Hand in answers by 18:10pm on Tuesday 12 December for the Seminar of Wednesday 13 December Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let M be an open subset of H^{n} with the standard orientation. Show that integration of differential n-forms on M (as in Section 4.3) defines an integration map \int_{M} on M (as in Section 4.5).
[Solution: Multiple integration is linear by basic results of analysis, hence integration of forms defines a linear map $\Omega_{c}^{n}(M) \rightarrow \mathbb{R}$. Now if $\varphi: \widetilde{U} \rightarrow U \subseteq M$ is an oriented parametrization (with U open in M and \widetilde{U} open in H^{n}, and $\operatorname{supp}(\alpha) \subseteq U$, then $\int_{M} \alpha=\int_{U} \alpha$ because of the way integration of forms is defined, and $\int_{U} \alpha=\int_{\widetilde{U}} \varphi^{*} \alpha$ by the change of variables formula for integration of forms. Thus both properties of integration maps are satisfied.]

1. Let $M \subseteq \mathbb{R}^{s}$ be an oriented compact n-dimensional SMWB. Let $\omega \in \Omega^{n}(M)$ be any orientation form on M compatible with the chosen orientation. Show that $\int_{M} \omega>0$.
[Hint: Use a partition of unity to write ω as the sum of forms, each of which has support contained in the image of a parametrisation, and show that the integral of each term has positive integral.]
2. Let $M \subseteq \mathbb{R}^{s}$ and $N \subseteq \mathbb{R}^{\ell}$ be oriented n-dimensional SMWBs, and let $\varphi: M \rightarrow N$ be an orientationpreserving diffeomorphism. Show that for any $\alpha \in \Omega_{c}^{n}(N)$ we have

$$
\int_{M} \varphi^{*} \alpha=\int_{N} \alpha .
$$

[Hint: Show that $\Omega_{c}^{n}(N) \rightarrow \mathbb{R}, \alpha \mapsto \int_{M} \varphi^{*} \alpha$ is an integration map.]
3. Let $\omega \in \Omega^{2}\left(S^{2}\right)$ be the orientation form defined by $\left.\omega_{p}=p\right\lrcorner$ Det for $p \in S^{2}$. Consider the oriented manifold S^{2} with orientation defined by ω. Define parametrisations of S^{2} by

$$
\varphi: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,1)\}, x \mapsto \frac{1}{1+\|x\|^{2}}\left(2 x_{1}, 2 x_{2},\|x\|^{2}-1\right)
$$

and

$$
\psi: \mathbb{R}^{2} \rightarrow S^{2} \backslash\{(0,0,-1)\}, y \mapsto \frac{1}{1+\|y\|^{2}}\left(2 y_{1}, 2 y_{2},-\|y\|^{2}+1\right) .
$$

(i) Express $\varphi^{*} \omega \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ in terms of $d x_{1} \wedge d x_{2}$, and $\psi^{*} \omega \in \Omega^{2}\left(\mathbb{R}^{2}\right)$ in terms of $d y_{1} \wedge d y_{2}$.
[Hint: The usual process would be to write $\omega=z_{1} d z_{2} \wedge d z_{3}-z_{2} d z_{1} \wedge d z_{3}+z_{3} d z_{1} \wedge d z_{2}$ and then work out $\varphi^{*} \omega$ as $\varphi^{*}\left(z_{1}\right) d\left(\varphi^{*} z_{2}\right) \wedge d\left(\varphi^{*} z_{3}\right)+\cdots$. However, in this case it may be more convenient to organise the calculation as follows: if $\varphi^{*} \omega=f d x_{1} \wedge d x_{2}$, then $\left.f(x)=\operatorname{Det}\left(\varphi(x), \frac{\partial \varphi}{\partial x_{1}}, \frac{\partial \varphi}{\partial x_{2}}\right) \cdot\right]$
(ii) Is φ an oriented parametrisation? Is ψ ? Is $\left.\varphi^{-1} \circ \psi\right|_{\mathbb{R}^{2} \backslash\{0\}}$ orientation-preserving?
[Hint: You only need to examine the signs of the coefficients of $d x_{1} \wedge d x_{2}$ and $d y_{1} \wedge d y_{2}$ in the results from (i).]
(iii) Evaluate $\int_{S^{2}} \omega$.
[Hint: It is enough to evaluate $\int_{\mathbb{R}^{2}} \psi^{*} \omega$.]
4. Let M be any orientable n-dimensional closed manifold (i.e., M is a compact SMWB with $\partial M=\varnothing$). Show that M admits a differential n-form ω which is closed but not exact.
[Hint: Use Q1 and Stokes' Theorem.]
5. Sketch a proof of the Poincaré Lemma. [Other examples of sketch proof questions can be found in past papers.]

