
MA40254 Differential and geometric analysis : Exercises 10

Hand in answers by 18:10pm on Tuesday 12 December for the Seminar of Wednesday 13 December
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let M be an open subset of Hn with the standard orientation. Show that integration
of differential n-forms on M (as in Section 4.3) defines an integration map

∫
M on M (as in Section

4.5).
[Solution: Multiple integration is linear by basic results of analysis, hence integration of forms defines
a linear map Ωn

c (M) → R. Now if φ : Ũ → U ⊆ M is an oriented parametrization (with U open in
M and Ũ open in Hn), and supp(α) ⊆ U , then

∫
M α =

∫
U α because of the way integration of forms

is defined, and
∫

U α =
∫

Ũ
φ∗α by the change of variables formula for integration of forms. Thus both

properties of integration maps are satisfied.]
1. Let M ⊆ Rs be an oriented compact n-dimensional SMWB. Let ω ∈ Ωn(M) be any orientation
form on M compatible with the chosen orientation. Show that

∫
M ω > 0.

[Hint: Use a partition of unity to write ω as the sum of forms, each of which has support contained
in the image of a parametrisation, and show that the integral of each term has positive integral.]
2. Let M ⊆ Rs and N ⊆ Rℓ be oriented n-dimensional SMWBs, and let φ : M → N be an orientation-
preserving diffeomorphism. Show that for any α ∈ Ωn

c (N) we have∫
M
φ∗α =

∫
N
α.

[Hint: Show that Ωn
c (N) → R, α 7→

∫
M φ∗α is an integration map.]

3. Let ω ∈ Ω2(S2) be the orientation form defined by ωp = p ⌟Det for p ∈ S2. Consider the oriented
manifold S2 with orientation defined by ω. Define parametrisations of S2 by

φ : R2 → S2 \ {(0, 0, 1)}, x 7→ 1
1 + ∥x∥2

(
2x1, 2x2, ∥x∥2 − 1

)
and

ψ : R2 → S2 \ {(0, 0,−1)}, y 7→ 1
1 + ∥y∥2

(
2y1, 2y2,−∥y∥2 + 1

)
.

(i) Express φ∗ω ∈ Ω2(R2) in terms of dx1 ∧ dx2, and ψ∗ω ∈ Ω2(R2) in terms of dy1 ∧ dy2.

[Hint: The usual process would be to write ω = z1dz2 ∧ dz3 − z2dz1 ∧ dz3 + z3dz1 ∧ dz2 and then
work out φ∗ω as φ∗(z1)d(φ∗z2) ∧d(φ∗z3) + · · ·. However, in this case it may be more convenient
to organise the calculation as follows: if φ∗ω = fdx1 ∧ dx2, then f(x) = Det

(
φ(x), ∂φ

∂x1
, ∂φ

∂x2

)
.]

(ii) Is φ an oriented parametrisation? Is ψ? Is φ−1 ◦ ψ|R2\{0} orientation-preserving?

[Hint: You only need to examine the signs of the coefficients of dx1 ∧ dx2 and dy1 ∧ dy2 in the
results from (i).]

(iii) Evaluate
∫

S2 ω.

[Hint: It is enough to evaluate
∫
R2 ψ∗ω.]

4. LetM be any orientable n-dimensional closed manifold (i.e., M is a compact SMWB with ∂M = ∅).
Show that M admits a differential n-form ω which is closed but not exact.
[Hint: Use Q1 and Stokes’ Theorem.]
5. Sketch a proof of the Poincaré Lemma. [Other examples of sketch proof questions can be found in
past papers.]
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1. Let φi : i ∈ I be a family of oriented parametrisations φi : Ũi → Ui of M , such that the set of
images covers M . (Since M is compact, we can in fact take I to be finite.) Let ρi : i ∈ I be a partition
of unity on M subordinate to this cover. Then∫

M
ω =

∑
i

∫
M
ρiω =

∑
i

∫
Ũi

φ∗(ρiω).

To evaluate each term on the RHS, we write

φ∗
iω = fdx1 ∧ · · · ∧ dxn

for a function f : Ũi → R. By definition of φi being oriented f takes positive values, so∫
Ũi

φ∗(ρiω) =
∫

Ũi

ρi(φ(x))f(x)dx1 · · · dxn ∈ R

is non-negative, and positive unless ρi ≡ 0. Since the ρi are certainly not all identically zero, the sum
is positive.

2. Consider the linear map
L : Ωn

c (N) → R, α 7→
∫

M
φ∗α.

If ψ : Ũ → U is an oriented parametrisation of N and U ′ := φ−1(U) ⊆ M , then φ−1 ◦ ψ : Ũ → U ′

is an oriented parametrisation of M . If α ∈ Ωn
c (N) has suppα ⊆ U , then suppφ∗α ⊆ U ′, so the

characterising property of
∫

M gives

L(α) =
∫

Ũ
(φ−1 ◦ ψ)∗(φ∗α) =

∫
Ũ

(φ ◦ φ−1 ◦ ψ)∗α =
∫

Ũ
ψ∗α.

Thus L is an integration map on N , and hence L =
∫

N .

3. (i) To identify the function f : R2 → R such that φ∗ω = fdx1 ∧ dx2, we can compute f(x) as

ωφ(x)

(
∂φ

∂x1
,
∂φ

∂x2

)
= Det

(
φ(x), ∂φ

∂x1
,
∂φ

∂x2

)
.

Now
∂φ

∂x1
=
∂

(
1

1+∥x∥2

)
∂x1

(1 + ∥x∥2)φ(x) + 2
1 + ∥x∥2 (1, 0, x1),

and ∂φ
∂x2

has an analogous expression. Because Det is alternating, the φ(x) terms in ∂φ
∂xi

do not
contribute to

Det
(
φ(x), ∂φ

∂x1
,
∂φ

∂x1

)
= 4

(1 + ∥x∥2)3 det

 2x1 1 0
2x2 0 1

∥x∥2 − 1 x1 x2


= 4

(1 + ∥x∥2)3 (∥x∥2 − 1 − 2x2
1 − 2x2

2) = − 4
(1 + ∥x∥2)2

Thus
φ∗ω = − 4

(1 + ∥x∥2)2dx1 ∧ dx2.

A similar calculation shows
ψ∗ω = 4

(1 + ∥y∥2)2dy1 ∧ dy2.



(ii) φ is not oriented, but ψ is, and therefore φ−1 ◦ ψ is orientation-reversing.

(iii) Since ψ is an oriented parametrisation and the complement of its image in S2 is a lower-
dimensional set, ∫

S2
ω =

∫
R2
ψ∗ω =

∫
R2

4dy1dy2
(1 + ∥y∥2)2 =

∫ 2π

0

∫ ∞

0

4rdrdθ
(1 + r2)2 = 4π,

since the integral over θ gives 2π and the integral over r gives 2 (e.g. the integrand is the
derivative of −2/(1 + r2).

4. Let ω be an orientation form. Then dω = 0 and (using the orientation defined by ω)
∫

M ω > 0 by
previous exercises. We cannot have ω = dβ since

∫
M dβ = 0 by Stokes’ Theorem.

5. We do not give model sketch proofs. A good sketch, along the lines of the proof in the notes, would
include the following main relevant points:

• the decomposition of Altk(Rn), and hence α ∈ Ωk(U), with respect to one variable;

• the existence of γ with α′ = α−dγ independent of one variable (e.g. using the second fundamental
theorem of calculus to define γ, and the formula for L(dα) when L(α) = 0);

• an argument (e.g. pullback and induction) that α′ is exact.


