MA40254 Differential and geometric analysis : Exercises 9

Hand in answers by 1:15pm on Wednesday 6 December for the Seminar of Thursday 7 December Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$; $p \mapsto (x_1(p), x_2(p)^2)$. Compute $\varphi^*(dx_1 \wedge dx_2)$ directly, and find the largest open subset of \mathbb{R}^2 on which φ is an orientation-preserving local diffeomorphism.

[Solution: $\varphi^*(dx_1 \wedge dx_2) = d(\varphi^*x_1) \wedge d(\varphi^*x_2) = dx_1 \wedge d(x_2^2) = 2x_2 dx_1 \wedge dx_2$, which is $J_{\varphi} dx_1 \wedge dx_2$ in accordance with the general result in lectures, since the matrix of $D\varphi_p$ is diagonal with entries $1, 2x_2(p)$ hence $J_{\varphi} = 2x_2$. Thus φ is a local diffeomorphism when $x_2 \neq 0$ and orientation preserving on $\{p \in \mathbb{R}^2 : x_2(p) > 0\}$.]

1. Let $M \subseteq \mathbb{R}^s$ be an orientable submanifold, and let $U \subseteq M$ be an open subset. Show that U is also orientable.

[Hint: If $\omega \in \Omega^n(M)$ is an orientation form, what can you say about its pullback to U?]

2 (Less essential). Let $M \subseteq \mathbb{R}^{n+1}$ be a submanifold of dimension n. Show that M is orientable if and only if there is a nowhere-vanishing normal vector field on M, i.e., a smooth function $\nu : M \to \mathbb{R}^{n+1}$ such that $\nu(p) \neq 0$ and $\nu(p)$ is orthogonal to T_pM for all $p \in M$.

[**Hint**: Given such a ν , consider $\omega \in \Omega^n(M)$ defined by $\omega_p = \nu(p) \, \lrcorner \, \text{Det}$. Show that ν is uniquely determined by ω —you may then assume that ν is smooth (this is not so easy to prove rigorously).]

3. Let $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$, and let $a : S^n \to S^n$ be the *antipodal map*, i.e., the diffeomorphism $p \mapsto -p$. For which values of n is a orientation-preserving?

[Hint: If $\omega \in \Omega^n(S^n)$ is an orientation form, then $a^*\omega = f\omega$ for some function $f: S^n \to \mathbb{R} \setminus \{0\}$. You need to decide whether f takes positive or negative values. Consider the orientation form $\omega \in \Omega^n(S^n)$ given by $\omega_p = p \,\lrcorner\, \text{Det.}$]

4. Let U and \tilde{U} be open subsets of \mathbb{R}^n , and $\alpha \in \Omega^n_{cpt}(U)$. Let $\varphi : \tilde{U} \to U$ be an orientation-reversing diffeomorphism, i.e., $\det(D\varphi_p) < 0$ for all $x \in \tilde{U}$. Show that

$$\int_{\tilde{U}} \varphi^* \alpha = -\int_U \alpha.$$

[Hint: Imitate the proof of that the integral is invariant under orientation-preserving diffeomorphisms.]

5. Plan an essay on one of the following topics.

- (i) The inverse function theorem and its use in submanifold theory.
- (ii) Alternating multilinear forms and their properties.
- (iii) Using pullback to define the exterior derivative on submanifolds.

DMJC 28 November