Hand in answers by 1:15pm on Wednesday 29 November for the Seminar of Thursday 30 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let M be an n-dimensional submanifold of \mathbb{R}^s . Prove (from the definition of d on submanifolds) that if $\alpha \in \Omega^k(M)$ is exact, i.e., $\alpha = d\beta$, then α is closed, i.e., $d\alpha = 0$.

[Solution: Suppose $\alpha = d\beta$. We have seen in lectures that $d^2 = 0$ so $d\alpha = d^2\beta = 0$, but let us recall how to prove this. Note that it suffices to prove $d\alpha = 0$ locally on M, i.e., on sufficiently small open neighbourhoods $U \cap M$ of each $p \in M$. There are two ways to proceed.

First by definition, we may assume that on $U \cap M$, $\beta = \iota^* \gamma$, where $\gamma \in \Omega^k(U)$ and $\iota \colon U \cap M \to U$ is the inclusion. Thus $d\alpha = d^2(\iota^* \gamma) = d(\iota^* d\gamma) = \iota^*(d^2 \gamma) = 0$ on $U \cap M$. Alternatively, we may assume that there is a parametrisation $\varphi \colon \widetilde{U} \to U \cap M$. Then $\varphi^* d\alpha = \varphi^* d^2 \beta = d\varphi^* d\beta = d^2 \varphi^* \beta = 0$, so $d\alpha = 0$ on $U \cap M$ because $\varphi^* \colon \Omega^k(U \cap M) \to \Omega^k(\widetilde{U})$ is a bijection with inverse $(\varphi^{-1})^*$.

- **1.** Let $M \subseteq \mathbb{R}^s$ be an *n*-dimensional submanifold and $\alpha \in \Omega^k(M)$ for k > 0.
 - (i) Suppose that M is diffeomorphic to \mathbb{R}^n and α is closed; prove that α is exact.

[Hint: Let $\varphi : \mathbb{R}^n \to M$ be a diffeomorphism, and consider the pullback $\varphi^* \alpha \in \Omega^k(\mathbb{R}^n)$.]

(ii) Suppose k = n; show that α is closed.

[Hint: What is the dimension of $Alt^{n+1}(T_xM)$?]

(iii) If k = n, does α have to be exact?

[Hint: Look for examples on $M = S^1$. A previous exercise may help.]

2. Give an example of an *n*-dimensional submanifold $M \subseteq \mathbb{R}^s$ and an $\alpha \in \Omega^k(M)$ such that α is not the pullback by the inclusion of any $\beta \in \Omega^k(\mathbb{R}^s)$.

[Hint: The simplest examples have n = s = 1 and k = 0.]

3. Let $S^2 = \{z \in \mathbb{R}^3 : ||z|| = 1\}$, and $U = S^2 \setminus \{(0,0,1)\}$, and consider the parametrisation $\varphi \colon \mathbb{R}^2 \to U$ defined by

$$(x_1, x_2) \mapsto \frac{1}{1 + ||x||^2} (2x_1, 2x_2, ||x||^2 - 1).$$

Let $\alpha = i^*dz_3$ where $i: S^2 \to \mathbb{R}^3$ is the inclusion and z_1, z_2, z_3 denote the coordinate functions on \mathbb{R}^3 . Compute $\varphi^*\alpha$.

[**Hint**: $\varphi^* i^* dz_3 = (i \circ \varphi)^* dz_3 = \cdots$.]

MA40254 Differential and geometric analysis: Solutions 8

- 1. (i) Suppose α is closed. Let $\varphi: \mathbb{R}^n \to M$ be a diffeomorphism. Then $\varphi^*\alpha \in \Omega^k(\mathbb{R}^n)$ is closed, so exact by the Poincaré lemma, i.e, there is some $\gamma \in \Omega^{k-1}(\mathbb{R}^n)$ such that $d\gamma = \varphi^*\alpha$. If we let $\beta = (\varphi^{-1})^*\gamma \in \Omega^{k-1}(M)$ then $d\beta = (\varphi^{-1})^*d\gamma = (\varphi^{-1})^*(\varphi^*\alpha) = (\varphi \circ \varphi^{-1})^*\alpha = \alpha$.
 - (ii) For each $p \in M$, $d\alpha_p$ is an element of $\mathrm{Alt}^{n+1}(T_pM)$. Since $n+1 > \dim T_pM$, we have $\mathrm{Alt}^{n+1}(T_pM) = \{0\}$, so $d\alpha$ is zero everywhere.
- (iii) No. Consider $M = S^1 \subseteq \mathbb{R}^2$, and let $\alpha \in \Omega^1(S^1)$ be the pullback by $i: S^1 \to \mathbb{R}^2 \setminus \{0\}$ of the non-exact 1-form

$$\gamma = \frac{-x_2 dx_1 + x_1 dx_2}{x_1^2 + x_2^2} \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$$

from Exercises 6 Q 4(iii). The same argument as there shows that α is not exact either.

- **2.** We can for instance take $M=(0,\infty)\subset\mathbb{R}$, and k=0. Then an element of $\Omega^k(M)$ is just a smooth function $(0,\infty)\to\mathbb{R}$ and pullback reduces to restriction. If we take it to be $x\mapsto \frac{1}{x}$ then that is not the restriction of any smooth function $\mathbb{R}\to\mathbb{R}$.
- **3.** We have $\varphi^*i^*dz_3 = (i \circ \varphi)^*dz_3 = d((i \circ \varphi)^*z_3)$ and $(i \circ \varphi)^*z_3 = (x_1^2 + x_2^2 1)/(1 + x_1^2 + x_2^2)$. The exterior derivative of this is

$$\frac{4x_1dx_1 + 4x_2dx_2}{(1+x_1^2+x_2^2)^2}.$$