MA40254 Differential and geometric analysis : Exercises 7

Hand in answers by 1:15pm on Wednesday 22 November for the Seminar of Thursday 23 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

- **0** (Warmup). Show that $\alpha := \sin(x_2)^3 dx_1 \wedge dx_2$ is exact.
- **1.** Let $U = \{ p \in \mathbb{R}^4 : x_2(p) \neq 0 \}$, and

$$\alpha = \frac{x_2 dx_1 - x_1 dx_2}{x_2^2} \wedge (x_1 dx_3 + x_2^2 dx_4) \in \Omega^2(U).$$

Compute $d\alpha \in \Omega^3(U)$ and express it in standard form.

2. For each of the following differential 3-forms α , find a differential 2-form β such that $d\beta = \alpha$. (Note we abbreviate multi-index notation as $dx_{ijk} = dx_i \wedge dx_j \wedge dx_k$.)

- (i) $\alpha = x_3 x_4 dx_{123} + x_3^2 dx_{124} + 2x_2 x_3 dx_{134} + x_1 x_3 dx_{234} \in \Omega^3(\mathbb{R}^4).$
- (ii) $\alpha = \log(x_1) \exp(x_2) \cos(x_3)^2 dx_{123} \in \Omega^3(\mathbb{R}^+ \times \mathbb{R}^2).$
- **3.** (i) Show that any $\omega \in \operatorname{Alt}^2(\mathbb{R}^3)$ can be written as $\omega = \alpha \wedge \beta$ for some $\alpha, \beta \in \mathbb{R}^{3*}$.
 - (ii) Show that $\varepsilon_1 \wedge \varepsilon_2 + \varepsilon_3 \wedge \varepsilon_4 \in \operatorname{Alt}^2(\mathbb{R}^4)$ cannot be written in the form $\alpha \wedge \beta$ for any $\alpha, \beta \in \mathbb{R}^{4*}$. (Here ε_i is the standard dual basis of \mathbb{R}^{4*} as usual.)

4. Let $\alpha \in \Omega^k(U)$ and $\beta \in \Omega^\ell(U)$

- (i) Show that if α and β are closed, then so is $\alpha \wedge \beta$.
- (ii) Show that if α is closed and β is exact, then $\alpha \wedge \beta$ is exact.

5. Sketch a proof of the Inverse Function Theorem.

[Please also indicate if you are willing to have your sketch discussed in the seminar.]

DMJC 14 November