Hand in answers by 1:15pm on Wednesday 22 November for the Seminar of Thursday 23 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Show that $\alpha := \sin(x_2)^3 dx_1 \wedge dx_2$ is exact.

[Solution: There are three easy ways and one hard way. The hard way is to integrate $\sin(x_2)^3$ explicitly. The easy ways are: $\alpha = d(x_1 \sin(x_2)^3 dx_2); \ \alpha = d(-(\int^{x_2} \sin(t)^3 dt) dx_1)$ by the Second Fundamental Theorem of Calculus; or α is exact by the Poincaré Lemma.]

1. Let $U = \{p \in \mathbb{R}^4 : x_2(p) \neq 0\}$, and

$$\alpha = \frac{x_2 dx_1 - x_1 dx_2}{x_2^2} \wedge (x_1 dx_3 + x_2^2 dx_4) \in \Omega^2(U).$$

Compute $d\alpha \in \Omega^3(U)$ and express it in standard form.

[**Hint**: One way to organise the calculation is to first show that $d\left(\frac{x_2dx_1-x_1dx_2}{x_2^2}\right) = 0.$]

2. For each of the following differential 3-forms α , find a differential 2-form β such that $d\beta = \alpha$. (Note we abbreviate multi-index notation as $dx_{ijk} = dx_i \wedge dx_j \wedge dx_k$.)

(i) $\alpha = x_3 x_4 \, dx_{123} + x_3^2 \, dx_{124} + 2 x_2 x_3 \, dx_{134} + x_1 x_3 \, dx_{234} \in \Omega^3(\mathbb{R}^4).$

[**Hint**: First look for $\gamma \in \Omega^2(\mathbb{R}^4)$ of the form $\gamma = f dx_{23} + g dx_{24} + h dx_{34}$ (for f, g and h functions $\mathbb{R}^4 \to \mathbb{R}$) such that $\alpha - d\gamma$ has no dx_{123}, dx_{124} or dx_{134} component.]

(ii) $\alpha = \log(x_1) \exp(x_2) \cos(x_3)^2 dx_{123} \in \Omega^3(\mathbb{R}^+ \times \mathbb{R}^2).$

[Hint: Which function is easiest to integrate?]

3. (i) Show that any $\omega \in \operatorname{Alt}^2(\mathbb{R}^3)$ can be written as $\omega = \alpha \wedge \beta$ for some $\alpha, \beta \in \mathbb{R}^{3*}$.

[Hint: If $\omega = \alpha \land \beta$, what can you say about $\omega \land \alpha$? What is the dimension of the subspace $\{\gamma : \omega \land \gamma = 0\} \subseteq \mathbb{R}^{3*}$?]

(ii) Show that $\varepsilon_1 \wedge \varepsilon_2 + \varepsilon_3 \wedge \varepsilon_4 \in \operatorname{Alt}^2(\mathbb{R}^4)$ cannot be written in the form $\alpha \wedge \beta$ for any $\alpha, \beta \in \mathbb{R}^{4*}$. (Here ε_i is the standard dual basis of \mathbb{R}^{4*} as usual.)

[**Hint**: If $\varepsilon_1 \wedge \varepsilon_2 + \varepsilon_3 \wedge \varepsilon_4 = \alpha \wedge \beta$, consider the result of taking the wedge product of each side with itself.]

- **4.** Let $\alpha \in \Omega^k(U)$ and $\beta \in \Omega^\ell(U)$
 - (i) Show that if α and β are closed, then so is $\alpha \wedge \beta$.
 - (ii) Show that if α is closed and β is exact, then $\alpha \wedge \beta$ is exact.

5. Sketch a proof of the Inverse Function Theorem.

[Please also indicate if you are willing to have your sketch discussed in the seminar.]

[**Hint**: See the guidance about sketch proofs on moodle.]