MA40254 Differential and geometric analysis : Exercises 7

Hand in answers by 1:15pm on Wednesday 22 November for the Seminar of Thursday 23 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Show that $\alpha:=\sin \left(x_{2}\right)^{3} d x_{1} \wedge d x_{2}$ is exact.
[Solution: There are three easy ways and one hard way. The hard way is to integrate $\sin \left(x_{2}\right)^{3}$ explicitly. The easy ways are: $\alpha=d\left(x_{1} \sin \left(x_{2}\right)^{3} d x_{2}\right) ; ~ \alpha=d\left(-\left(\int^{x_{2}} \sin (t)^{3} d t\right) d x_{1}\right)$ by the Second Fundamental Theorem of Calculus; or α is exact by the Poincaré Lemma.]

1. Let $U=\left\{p \in \mathbb{R}^{4}: x_{2}(p) \neq 0\right\}$, and

$$
\alpha=\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}} \wedge\left(x_{1} d x_{3}+x_{2}^{2} d x_{4}\right) \in \Omega^{2}(U) .
$$

Compute $d \alpha \in \Omega^{3}(U)$ and express it in standard form.
[Hint: One way to organise the calculation is to first show that $d\left(\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}}\right)=0$.]
2. For each of the following differential 3 -forms α, find a differential 2 -form β such that $d \beta=\alpha$. (Note we abbreviate multi-index notation as $d x_{i j k}=d x_{i} \wedge d x_{j} \wedge d x_{k}$.)
(i) $\alpha=x_{3} x_{4} d x_{123}+x_{3}^{2} d x_{124}+2 x_{2} x_{3} d x_{134}+x_{1} x_{3} d x_{234} \in \Omega^{3}\left(\mathbb{R}^{4}\right)$.
[Hint: First look for $\gamma \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ of the form $\gamma=f d x_{23}+g d x_{24}+h d x_{34}$ (for f, g and h functions $\mathbb{R}^{4} \rightarrow \mathbb{R}$) such that $\alpha-d \gamma$ has no $d x_{123}, d x_{124}$ or $d x_{134}$ component.]
(ii) $\alpha=\log \left(x_{1}\right) \exp \left(x_{2}\right) \cos \left(x_{3}\right)^{2} d x_{123} \in \Omega^{3}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$.
[Hint: Which function is easiest to integrate?]
3. (i) Show that any $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{3}\right)$ can be written as $\omega=\alpha \wedge \beta$ for some $\alpha, \beta \in \mathbb{R}^{3 *}$.
[Hint: If $\omega=\alpha \wedge \beta$, what can you say about $\omega \wedge \alpha$? What is the dimension of the subspace $\{\gamma: \omega \wedge \gamma=0\} \subseteq \mathbb{R}^{3 *}$? $]$
(ii) Show that $\varepsilon_{1} \wedge \varepsilon_{2}+\varepsilon_{3} \wedge \varepsilon_{4} \in \operatorname{Alt}^{2}\left(\mathbb{R}^{4}\right)$ cannot be written in the form $\alpha \wedge \beta$ for any $\alpha, \beta \in \mathbb{R}^{4 *}$. (Here ε_{i} is the standard dual basis of $\mathbb{R}^{4^{*}}$ as usual.)
[Hint: If $\varepsilon_{1} \wedge \varepsilon_{2}+\varepsilon_{3} \wedge \varepsilon_{4}=\alpha \wedge \beta$, consider the result of taking the wedge product of each side with itself.]
4. Let $\alpha \in \Omega^{k}(U)$ and $\beta \in \Omega^{\ell}(U)$
(i) Show that if α and β are closed, then so is $\alpha \wedge \beta$.
(ii) Show that if α is closed and β is exact, then $\alpha \wedge \beta$ is exact.
5. Sketch a proof of the Inverse Function Theorem.
[Please also indicate if you are willing to have your sketch discussed in the seminar.]
[Hint: See the guidance about sketch proofs on moodle.]

1. The first factor equals $d\left(\frac{x_{1}}{x_{2}}\right)$, so its exterior derivative vanishes. Hence, using the Leibniz rule,

$$
\begin{aligned}
d \alpha & =-\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}} \wedge d\left(x_{1} d x_{3}+x_{2}^{2} d x_{4}\right) \\
& =-\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}} \wedge\left(d x_{1} \wedge d x_{3}+2 x_{2} d x_{2} \wedge d x_{4}\right) \\
& =-\frac{2 x_{2}^{2} d x_{1} \wedge d x_{2} \wedge d x_{4}+x_{1} d x_{1} \wedge d x_{2} \wedge d x_{3}}{x_{2}^{2}}
\end{aligned}
$$

2. (i) We can first look for, for instance, a $\gamma \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ of the form $\gamma=f d x_{23}+g d x_{24}+h d x_{34}$, for f, g and h functions $\mathbb{R}^{4} \rightarrow \mathbb{R}$, such that $\alpha-d \gamma$ has no $d x_{123}, d x_{124}$ or $d x_{134}$ component. That means we should take f such that $\frac{\partial f}{\partial x_{1}}=x_{3} x_{4}$, e.g., $f=x_{1} x_{3} x_{4}$. Similarly we can take $g=x_{1} x_{3}^{2}$ and $h=2 x_{1} x_{2} x_{3}$. Evaluating $\alpha-d \gamma$ we find that actually the $d x_{234}$ terms cancel too. Thus we can take

$$
\beta=\gamma=x_{1} x_{3} x_{4} d x_{23}+x_{1} x_{3}^{2} d x_{24}+2 x_{1} x_{2} x_{3} d x_{34} .
$$

(ii) $\left(-x_{1}+x_{1} \log \left(x_{1}\right)\right) \exp \left(x_{2}\right) \cos \left(x_{3}\right)^{2} d x_{23}$ and $-\log \left(x_{1}\right) \exp \left(x_{2}\right) \cos \left(x_{3}\right)^{2} d x_{13}$ and

$$
\frac{1}{4} \log \left(x_{1}\right) \exp \left(x_{2}\right)\left(\sin \left(2 x_{3}\right)+2 x_{3}\right) d x_{12}
$$

are three possible choices for β, the middle one being the easiest!
3. (i) The linear map $\left(\mathbb{R}^{3}\right)^{*} \rightarrow \operatorname{Alt}^{3}\left(\mathbb{R}^{3}\right), \alpha \mapsto \omega \wedge \alpha$ has kernel of dimension at least 2. Pick linearly independent elements α_{1}, α_{2} in the kernel, and extend to a basis $\alpha_{1}, \alpha_{2}, \alpha_{3}$ of $\left(\mathbb{R}^{3}\right)^{*}$. We can then write

$$
\omega=\lambda_{1} \alpha_{2} \wedge \alpha_{3}+\lambda_{2} \alpha_{3} \wedge \alpha_{1}+\lambda_{3} \alpha_{1} \wedge \alpha_{2}
$$

for some coefficients $\lambda_{i} \in \mathbb{R}$. Now

$$
0=\omega \wedge \alpha_{1}=\lambda_{1} \alpha_{1} \wedge \alpha_{2} \wedge \alpha_{3}
$$

implies that $\lambda_{1}=0$, and similarly $\lambda_{2}=0$. We can thus take $\alpha=\lambda_{3} \alpha_{1}$ and $\beta=\alpha_{2}$.
(ii) Writing $(\gamma)^{2}$ for $\gamma \wedge \gamma$, we have

$$
\left(\varepsilon_{1} \wedge \varepsilon_{2}+\varepsilon_{3} \wedge \varepsilon_{4}\right)^{2}=2 \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3} \wedge \varepsilon_{4} \in \operatorname{Alt}^{4} \mathbb{R}^{4}
$$

which is non-zero. On the other hand,

$$
(\alpha \wedge \beta)^{2}=0
$$

for any $\alpha, \beta \in\left(\mathbb{R}^{4}\right)^{*}$.
4. (i) $d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta=0$ by assumption and the Leibniz rule.
(ii) Suppose $\beta=d \gamma$. Then $d\left((-1)^{k} \alpha \wedge \gamma\right)=(-1)^{k} d \alpha \wedge \gamma+\alpha \wedge d \gamma=\alpha \wedge \beta$, by assumption and the Leibniz rule.
5. I do not provide model sketch proofs as there is no single right answer, and I want to encourage you to develop your own. Instead, I indicate the most crucial ideas. For the proof in lectures of the IFT for $f: U \rightarrow \mathbb{R}^{n}$ with $D f_{x}$ invertible, I would highlight the following.

- Using the continuity of $D f$ to find a domain U^{\prime} on which $D f$ is close to $D f_{x}$ (hence f is a local diffeomorphism).
- Using the Mean Value Inequality to establish the contraction mapping property on U^{\prime}.
- Using the Contraction Mapping Theorem to show $f\left(U^{\prime}\right)$ is open.
- The estimate $\|y-z\| \leq 2\|f(y)-f(z)\|$, which is used to establish both injectivity of f and differentiability of the inverse.

