MA40254 Differential and geometric analysis : Exercises 10

Hand in answers by 18:10pm on Tuesday 12 December for the Seminar of Wednesday 13 December Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let M be an open subset of H^n with the standard orientation. Show that integration of differential *n*-forms on M (as in Section 4.3) defines an integration map \int_M on M (as in Section 4.5).

[Solution: Multiple integration is linear by basic results of analysis, hence integration of forms defines a linear map $\Omega_c^n(M) \to \mathbb{R}$. Now if $\varphi: \tilde{U} \to U \subseteq M$ is an oriented parametrization (with U open in M and \tilde{U} open in H^n), and $\operatorname{supp}(\alpha) \subseteq U$, then $\int_M \alpha = \int_U \alpha$ because of the way integration of forms is defined, and $\int_U \alpha = \int_{\tilde{U}} \varphi^* \alpha$ by the change of variables formula for integration of forms. Thus both properties of integration maps are satisfied.]

1. Let $M \subseteq \mathbb{R}^s$ be an oriented compact *n*-dimensional SMWB. Let $\omega \in \Omega^n(M)$ be any orientation form on M compatible with the chosen orientation. Show that $\int_M \omega > 0$.

[Hint: Use a partition of unity to write ω as the sum of forms, each of which has support contained in the image of a parametrisation, and show that the integral of each term has positive integral.]

2. Let $M \subseteq \mathbb{R}^s$ and $N \subseteq \mathbb{R}^\ell$ be oriented *n*-dimensional SMWBs, and let $\varphi : M \to N$ be an orientationpreserving diffeomorphism. Show that for any $\alpha \in \Omega^n_c(N)$ we have

$$\int_M \varphi^* \alpha = \int_N \alpha.$$

[**Hint**: Show that $\Omega_c^n(N) \to \mathbb{R}$, $\alpha \mapsto \int_M \varphi^* \alpha$ is an integration map.]

3. Let $\omega \in \Omega^2(S^2)$ be the orientation form defined by $\omega_p = p \,\lrcorner\, \text{Det}$ for $p \in S^2$. Consider the oriented manifold S^2 with orientation defined by ω . Define parametrisations of S^2 by

$$\varphi : \mathbb{R}^2 \to S^2 \setminus \{(0,0,1)\}, \ x \mapsto \frac{1}{1+\|x\|^2} \left(2x_1, 2x_2, \|x\|^2 - 1\right)$$

and

$$\psi : \mathbb{R}^2 \to S^2 \setminus \{(0,0,-1)\}, \ y \mapsto \frac{1}{1+\|y\|^2} \left(2y_1, 2y_2, -\|y\|^2 + 1\right).$$

(i) Express $\varphi^* \omega \in \Omega^2(\mathbb{R}^2)$ in terms of $dx_1 \wedge dx_2$, and $\psi^* \omega \in \Omega^2(\mathbb{R}^2)$ in terms of $dy_1 \wedge dy_2$.

[Hint: The usual process would be to write $\omega = z_1 dz_2 \wedge dz_3 - z_2 dz_1 \wedge dz_3 + z_3 dz_1 \wedge dz_2$ and then work out $\varphi^* \omega$ as $\varphi^*(z_1) d(\varphi^* z_2) \wedge d(\varphi^* z_3) + \cdots$. However, in this case it may be more convenient to organise the calculation as follows: if $\varphi^* \omega = f dx_1 \wedge dx_2$, then $f(x) = \text{Det}\left(\varphi(x), \frac{\partial \varphi}{\partial x_1}, \frac{\partial \varphi}{\partial x_2}\right)$.]

(ii) Is φ an oriented parametrisation? Is ψ ? Is $\varphi^{-1} \circ \psi|_{\mathbb{R}^2 \setminus \{0\}}$ orientation-preserving?

[**Hint**: You only need to examine the signs of the coefficients of $dx_1 \wedge dx_2$ and $dy_1 \wedge dy_2$ in the results from (i).]

(iii) Evaluate $\int_{S^2} \omega$.

[**Hint**: It is enough to evaluate $\int_{\mathbb{R}^2} \psi^* \omega$.]

4. Let *M* be any orientable *n*-dimensional closed manifold (i.e., *M* is a compact SMWB with $\partial M = \emptyset$). Show that *M* admits a differential *n*-form ω which is closed but not exact. [Hint: Use Q1 and Stokes' Theorem.]

5. Sketch a proof of the Poincaré Lemma. [Other examples of sketch proof questions can be found in past papers.]

DMJC 5 December