .

Remarks 3.37. (1) Recall that if M is an open subset of Rm, then TpM = Rm for all

p ∈M . Thus the two definitions of Ωk(M) agree, as do the definitions of pullback.

(2) As in Lemma 3.15, the definition of pullback ensures that if ϕ : N → M and

ψ : P → N , then (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ (with essentially the same proof).

Example 3.38. Let S1 = {v ∈ R2 | ‖v‖2 = 1} and let i : S1 → R2 be the inclusion. Then

ω := i∗(−x2dx1 + x1dx2) ∈ Ω1(S1). To see what ω looks like, use the parametrisation

ϕ : (0, 2π)→ S1\{(1, 0)}, θ 7→ (cos θ, sin θ).

Then ϕ∗ω = (i ◦ϕ)∗(−x2dx1 + x1dx2) = −(sin θ) d(cos θ) + (cos θ) d(sin θ) = (sin θ)2 dθ+

(cos θ)2 dθ = dθ.

Lemma 3.39. Let M ⊆ U ⊆ Rs and N ⊆ Ũ ⊆ R`, where U and Ũ are open, while M

and N are submanifolds of dimension m and n respectively. Let i : M → U and j : N → Ũ

denote the inclusions and let ϕ : N →M be the restriction of a smooth map ϕ̃ : Ũ → U .

Suppose that β ∈ Ωk(U) and α = i∗β ∈ Ωk(M). Then ϕ∗α = j∗γ ∈ Ωk(N) with

γ = ϕ̃∗β ∈ Ωk(Ũ), and ϕ∗i∗dβ = j∗dγ ∈ Ωk+1(N).

Proof. Since ϕ̃ ◦ j = i ◦ ϕ, we have j∗ϕ̃∗β = (ϕ̃ ◦ j)∗β = (i ◦ ϕ)∗β = ϕ∗i∗β = ϕ∗α.

Furthermore, by Theorem 3.35, ϕ∗i∗dβ = j∗ϕ̃∗dβ = j∗d(ϕ̃∗β) = j∗dγ. �

For any smooth map ϕ : N →M between submanifolds M and N and any α ∈ Ωk(M),

this lemma applies to N ∩ Ũ and M ∩U for sufficiently small open neighbourhoods of any

q ∈ N and ϕ(q) ∈ M such that α = i∗β on U ∩M (i : U ∩M → U) and ϕ has a smooth

extension ϕ̃ : Ũ → U . Hence ϕ∗α ∈ Ωk(N), i.e., is smooth.

Secondly, suppose that ϕ : Ũ → U ∩M is a parametrisation of M (for Ũ ⊆ Rn open)

and α ∈ Ωk(M) agrees with i∗β on U ∩M (i : U ∩M → U). Then the lemma applies

with ϕ̃ = ϕ ◦ i and j = idŨ to give ϕ∗i∗dβ = d(ϕ∗α) on Ũ and hence for any p ∈ U ∩M ,

(i∗dβ)p = ((ϕ−1)∗d(ϕ∗α))p ∈ Altk+1(TpM).

Thus (i∗dβ)p depends only on α, not on the choice of local extension β.

Definition 3.40. Let M be an n-dimensional submanifold of Rs. Define the exterior

derivative d : Ωk(M) → Ωk+1(M) by requiring that whenever β ∈ Ωk(U) is a local

extension of α ∈ Ωk(M) on U ∩M (for U ⊆ Rs open), then dα = i∗dβ on U ∩M , where

i : U ∩M → U is the inclusion.

Now for any smooth map ϕ : N → M between submanifolds M and N and any α ∈
Ωk(M), applying Lemma 3.39 on sufficiently small open neighbourhoods as above, we

obtain that ϕ∗dα = d(ϕ∗α) ∈ Ωk(N), generalizing Theorem 3.35.
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3.7. Proof of the Poincaré Lemma. We turn the method of Example 3.26 into an

algorithm. Note first that the two lists

εI : I ⊆ {1, . . . , n− 1}, |I| = k and εn ∧ εI : I ⊆ {1, . . . , n− 1}, |I| = k − 1.

combine to give a basis for Altk(Rn). Therefore, if for any k we let Bk
n ≤ Altk(Rn) be the

subspace spanned by the first list, then any ψ ∈ Altk(Rn) can be written uniquely as

ψ = ν + εn ∧ η

for ν ∈ Bk
n and η ∈ Bk−1

n . Hence for any α ∈ Ωk(Rn), there exists a unique function

L(α) : Rn → Bk−1
n such that for all p ∈ Rn, (α − dxn ∧ L(α))p ∈ Bk

n. We now observe

that if α doesn’t involve dxn, then dα will be the sum of dxn ∧ ∂α
∂xn

and some terms that

do not involve dxn.

Lemma 3.41. If α ∈ Ωk−1(Rn) satisfies L(α) = 0, then L(dα) =
∂α

∂xn
: Rn → Bk−1

n .

Proof. If L(α) = 0, then we can write α =
∑
|I|=k fIdxI for some real functions fI : Rn →

R, where the sum is over I ⊆ {1, . . . , n− 1}. Then since L is linear,

L(dα) =
∑
|I|=p

L
(
∂fI
∂x1

dx1 ∧ dxI + · · ·+ ∂fI
∂xn

dxn ∧ dxI

)
=
∑
|I|=k

∂fI
∂xn

dxI =
∂α

∂xn
. �

Proof of Theorem 3.25. We use induction on n. If n = 0 then the claim is trivial since

Ωk(R0) = {0} for k > 0, so suppose the claim holds for n = m−1 ≥ 0, and let α ∈ Ωk(Rm).

Define γ : Rm → Bk−1
m by

p 7→
∫ xm(p)

0

L(α)(x1(p),...,xm−1(p),t) dt.

Then ∂γ
∂xm

= L(α), so Lemma 3.41 gives L(dγ) = L(α). Hence α′ := α − dγ ∈ Ωk(Rm)

is closed with L(α′) = 0. Now Lemma 3.41 gives ∂α′

∂xm
= L(dα′) = 0, i.e., the function

α′ : Rm → Bk
m does not depend on xm. Now let π : Rm → Rm−1 denote the projection

map p 7→ (x1(p), . . . , xm−1(p)), and let x̄1, . . . x̄m−1 denote the coordinate functions on

Rm−1. Then π∗x̄j = xj and hence, by Theorem 3.35, π∗dx̄j = dxj for j ∈ {0, . . . ,m− 1}.
It follows from Proposition 3.34 that π∗dx̄I = dxI for I ⊆ {1, . . .m − 1}, and hence

π∗ : Ω`(Rm−1) → Ω`(Rm) is injective for all ` ∈ N. Also observe that for f ∈ Ω0(Rm−1)

π∗d(f ∧ dx̄I) = π∗(df ∧ dx̄I) = (π∗df) ∧ dxI = d((π∗f)dx̄I), so π∗ ◦ d = d ◦ π∗ by

Theorem 3.35.

Since α′ does not involve xm or dxm, it follows that there exists ᾱ ∈ Ωk(Rm−1) such that

α′ = π∗ᾱ. So 0 = dα′ = dπ∗ᾱ = π∗dᾱ and hence ᾱ is closed. The inductive hypothesis

thus gives β̄ ∈ Ωk−1(Rm−1) such that dβ̄ = ᾱ, and therefore α′ = π∗ᾱ = π∗dβ̄ = d(π∗β̄).

Hence α = d(π∗β̄ + γ) is exact. �

4. Integration and Stokes’ Theorem

4.1. Submanifolds with boundary. Let Hn be the closed half-space {p ∈ Rn |x1(p) ≤
0}, and let ∂Hn = {0} × Rn−1 ⊂ Hn. For U open in Hn, let ∂U = U ∩ ∂Hn.

If f : Hn → Rm is smooth, then Dfp is well-defined at all p ∈ Hn, including p ∈ ∂Hn,

since Df̃p is independent of the choice of smooth local extension f̃ : Ũ → Rm of f to an
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open neighbourhood Ũ of p in Rn: observe that for v ∈ Hn \ ∂Hn, f̃(p + tv) − f̃(p) =

f(p+ tv)− f(p) for t > 0, so Df̃p(v) is determined by f , and such v span Rn.

Definition 4.1. M ⊆ Rs is an n-dimensional submanifold-with-boundary (SMWB) if for

every p ∈ M there is a diffeomorphism ϕ : Ũ → U (called a parametrisation) from an

open subset Ũ ⊆ Hn to an open neighbourhood U ⊆M of p. The boundary of M is

∂M = {p ∈M | p ∈ ϕ(∂Ũ) for some parametrisation ϕ : Ũ → U},

while the interior is M̊ = M \ ∂M . For p ∈ ∂M , we define TpM to be the span of γ′(0)

over all smooth curves γ : (−ε, ε)→ Rs with γ(0) = p and γ(t) ∈M for t > 0.

Remarks 4.2. If U ⊆ Hn is open, then p ∈ U is in ∂U if and only if p has no open

neighbourhood U ′ in Rn such that U ′ ⊆ U . Hence for any diffeomorphism ψ : Ũ → U of

open subsets of Hn, ψ(∂Ũ) = ∂U . If M ⊆ Rs is a SMWB then:

(1) the condition that p ∈ ϕ(∂Ũ) ⊆M is independent of the choice of parametrisation

ϕ : Ũ → U with p ∈ U ;

(2) the interior of M is an n-dimensional submanifold of Rs;

(3) the boundary ∂M is an (n − 1)-dimensional submanifold of Rs—indeed, for any

parametrisation ϕ : Ũ → U of M , the restriction of ϕ to ∂Ũ gives a diffeomorphism

∂Ũ → ∂U , from an open subset ∂Ũ of ∂Hn = Rn−1 to an open subset ∂U of ∂M .

On the other hand, if N ⊆ Rs is a submanifold, then N is also a SMWB, with ∂N = ∅.

For a SMWB M , we can define spaces of differential forms Ωk(M), pullbacks and

exterior derivatives in exactly the same way as for submanifolds.

4.2. Multiple integrals.

Theorem 4.3 (Heine–Borel). A subset of a finite dimensional normed vector space is

compact if and only if it is closed and bounded.

Definition 4.4. For S ⊆ Rn and a function f : S → R, the support of f is

supp(f) := {p ∈ S : f(p) 6= 0} ⊆ S

(the closure in S of the set {p ∈ S : f(p) 6= 0}). In other words, supp(f) is the smallest

closed subset of S that contains all p ∈ S with f(p) 6= 0. We say that f has compact

support if supp(f) is compact, i.e., supp(f) is a closed and bounded subset of Rn (by

Heine–Borel 4.3). Write C0
c (S) := {f ∈ C0(S) : supp(f) is compact}.

We impose compact support to ensure convergence of the integrals in the following.

For f ∈ C0
c (Hn), we define f̃ ∈ C0

c (Hn−1) as follows: for n ≥ 2 let

f̃ : Hn−1 → R, p 7→
∫
R
f(x1(p), . . . , xn−1(p), t) dt;

for n = 1, H1 = (−∞, 0], and f̃ ∈ R is the integral of f over this interval.

Definition 4.5. For f ∈ C0
c (Hn), define the multiple integral of f inductively by∫

Hn

f(x1, . . . , xn) dx1 · · · dxn =

∫
Hn−1

f̃(x1, . . . , xn−1) dx1 · · · dxn−1 ∈ R

If U ⊆ Hn is open and f ∈ C0
c (U),

∫
U
f dx1 · · · dxn is defined in the same way after

extending f by zero to Hn.
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Given ϕ : Ũ → U a diffeomorphism of open subsets of Hn, define the Jacobian Jϕ : Ũ →
R by Jϕ(p) = det(Dϕp). Let f ∈ C0

c (U) and note that supp(f ◦ ϕ) = ϕ−1(supp(f)) ⊆ Ũ

is the continuous image of a compact set, and thus compact. Hence f ◦ ϕ has compact

support, so (f ◦ ϕ) |Jϕ| : p 7→ f(ϕ(p))|Jϕ(p)| is in C0
c (Ũ)

Theorem 4.6 (Change of variables formula for multiple integrals). Given f ∈ C0
c (U) and

a diffeomorphism ϕ : Ũ → U and Jacobian Jϕ : Ũ → R defined as above, then∫
U

f dy1 · · · dyn =

∫
Ũ

(f ◦ ϕ) |Jϕ| dx1 · · · dxn.

A proof of this theorem is given in Appendix B, in the case of open subsets of Rn rather

than Hn, but the proof in the latter case is similar.

4.3. Integration of forms. Recall that dim Altn(Rn) = 1 with basis Det, and that for

any α ∈ Altn(Rn) and linear map φ : Rn → Rn, φ∗α = det(φ)α (exercise). Now suppose

α = f dy1 ∧ · · · ∧ dyn ∈ Ωn(U) where U is open in Hn with coordinates y1, . . . , yn and

f : U → R smooth. If ϕ : Ũ → U is a diffeomorphism for Ũ open in Hn (with coordinates

x1, . . . , xn), then

(ϕ∗α)p = (ϕ∗(f dy1 ∧ · · · ∧ dyn))p = (Dϕp)
∗(f(ϕ(p))Det

)
= f(ϕ(p))Jϕ(p)Det

= f(ϕ(p))Jϕ(p)(dx1 ∧ · · · ∧ dxn)p.

We say ϕ is orientation-preserving if ∀p ∈ Ũ , Jϕ(p) > 0; then Jϕ(p) = |Jϕ(p)|, so the

transformation rule for ϕ∗α resembles the change of variables formula of Theorem 4.6.

We write α ∈ Ωn
c (U) if α = f dy1 ∧ · · · ∧ dyn ∈ Ωn(U) with f ∈ C0

c (U).

Definition 4.7. For U ⊆ Hn an open subset and α ∈ Ωn
c (U), we define∫

U

α :=

∫
U

f dy1 · · · dyn ∈ R

where f ∈ C0
c (U) is such that α = f dy1 ∧ · · · ∧ dyn.

Theorem 4.8 (Change of variables for differential forms). Suppose ϕ : Ũ → U is an

orientation-preserving diffeomorphism and α ∈ Ωn
c (U); then∫

Ũ

ϕ∗α =

∫
U

α

Proof. If α = f dy1 ∧ · · · ∧ dyn, we have seen that ϕ∗α = (f ◦ ϕ)Jϕ dx1 ∧ · · · dxn. Since ϕ

is orientation-preserving, |Jϕ(p)| = Jϕ(p) > 0, so Theorem 4.6 gives∫
Ũ

ϕ∗α =

∫
Ũ

(f ◦ ϕ) Jϕ dx1 · · · dxn =

∫
U

f dy1 · · · dyn =

∫
U

α. �

4.4. Orientations. An orientation of an n-dimensional real vector space V is an element

of the 2 element set (Altn(V )\{0})/ ∼, where α ∼ α̃ if α̃ = λα for some λ ∈ R+.

Definition 4.9. Let M ⊆ Rs be an n-dimensional SMWB.

(1) We call ω ∈ Ωn(M) an orientation form if ω never vanishes, i.e., ∀ p ∈M, ωp 6= 0;

(2) M is orientable if an orientation form exists;

(3) An orientation on M an equivalence class [ω] ∈ N /∼, where N is the set of

orientation forms on M , and ω ∼ ω̃ if for all p ∈M , ωp ∼ ω̃p.
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An oriented SMWB is a SMWB M together with a choice of orientation [ω].

Remarks 4.10. Thus an orientation form ω on a SMWB M defines an orientation [ωp]

on TpM for each p ∈ M , with equivalent orientation forms defining the same pointwise

orientation. Smoothness of ω means that the orientations of TpM are “consistent” (i.e.,

they do not change discontinuously). The intermediate value theorem can be used to

show that if M is connected and orientable, it has exactly 2 orientations [ω] and [−ω].

(If ω and ω̃ are orientation forms then ω̃ = fω with f(p) 6= 0 for all p ∈M and f cannot

change sign if M is connected.)

Example 4.11. If U ⊆ Hn is an open subset, then ω = dx1 ∧ · · · ∧ dxn ∈ Ωn(U) is

an orientation form, called the standard orientation of U . The standard orientation of

∂U is dy1 ∧ · · · ∧ dyn−1 where the inclusion ∂U → U is defined by i(y1, . . . , yn−1) =

(0, y1, . . . , yn−1).

Proposition 4.12. If a SMWB M is oriented, then ∂M is oriented.

Proof. For p ∈ ∂M let v(p) ∈ TpM be the outward unit normal to ∂M ; thus ‖v(p)‖ = 1

and v(p) · w = 0 for all w ∈ Tp(∂M), which determines v(p) up to sign, and the sign

is fixed by v(p) being “outward pointing”. Then v : ∂M → Rs is smooth: indeed, if

ϕ : Ũ → U is a parametrisation with inverse ψ : U → Ũ ⊆ Hn ⊆ Rn then on ∂U ,

v = grad(x1 ◦ ψ)/‖ grad(x1 ◦ ψ)‖, so v has local smooth extensions (because ψ does).

Now suppose M is oriented by an orientation form ω, and, for p ∈ ∂M , define

βp ∈ Altn−1(Tp∂M) by βp(v1, . . . , vn−1) = ωp(v(p), v1, . . . , vn−1). Then β ∈ Ωn−1(∂M): if

ṽ and ω̃ are smooth local extensions of v and ω, then ṽ y ω̃, with (ṽ y ω̃)p(v1, . . . , vn−1) =

ω̃p(ṽ(p), v1, . . . , vn−1), locally extends β. Finally, for all p ∈ ∂M , βp 6= 0, since if

v1, . . . , vn−1 is a basis for Tp(∂M), it follows that v(p), v1, . . . , vn−1 is a basis for TpM

and so ωp(v(p), v1, . . . , vn−1) is nonzero. �

The outward normal convention ensures that for U ⊆ Hn the standard orientation of

U induces the standard orientation of ∂U .

Definition 4.13. Let ϕ : N → M be local diffeomorphism of oriented SMWBs. Then

ϕ is orientation-preserving if for an orientation form ω ∈ Ωn(M) defining the chosen

orientation of M , the pullback ϕ∗ω defines the chosen orientation on N .

In particular, a parametrisation ϕ : Ũ → U ⊆M is orientation-preserving (or oriented)

if ϕ∗ω = fdx1 ∧ · · · ∧ dxn ∈ Ωn(Ũ) with f : Ũ → R+.

Proposition 4.14. If M is oriented, we can cover M by images Ui of oriented parametri-

sations ϕi : U ′i → Ui.

Proof. Cover M by images of some parametrisations ϕ̃i : Ũi → Ui. Without loss of

generality the Ũi are connected. Now either ϕ̃i is oriented (and we take U ′i = Ũi and

ϕi = ϕ̃i), or ϕ̃∗iω = −fdx1 ∧ · · · ∧ dxn with f : Ui → R+. In the latter case let τn =

(x1, . . . , xn−1,−xn) and U ′i = τ−1n (Ũi). Then ϕi = ϕ̃i ◦ τn is an oriented parametrisation

of M with the same image Ui. �
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4.5. The integration map. For a SMWB M and α ∈ Ωk(M), we let supp(α) =

{p ∈M : αp 6= 0} ⊆M , and write α ∈ Ωk
c (M) if supp(α) is compact.

Definition 4.15. Let M ⊆ Rs be an oriented SMWB of dimension n. Then an integration

map on M is a linear map ∫
M

: Ωn
c (M)→ R

such that if ϕ : Ũ → U is an oriented parametrisation and α ∈ Ωn
c (M) with supp(α) ⊆ U ,

then ∫
M

α =

∫
Ũ

ϕ∗α ∈ R (4.1)

To prove the existence and uniqueness of integration maps, we need a technical tool.

Definition 4.16. Let Ui : i ∈ I be an open cover of S ⊆ Rs. A partition of unity on S

subordinate to Ui : i ∈ I is a indexed family ρi : i ∈ I such that

(1) each ρi is a nonnegative smooth function S → R;

(2) supp(ρi) ⊆ Ui for all i ∈ I;

(3) each p ∈ S has a neighbourhood U ⊆ S such that U ∩ supp(ρi) 6= ∅ only for

finitely many i ∈ I; and

(4) for each p ∈ S,
∑

i∈I ρi(p) = 1.

Remark 4.17. If I is finite, then (3) is vacuous. In general, (3) ensures that the sum in

(4) is well-defined (since only finitely many terms are nonzero).

Theorem 4.18. Let M ⊆ Rs be a SMWB. Then for any open cover of M , there exists a

subordinate partition of unity.

A proof is given in Appendix A.

Theorem 4.19. For any oriented SMWB M , there is a unique integration map.

Proof. Let ϕi : i ∈ I be oriented parametrisations ϕi : Ũi → Ui such that Ui : i ∈ I cover

M . Let ρi : i ∈ I be a partition of unity on M subordinate to this cover. For α ∈ Ωn
c (M),

Definition 4.16 (3) implies that each p ∈ supp(α) has an open neighbourhood which meets

supp(ρi) for only finitely many i; since supp(α) is compact, this open cover has a finite

subcover, so supp(α) meets supp(ρi) for only finitely many i. Hence α =
∑

i∈I ρiα is a

finite sum with supp(ρiα) ⊆ Ui. Then linearity and (4.1) imply∫
M

α =
∑
i∈I

∫
Ũi

ϕ∗i (ρiα) ∈ R (4.2)

So if there exists a map
∫
M

satisfying (4.1), then it is unique.

It remains to prove that if we define
∫
M

by (4.2)—which is clearly linear in α—then

(4.1) holds. Suppose ϕ : Ũ → U is an oriented parametrisation with supp(α) ⊆ U .
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Ũ
ϕ

ϕ−1(supp(ρiα))

Ũi ϕi
ϕ−1i (supp(ρiα))

ϕ−1 ◦ ϕi U

Ui

M ⊆ Rs
supp(α)

supp(ρi) ⊆ Uisupp(ρiα)

Then (see above diagram) supp(ρiα) ⊆ Ui ∩ U . Note that

supp(ϕ∗i (ρiα)) = ϕ−1i (supp(ρiα)) ⊆ ϕ−1i (Ui ∩ U) ⊆ Ũi

and

ϕ∗i (ρiα) = (ϕ−1 ◦ ϕi)∗(ϕ∗(ρiα)) ∈ Ωn
c (ϕ−1i (Ui ∩ U))

The function ϕ−1 ◦ ϕi : ϕ−1i (Ui ∩ U)→ ϕ−1(Ui ∩ U) is orientation-preserving since ϕ and

ϕi are both oriented. Hence∫
Ũi

ϕ∗i (ρiα) =

∫
ϕ−1
i (Ui∩U)

ϕ∗i (ρiα) =

∫
ϕ−1(Ui∩U)

ϕ∗(ρiα) =

∫
Ũ

ϕ∗(ρiα)

where the second equality follows by Theorem 4.8. Hence∑
i∈I

∫
Ũi

ϕ∗i (ρiα) =
∑
i∈I

∫
Ũ

ϕ∗(ρiα) =

∫
Ũ

ϕ∗
(∑
i∈I

ρiα

)
=

∫
Ũ

ϕ∗α,

as required. �

Remark 4.20. Note that the expression (4.2) for the integration map apparently depends

upon the choice of parametrisations and partition of unity. By the second part of the proof,

any other choice ϕ̃j : Ũ ′j → U ′j, ρ̃j : j ∈ J will also define an integration map

α 7→
∑
j∈J

∫
Ũ ′j

ϕ̃∗j(ρ̃jα).

However, by the first part of the proof, this integration map is equal to the one defined

by (4.2). So in fact all such formula compute the same integrals.

Example 4.21. Let S1 = {v ∈ R2 | ‖v‖2 = 1}. Now equip S1 with an orientation form

ω ∈ Ω1(S1) defined as the pullback of −x2dx1 + x1dx2 ∈ Ω1(R2). The parametrisations

ϕ : (0, 2π)→ S1\{(1, 0)}, θ 7→ (cos θ, sin θ)

ψ : (−π, π)→ S1\{(−1, 0)}, µ 7→ (cosµ, sinµ)

are both oriented and cover S1. Now we claim that for any α ∈ Ω1(S1), we can compute∫
S1

α as

∫
(0,2π)

ϕ∗α. Let f : R→ R be a smooth function such that

f(t) =

{
1, t ≥ 1

0, t ≤ 1/2.
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For ε > 0, define ρ1,ε, ρ2,ε : S1 → R by ρ1,ε(q) = f(ε−2‖q−(1, 0)‖2) and ρ2,ε(q) = 1−ρ1,ε(q).
Then for any ε ∈ (0, 1), we have that ρ1,ε, ρ2,ε is a partition of unity subordinate to

U1 := S1\{(1, 0)} and U2 := S1\{(−1, 0)}, and so∫
S1

α =

∫
(0,2π)

ϕ∗(ρ1,ε α) +

∫
−π,π)

ψ∗(ρ2,ε α)

As ε→ 0, ρ1,ε tends to 1 except at q = (1, 0). Hence the first term converges to
∫
(0,2π)

ϕ∗α

and the second term converges to 0, proving the claim.

Now let α ∈ Ω1(S1) be the pullback of x1dx2 ∈ Ω1(R2). Then ϕ∗α = cos θ d(sin θ) =

(cos θ)2dθ and so∫
S1

α =

∫
(0,2π)

ϕ∗α =

∫ 2π

0

(cos θ)2 dθ =

∫ 2π

0

1
2
(cos(2θ) + 1) dθ = π.

Remark 4.22. The above example illustrates a general principle. When evaluating in-

tegrals in practice, we don’t have to use partitions of unity: we can just find an oriented

parametrisation ϕ : Ũ → U on M such that U is dense and evaluate
∫
Ũ
ϕ∗α.

4.6. Stokes’ theorem. Let i : ∂M → M denote the inclusion of the boundary of an

oriented SMWB M ; then any α ∈ Ωk(M) has a pullback i∗α ∈ Ωk(∂M), and if α ∈
Ωk
c (M), then i∗α ∈ Ωk

c (∂M). In particular, if β ∈ Ωn−1
c (M), then dβ ∈ Ωn

c (M) and

i∗β ∈ Ωn−1
c (∂M) can be integrated on M and ∂M respectively.

Theorem 4.23. Let i : ∂M →M be an oriented SMWB and β ∈ Ωn−1
c (M), Then∫

M

dβ =

∫
∂M

i∗β.

Example 4.24. Let β : R→ R be a smooth function such that β(p) = 0 for p ≤ −1 and

β(p) = 1 for p ≥ 1. Then supp(dβ) ⊆ [−1, 1], so dβ ∈ Ω1
c(R), and∫

R
dβ =

∫ 1

−1

dβ

dx
dx = β(1)− β(−1) = 1.

Example 4.25. Let M := {v ∈ R2 : ‖v‖2 ≤ 1}, and let

β = x1 dx2 ∈ Ω1(M).

Since M itself is compact, automatically β ∈ Ω1
c(M). Now dβ = dx1 ∧ dx2, so

∫
M

dβ is

simply the double integral of the constant function 1 over the unit disc, which is π.

This agrees the integral of i∗β on S1, evaluated in Example 4.21.

To prove Stokes’ theorem, we may as well assume that supp(β) is contained in U for

some oriented parametrisation ϕ : Ũ → U , since any β can be written (using a partition

of unity) as a sum of such forms. Then∫
M

dβ =

∫
Ũ

ϕ∗(dβ) =

∫
Ũ

d(ϕ∗β)

and (with iŨ : ∂Ũ → Ũ being the inclusion)∫
∂M

i∗β =

∫
∂Ũ

i∗
Ũ
ϕ∗β.
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The theorem now follows by applying the next lemma to γ ∈ Ωn−1
c (Hn) defined by

γp =

{
(ϕ∗β)p for p ∈ Ũ
0 for p ∈ Hn \ supp(ϕ∗β).

Lemma 4.26. For any γ ∈ Ωn−1
c (Hn) and i : ∂Hn → Hn the inclusion,∫

Hn

dγ =

∫
∂Hn

i∗γ.

Proof. We may write γ as v y (dx1 ∧ · · · ∧ dxn) with v(p) =
∑n

i=1 fi(p)ei. Then

dγ =
n∑
i=1

∂fi
∂xi

dx1 ∧ · · · ∧ dxn ∈ Ωn
c (Hn)

and

i∗γ = g dy1 ∧ · · · ∧ dyn−1 ∈ Ωn−1
c (∂Hn),

where g(y1, . . . , yn−1) = f1(0, y1, . . . , yn−1). Thus it remains to prove
n∑
i=1

∫
Hn

∂fi
∂xi

dx1 · · · dxn =

∫
Rn−1

g dy1 · · · dyn−1.

By Theorem 4.6, we may evaluate the multiple integrals in any order. For 2 ≤ i ≤ n,∫∞
−∞

∂fi
∂xi

(x1, . . . , xn)dxi = 0 for each fixed x1, . . . , xi−1, xi+1, . . . , xn, since fi has compact

support. Hence the sum reduces to the first term, which is∫
Rn−1

(∫ 0

−∞

∂f1
∂x1

(x1, . . . , xn)dx1

)
dx2 · · · dxn =

∫
Rn−1

f1(0, x2, . . . , xn)dx2 · · · dxn

=

∫
Rn−1

gdy1 · · · dyn−1. �

Corollary 4.27 (Boundaryless case of Stokes’ theorem). Let M be an oriented n-manifold

and β ∈ Ωn−1
c (M). Then ∫

M

dβ = 0.

Remarks 4.28. Stokes’ theorem provides further justification for the importance of the

exterior derivative. Notice that its proof reduces to a fairly straightforward application of

the fundamental theorem of calculus. The hard work is really in setting up the definition

of the integral in a diffeomorphism-invariant way, and the diffeomorphism invariance of

the exterior derivative plays a crucial role.

If M is compact, then Ωn
c (M) = Ωn(M), so (if M is oriented)

∫
M
α is defined for any

α ∈ Ωn(M). Compact submanifolds (without boundary) are also called closed manifolds

(although, as subsets of Rs, they are not only closed, but also bounded). If M is not

compact and β ∈ Ωn−1(M), then it could be that dβ has compact support even if β does

not. In that case
∫
M

dβ could be non-zero, even if M has no boundary.
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Appendix A. Existence of partitions of unity

Let Ui : i ∈ I be an open cover of M . For each Ui, there is by definition an open

subset Ũi ⊆ Rs such that Ui = M ∩ Ũi. Let M̃ =
⋃
i∈I Ũi (an open subset of Rs). Then

any partition of unity on M̃ subordinate to Ũi : i ∈ I induces a partition of unity on M

subordinate to Ui : i ∈ I, so without loss, we can assume that M is open in Rs.

Step 1: cover by a countable set of balls. Let V be the set of subsets V ⊆M such that:

• there exist r, x1, . . . xk ∈ Q such that V = Br(x) where x = (x1, . . . xk);

• the closure V in Rs is contained in Uj for some j ∈ I.

V is a countable set, so we may enumerate its elements as Vj : j ∈ Z+.

Claim 1. For any open subset W with W ⊆M and any p ∈M \W , there is some V ∈ V
such that V ∩W = ∅ and p ∈ V .

Proof. Pick some i ∈ I such that p ∈ Ui. Then (M \W ) ∩ Ui is an open subset of Rs

containing p, so it contains some open ball BR(p). Choose x ∈ BR/2(p) with rational

coordinates and r ∈ Q with |x − p| < r < R/2. Then p ∈ Br(x) and Br(x) ⊆ BR(p) so

we may take V = Br(x) ∈ V . �

Set W0 = ∅, A0 = V and, for m ∈ Z+,

Wm = V1 ∪ · · · ∪ Vm and Am = {V ∈ V : V ∩Wm = ∅}.

Then Claim 1, with W = Wm, shows that Am covers M \Wm: indeed
⋃
Am = M \Wm.

Step 2: making the cover locally finite. We now define inductively for m ∈ N, a finite

subset Bm ⊆ V , such that B0 = ∅, and for m ∈ Z+, Bm covers Wm, so that Am ∪ Bm
covers M . To do this, observe that Wm ⊆M is a closed and bounded subset of Rs, hence

compact by Heine–Borel 4.3. Since (inductively) Am−1 ∪ Bm−1 covers M , it has a finite

subset Bm which covers Wm.

We now set B =
⋃
m∈N Bm, which is an open cover of

⋃
m∈NWm = M . However, it is

also “locally finite”: any p ∈ M belongs to Wm for some m ∈ N and so if V ∈ B with

V ∩Wm 6= ∅, then V /∈ Am, and so V ∈ B1 ∪ · · · ∪ Bm−1, which is finite.

Step 3: defining the partition of unity. For each V = Br(x) ∈ B, choose j(V ) ∈ I with

V ⊆ Uj(V ), and define ρV : M → R by

ρV (y) = exp

(
− 1

r2 − |x− y|2

)
for y ∈ Br(x), and ρV (y) = 0 for y 6∈ Br(x). Then ρV is smooth (exercise) with supp(ρV ) =

V and ρV positive on V . Since B is locally finite, each p ∈M has an open neighbourhood

W ⊆M with V ∩W 6= ∅ for only finitely many V ∈ B. Hence the functions

σ(x) =
∑
V ∈B

ρV (x) and σi(x) =
∑

V ∈B:j(V )=i

ρV (x)

(for i ∈ I) are well-defined and smooth because only finitely many ρV are nonzero on an

open neighbourhood of any point. Furthermore σ is nonvanishing, supp(σi) ⊆ Ui, and

any point has an open neighbourhood which meets supp(σi) for only finitely many i ∈ I.

Hence ρi(x) := σi(x)/σ(x) defines a partition of unity subordinate to Ui : i ∈ I.
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Appendix B. Proof of the change of variables formula

For a diffeomorphism ϕ : V → U of open subset of Rn, let C(ϕ) be the statement:∫
U

f(y) dy1 · · · dyn =

∫
V

f(ϕ(x))|Jϕ(x)| dx1 · · · dxn (B.1)

for all f ∈ C0
c (V ). We wish to prove that C(ϕ) holds for any ϕ. Main steps:

(1) C(ϕ) and C(ψ) ⇒ C(ϕ ◦ ψ)

(2) ϕ a permutation of coordinates ⇒ C(ϕ)

(3) n = 1 ⇒ C(ϕ)

(4) ϕ of the form (x1, . . . , xn) 7→ (x1, . . . , xn−1, h(x1, . . . , xn)) ⇒ C(ϕ).

(5) for any ϕ, any x ∈ V has an open neighbourhood V ′ ⊆ V such that ϕ|V ′ is a

composite of maps of the form (2) and (4).

(6) using a partition of unity C(ϕ) holds for any ϕ.

Step 1. Let U, V,W ⊆ Rn be open subsets, and let ϕ : V → U and ψ : W → V be

diffeomorphisms. Then

Jϕ◦ψ(x) = det(D(ϕ◦ψ)x) = det(Dϕψ(x)◦Dψx) = det(Dϕψ(x)) det(Dψx) = Jϕ(ψ(x))Jψ(x).

Now suppose C(ψ), i.e.,∫
W

g(ψ(x))|Jψ(x)| dx1 · · · dxn =

∫
V

g(y) dy1 · · · dyn

for any g ∈ C0
c (V ). Now if f ∈ C0

c (U), then assuming C(ϕ) and applying C(ψ) with

g = (f ◦ ϕ)|Jϕ| ∈ C0
c (V ), we obtain that∫

U

f(z) dz1 · · · dzn =

∫
V

f(ϕ(y))|Jϕ(y)| dy1 · · · dyn

=

∫
W

f(ϕ(ψ(x)))|Jϕ(ψ(x))||Jψ(x)| dx1 · · · dxn

=

∫
W

f((ϕ ◦ ψ)(x))|Jϕ◦ψ(x)| dx1 · · · dxn,

which gives C(ϕ ◦ ψ).

Step 2. We want to show C(ϕ) when ∃σ ∈ Sn such that ϕ(x1, . . . , xn) = (xσ(1), . . . , xσ(n)).

Since this map is the restriction of a diffeomorphism sσ : Rn → Rn, we can assume without

loss that U = V = Rn. Since |Jsσ(x)| = 1 for all x, to establish C(sσ), we need to show

that we can change the order of the multiple integrals.

Let P ⊆ C0
c (Rn) be the set of functions f : Rn → R such that f(x1, . . . , xn) =

f1(x1) · · · fn(xn) for some f1, . . . , fn ∈ C0
c (R). Observe that for any such f ,∫

Rn
f(x) dx1 · · · dxn =

∫ ∞
−∞

f1(t) dt · · ·
∫ ∞
−∞

fn(t) dt =

∫
Rn

(f ◦ sσ) dx1 · · · dxn,

since each one-variable integral above is a real number, and multiplication is commutative.

Hence (B.1) holds for all f ∈ P . By linearity of integration, it follows that (B.1) holds

for all f ∈ span(P ), the linear span of P .

To establish C(sσ), i.e., that (B.1) holds for all f ∈ C0
c (Rn), we suppose ε > 0 and

apply the following special case of the Stone–Weierstrass theorem.
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Theorem. The span of P is uniformly dense in C0
c (Rn), i.e., for any f ∈ C0

c (Rn) and

ε > 0, there exists g ∈ span(P ) such that ∀x ∈ Rn we have |f(x)− g(x)| < ε.

Evidently this also implies that ∀x ∈ Rn, |f(sσ(x))− g(sσ(x))| < ε. Since g ∈ span(P)

we now have∣∣∣∣∫
Rn
f(x) dx1 · · · dxn −

∫
Rn
f(sσ(x)) dx1 · · · dxn

∣∣∣∣
=

∣∣∣∣∫
Rn

(f(x)− g(x)) dx1 · · · dxn −
∫
Rn

(f(sσ(x))− g(sσ(x))) dx1 · · · dxn

∣∣∣∣
≤
∣∣∣∣∫

Rn
(f(x)− g(x)) dx1 · · · dxn

∣∣∣∣+

∣∣∣∣∫
Rn

(f(sσ(x))− g(sσ(x))) dx1 · · · dxn

∣∣∣∣ ≤ 2εV,

where V is the volume of a ball containing the supports of f, g, f ◦ sσ and g ◦ sσ (which

exists as these functions all have compact support). Since ε > 0 is arbitrary, the left-hand

side is zero. In other words C(sσ) holds.

Step 3. Suppose n = 1, so ϕ : V → U for V, U ⊆ R disjoint unions of open intervals,

and Jϕ(x) = dϕ
dx

. Now given f ∈ C0
c (U), then there exists a finite union of bounded open

intervals V ′ ⊆ V such that supp(f ◦ ϕ) ⊆ V ′. Therefore without loss of generality, V is

a single bounded interval (a, b) ⊆ R and U = ϕ((a, b)). Then by the change of variables

formula for functions of one variable∫
U

f(y) dy = ±
∫ ϕ(b)

ϕ(a)

f(y) dy = ±
∫ b

a

f(ϕ(x))
dϕ

dx
dx,

where the sign is positive if ϕ(a) < ϕ(b) and negative if ϕ(b) < ϕ(a). However, this sign

is also the sign of dϕ
dx

at all x ∈ (a, b), so the right hand side is∫
V

f(ϕ(x))
∣∣∣dϕ
dx

∣∣∣ dx
as required.

Step 4. Suppose ϕ : V → U has the form (x1, . . . , xn) 7→ (x1, . . . , xn−1, h(x1, . . . , xn)) for

some function h. Fix (x1, . . . , xn−1) ∈ Rn−1 and set

U ′ = {s ∈ R | (x1, . . . , xn−1, s) ∈ U}, and V ′ = {t ∈ R | (x1, . . . , xn−1, t) ∈ V }

and ϕ′ : V ′ → U ′, t 7→ h(x1, . . . , xn−1, t). Then

Jϕ′(t) =
dϕ′

dt
=
∂h

∂t
= Jϕ(x1, . . . , xn−1, t)

and so for any f ∈ C0
c (U), C(ϕ′) (Step 3) implies

f̃(x1, . . . , xn−1) :=

∫
U ′
f(x1, . . . , xn−1, s) ds =

∫
V ′
g(x1, . . . , xn−1, t) dt

where g = (f ◦ ϕ)|Jϕ| ∈ C0
c (V ). However, extending both integrands by zero to R, the

multiple integral of f over Rn is the multiple integral of f̃ over Rn−1, which therefore

equals the multiple integral of g over Rn, proving C(ϕ).
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Step 5. A diffeomorphism ϕ : V → U is called a k-graph if it is of the form

ϕ(x) = ϕ(x1, . . . , xn) = (x1, . . . , xn−k, ϕn−k+1(x), . . . , ϕn(x)).

So

• ϕ is a 0-graph ⇔ ϕ = Id;

• ϕ is a 1-graph ⇔ ϕ is a diffeomorphism of the form (4);

• any ϕ is an n-graph.

We are interested in the k = n case of the following claim.

Lemma B.1. For any k ≤ n, if ϕ is a k-graph, then any x ∈ V has a neighbourhood

V ′ ⊆ V such that ϕ|V ′ is a composite of permutation maps and 1-graphs.

Proof. The cases k = 0 and k = 1 are trivial. Now suppose the claim holds for k− 1. Let

ϕ be a k-graph and x ∈ V . Then det(Dϕx) 6= 0 since ϕ is a diffeomorphism, so there is

an integer i ∈ [n− k+ 1, n] such that dϕn
dxi
6= 0 at x. Let σ be the transposition (n i) ∈ Sn

and V ′ = s−1σ (V ). Then ϕ′ = ϕ ◦ sσ : V ′ → U is a k-graph and has ∂ϕ′n
∂xn
6= 0 at y = s−1σ (x).

Now define g : V ′ → Rn by (y1, . . . , yn) 7→ (y1, . . . , yn−1, ϕ
′
n(y1, . . . , yn)). Then g is

a 1-graph, and det(Dgy) = ∂ϕ′n
∂xn

(y) 6= 0. So by the inverse function theorem, y has a

neighbourhood W ⊆ V ′ such that g|W defines a diffeomorphism W → g(W ), with g(W )

open in Rn. Let ψ = ϕ′ ◦ g−1 : g(W )→ U . Then ψ has the form

ψ(z1, . . . , zn) = (z1, . . . , zn−k, ψn−k+1(z1, . . . , zn), . . . , ψn−1(z1, . . . , zn), zn)

where z1, . . . , zn−k are fixed since ϕ and g both fix the first n− k coordinates. If τ ∈ Sn
is the transposition (n k + 1), then ψ′ = sτ ◦ ψ : g(W ) → sτ (U) is (k − 1)-fixed. So

by the inductive hypothesis, g(y) has a neighbourhood W ′ ⊆ g(W ) such that ψ′|W ′ is a

composite of permutation maps and 1-graphs. Hence so is the restriction of ϕ = ψ◦g◦sσ =

sτ ◦ ψ′ ◦ g ◦ sσ to s−1σ (g−1(W ′)). �

Step 6. Let ϕ : V → U be any diffeomorphism. The preceding steps show that any x ∈ V
has a neighbourhood V ′ ⊆ V such that C(ϕ|V ′). Equivalently, for any f ∈ C0

c (U) such

that supp(f) ⊆ im(ϕ(V ′)) we have∫
V

(f ◦ ϕ)(x)|Jϕ(x)| dx1 · · · dxn =

∫
U

f(y) dy1 · · · dyn

Let Ui : i ∈ I be the family of images of such V ′. Then Ui is an open cover of M . Let

ρi : i ∈ I be a partition of unity subordinate this cover. Then any f ∈ C0
c (U) can be

written as f =
∑

i ρif . Since supp(ρif) ⊆ Ui, then∫
U

f(y) dy1 · · · dyn =
∑
i

∫
U

(ρif)(y) dy1 · · · dyn =
∑
i

∫
V

((ρif) ◦ ϕ)(x)|Jϕ(x)| dx1 · · · dxn

=

∫
V

(f ◦ ϕ)(x)|Jϕ(x)| dx1 · · · dxn.

This concludes the proof of the change of variables formula.


