
MA40254 Differential and geometric analysis : Exercises 7

Hand in answers by 1:15pm on Wednesday 22 November for the Seminar of Thursday 23 November
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Show that α := sin(x2)3dx1 ∧ dx2 is exact.
[Solution: There are three easy ways and one hard way. The hard way is to integrate sin(x2)3

explicitly. The easy ways are: α = d(x1 sin(x2)3dx2); α = d(−(
∫ x2 sin(t)3dt)dx1) by the Second

Fundamental Theorem of Calculus; or α is exact by the Poincaré Lemma.]

1. Let U = {p ∈ R4 : x2(p) ̸= 0}, and

α = x2dx1 − x1dx2
x2

2
∧ (x1dx3 + x2

2dx4) ∈ Ω2(U).

Compute dα ∈ Ω3(U) and express it in standard form.
[Hint: One way to organise the calculation is to first show that d

(
x2dx1−x1dx2

x2
2

)
= 0.]

2. For each of the following differential 3-forms α, find a differential 2-form β such that dβ = α. (Note
we abbreviate multi-index notation as dxijk = dxi ∧ dxj ∧ dxk.)

(i) α = x3x4 dx123 + x2
3 dx124 + 2x2x3 dx134 + x1x3 dx234 ∈ Ω3(R4).

[Hint: First look for γ ∈ Ω2(R4) of the form γ = fdx23 +gdx24 +hdx34 (for f, g and h functions
R4 → R) such that α − dγ has no dx123, dx124 or dx134 component.]

(ii) α = log(x1) exp(x2) cos(x3)2dx123 ∈ Ω3(R+ × R2).

[Hint: Which function is easiest to integrate?]

3. (i) Show that any ω ∈ Alt2(R3) can be written as ω = α ∧ β for some α, β ∈ R3∗.

[Hint: If ω = α ∧ β, what can you say about ω ∧ α? What is the dimension of the subspace
{γ : ω ∧ γ = 0} ⊆ R3∗?]

(ii) Show that ε1 ∧ ε2 + ε3 ∧ ε4 ∈ Alt2(R4) cannot be written in the form α ∧ β for any α, β ∈ R4∗.
(Here εi is the standard dual basis of R4∗ as usual.)

[Hint: If ε1 ∧ ε2 + ε3 ∧ ε4 = α ∧ β, consider the result of taking the wedge product of each side
with itself.]

4. Let α ∈ Ωk(U) and β ∈ Ωℓ(U)

(i) Show that if α and β are closed, then so is α ∧ β.

(ii) Show that if α is closed and β is exact, then α ∧ β is exact.

5. Sketch a proof of the Inverse Function Theorem.
[Please also indicate if you are willing to have your sketch discussed in the seminar.]
[Hint: See the guidance about sketch proofs on moodle.]
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1. The first factor equals d
(x1

x2

)
, so its exterior derivative vanishes. Hence, using the Leibniz rule,

dα = −x2dx1 − x1dx2
x2

2
∧ d(x1dx3 + x2

2dx4)

= −x2dx1 − x1dx2
x2

2
∧ (dx1∧dx3 + 2x2dx2∧dx4)

= −2x2
2dx1∧dx2∧dx4 + x1dx1∧dx2∧dx3

x2
2

2. (i) We can first look for, for instance, a γ ∈ Ω2(R4) of the form γ = fdx23 + gdx24 + hdx34, for
f, g and h functions R4 → R, such that α − dγ has no dx123, dx124 or dx134 component. That
means we should take f such that ∂f

∂x1
= x3x4, e.g., f = x1x3x4. Similarly we can take g = x1x2

3
and h = 2x1x2x3. Evaluating α − dγ we find that actually the dx234 terms cancel too. Thus we
can take

β = γ = x1x3x4dx23 + x1x2
3dx24 + 2x1x2x3dx34.

(ii) (−x1+x1log(x1)) exp(x2) cos(x3)2dx23 and − log(x1) exp(x2) cos(x3)2dx13 and
1
4 log(x1) exp(x2)(sin(2x3) + 2x3)dx12

are three possible choices for β, the middle one being the easiest!

3. (i) The linear map (R3)∗ → Alt3(R3), α 7→ ω∧α has kernel of dimension at least 2. Pick linearly
independent elements α1, α2 in the kernel, and extend to a basis α1, α2, α3 of (R3)∗. We can
then write

ω = λ1α2 ∧ α3 + λ2α3 ∧ α1 + λ3α1 ∧ α2

for some coefficients λi ∈ R. Now

0 = ω ∧ α1 = λ1α1∧α2∧α3

implies that λ1 = 0, and similarly λ2 = 0. We can thus take α = λ3α1 and β = α2.

(ii) Writing (γ)2 for γ ∧ γ, we have

(ε1 ∧ ε2 + ε3 ∧ ε4)2 = 2ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∈ Alt4 R4,

which is non-zero. On the other hand,

(α ∧ β)2 = 0

for any α, β ∈ (R4)∗.

4. (i) d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ = 0 by assumption and the Leibniz rule.

(ii) Suppose β = dγ. Then d((−1)kα ∧ γ) = (−1)kdα ∧ γ + α ∧ dγ = α ∧ β, by assumption and the
Leibniz rule.

5. I do not provide model sketch proofs as there is no single right answer, and I want to encourage
you to develop your own. Instead, I indicate the most crucial ideas. For the proof in lectures of the
IFT for f : U → Rn with Dfx invertible, I would highlight the following.



• Using the continuity of Df to find a domain U ′ on which Df is close to Dfx (hence f is a local
diffeomorphism).

• Using the Mean Value Inequality to establish the contraction mapping property on U ′.

• Using the Contraction Mapping Theorem to show f(U ′) is open.

• The estimate ||y − z|| ≤ 2||f(y) − f(z)||, which is used to establish both injectivity of f and
differentiability of the inverse.


