Hand in answers by 18:10pm on Tuesday 12 December for the Seminar of Wednesday 13 December Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let M be an open subset of H^{n} with the standard orientation. Show that integration of differential n-forms on M (as in Section 4.3) defines an integration map \int_{M} on M (as in Section 4.5).
[Solution: Multiple integration is linear by basic results of analysis, hence integration of forms defines a linear map $\Omega_{c}^{n}(M) \rightarrow \mathbb{R}$. Now if $\varphi: \widetilde{U} \rightarrow U \subseteq M$ is an oriented parametrization (with U open in M and \widetilde{U} open in H^{n}), and $\operatorname{supp}(\alpha) \subseteq U$, then $\int_{M} \alpha=\int_{U} \alpha$ because of the way integration of forms is defined, and $\int_{U} \alpha=\int_{\widetilde{U}} \varphi^{*} \alpha$ by the change of variables formula for integration of forms. Thus both properties of integration maps are satisfied.]

1. Let $M \subseteq \mathbb{R}^{s}$ be an oriented compact n-dimensional SMWB. Let $\omega \in \Omega^{n}(M)$ be any orientation form on M compatible with the chosen orientation. Show that $\int_{M} \omega>0$.
[Hint: Use a partition of unity to write ω as the sum of forms, each of which has support contained in the image of a parametrisation, and show that the integral of each term has positive integral.]
2. Let $M \subseteq \mathbb{R}^{s}$ and $N \subseteq \mathbb{R}^{\ell}$ be oriented n-dimensional SMWBs, and let $\varphi: M \rightarrow N$ be an orientationpreserving diffeomorphism. Show that for any $\alpha \in \Omega_{c}^{n}(N)$ we have

$$
\int_{M} \varphi^{*} \alpha=\int_{N} \alpha
$$

[Hint: Show that $\Omega_{c}^{n}(N) \rightarrow \mathbb{R}, \alpha \mapsto \int_{M} \varphi^{*} \alpha$ is an integration map.]
3. Let $\omega \in \Omega^{2}\left(S^{2}\right)$ be the orientation form defined by $\left.\omega_{p}=p\right\lrcorner$ Det for $p \in S^{2}$. Consider the oriented manifold S^{2} with orientation defined by ω. Define parametrisations of S^{2} by

$$
\varphi: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,1)\}, x \mapsto \frac{1}{1+\|x\|^{2}}\left(2 x_{1}, 2 x_{2},\|x\|^{2}-1\right)
$$

and

$$
\psi: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,-1)\}, y \mapsto \frac{1}{1+\|y\|^{2}}\left(2 y_{1}, 2 y_{2},-\|y\|^{2}+1\right)
$$

(i) Express $\varphi^{*} \omega \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ in terms of $d x_{1} \wedge d x_{2}$, and $\psi^{*} \omega \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ in terms of $d y_{1} \wedge d y_{2}$.
[Hint: The usual process would be to write $\omega=z_{1} d z_{2} \wedge d z_{3}-z_{2} d z_{1} \wedge d z_{3}+z_{3} d z_{1} \wedge d z_{2}$ and then work out $\varphi^{*} \omega$ as $\varphi^{*}\left(z_{1}\right) d\left(\varphi^{*} z_{2}\right) \wedge d\left(\varphi^{*} z_{3}\right)+\cdots$. However, in this case it may be more convenient to organise the calculation as follows: if $\varphi^{*} \omega=f d x_{1} \wedge d x_{2}$, then $\left.f(x)=\operatorname{Det}\left(\varphi(x), \frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right) \cdot\right]$
(ii) Is φ an oriented parametrisation? Is ψ ? Is $\left.\varphi^{-1} \circ \psi\right|_{\mathbb{R}^{2} \backslash\{0\}}$ orientation-preserving?
[Hint: You only need to examine the signs of the coefficients of $d x_{1} \wedge d x_{2}$ and $d y_{1} \wedge d y_{2}$ in the results from (i).]
(iii) Evaluate $\int_{S^{2}} \omega$.
[Hint: It is enough to evaluate $\int_{\mathbb{R}^{2}} \psi^{*} \omega$.]
4. Let M be any orientable n-dimensional closed manifold (i.e., M is a compact SMWB with $\partial M=\varnothing$). Show that M admits a differential n-form ω which is closed but not exact.
[Hint: Use Q1 and Stokes' Theorem.]
5. Sketch a proof of the Poincaré Lemma. [Other examples of sketch proof questions can be found in past papers.]

1. Let $\varphi_{i}: i \in I$ be a family of oriented parametrisations $\varphi_{i}: \widetilde{U}_{i} \rightarrow U_{i}$ of M, such that the set of images covers M. (Since M is compact, we can in fact take I to be finite.) Let $\rho_{i}: i \in I$ be a partition of unity on M subordinate to this cover. Then

$$
\int_{M} \omega=\sum_{i} \int_{M} \rho_{i} \omega=\sum_{i} \int_{\widetilde{U}_{i}} \varphi^{*}\left(\rho_{i} \omega\right) .
$$

To evaluate each term on the RHS, we write

$$
\varphi_{i}^{*} \omega=f d x_{1} \wedge \cdots \wedge d x_{n}
$$

for a function $f: \widetilde{U}_{i} \rightarrow \mathbb{R}$. By definition of φ_{i} being oriented f takes positive values, so

$$
\int_{\widetilde{U}_{i}} \varphi^{*}\left(\rho_{i} \omega\right)=\int_{\widetilde{U}_{i}} \rho_{i}(\varphi(x)) f(x) d x_{1} \cdots d x_{n} \in \mathbb{R}
$$

is non-negative, and positive unless $\rho_{i} \equiv 0$. Since the ρ_{i} are certainly not all identically zero, the sum is positive.
2. Consider the linear map

$$
L: \Omega_{c}^{n}(N) \rightarrow \mathbb{R}, \alpha \mapsto \int_{M} \varphi^{*} \alpha
$$

If $\psi: \widetilde{U} \rightarrow U$ is an oriented parametrisation of N and $U^{\prime}:=\varphi^{-1}(U) \subseteq M$, then $\varphi^{-1} \circ \psi: \widetilde{U} \rightarrow U^{\prime}$ is an oriented parametrisation of M. If $\alpha \in \Omega_{c}^{n}(N)$ has $\operatorname{supp} \alpha \subseteq U$, then $\operatorname{supp} \varphi^{*} \alpha \subseteq U^{\prime}$, so the characterising property of \int_{M} gives

$$
L(\alpha)=\int_{\widetilde{U}}\left(\varphi^{-1} \circ \psi\right)^{*}\left(\varphi^{*} \alpha\right)=\int_{\widetilde{U}}\left(\varphi \circ \varphi^{-1} \circ \psi\right)^{*} \alpha=\int_{\widetilde{U}} \psi^{*} \alpha .
$$

Thus L is an integration map on N, and hence $L=\int_{N}$.
3. (i) To identify the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\varphi^{*} \omega=f d x_{1} \wedge d x_{2}$, we can compute $f(x)$ as

$$
\omega_{\varphi(x)}\left(\frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right)=\operatorname{Det}\left(\varphi(x), \frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right) .
$$

Now

$$
\frac{\partial \varphi}{\partial x_{1}}=\frac{\partial\left(\frac{1}{1+\|x\|^{2}}\right)}{\partial x_{1}}\left(1+\|x\|^{2}\right) \varphi(x)+\frac{2}{1+\|x\|^{2}}\left(1,0, x_{1}\right),
$$

and $\frac{\partial \varphi}{\partial x_{2}}$ has an analogous expression. Because Det is alternating, the $\varphi(x)$ terms in $\frac{\partial \varphi}{\partial x_{i}}$ do not contribute to

$$
\begin{aligned}
& \operatorname{Det}\left(\varphi(x), \frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{1}}\right)=\frac{4}{\left(1+\|x\|^{2}\right)^{3}} \operatorname{det}\left(\begin{array}{ccc}
2 x_{1} & 1 & 0 \\
2 x_{2} & 0 & 1 \\
\|x\|^{2}-1 & x_{1} & x_{2}
\end{array}\right) \\
& =\frac{4}{\left(1+\|x\|^{2}\right)^{3}}\left(\|x\|^{2}-1-2 x_{1}^{2}-2 x_{2}^{2}\right)=-\frac{4}{\left(1+\|x\|^{2}\right)^{2}}
\end{aligned}
$$

Thus

$$
\varphi^{*} \omega=-\frac{4}{\left(1+\|x\|^{2}\right)^{2}} d x_{1} \wedge d x_{2}
$$

A similar calculation shows

$$
\psi^{*} \omega=\frac{4}{\left(1+\|y\|^{2}\right)^{2}} d y_{1} \wedge d y_{2}
$$

(ii) φ is not oriented, but ψ is, and therefore $\varphi^{-1} \circ \psi$ is orientation-reversing.
(iii) Since ψ is an oriented parametrisation and the complement of its image in S^{2} is a lowerdimensional set,

$$
\int_{S^{2}} \omega=\int_{\mathbb{R}^{2}} \psi^{*} \omega=\int_{\mathbb{R}^{2}} \frac{4 d y_{1} d y_{2}}{\left(1+\|y\|^{2}\right)^{2}}=\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{4 r d r d \theta}{\left(1+r^{2}\right)^{2}}=4 \pi,
$$

since the integral over θ gives 2π and the integral over r gives 2 (e.g. the integrand is the derivative of $-2 /\left(1+r^{2}\right)$.
4. Let ω be an orientation form. Then $d \omega=0$ and (using the orientation defined by ω) $\int_{M} \omega>0$ by previous exercises. We cannot have $\omega=d \beta$ since $\int_{M} d \beta=0$ by Stokes' Theorem.
5. We do not give model sketch proofs. A good sketch, along the lines of the proof in the notes, would include the following main relevant points:

- the decomposition of $\operatorname{Alt}^{k}\left(\mathbb{R}^{n}\right)$, and hence $\alpha \in \Omega^{k}(U)$, with respect to one variable;
- the existence of γ with $\alpha^{\prime}=\alpha-d \gamma$ independent of one variable (e.g. using the second fundamental theorem of calculus to define γ, and the formula for $\mathcal{L}(d \alpha)$ when $\mathcal{L}(\alpha)=0$);
- an argument (e.g. pullback and induction) that α^{\prime} is exact.

