MA40254 Differential and geometric analysis : Exercises 7

Hand in answers by 1:15pm on Wednesday 22 November for the Seminar of Thursday 23 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Show that $\alpha:=\sin \left(x_{2}\right)^{3} d x_{1} \wedge d x_{2}$ is exact.

1. Let $U=\left\{p \in \mathbb{R}^{4}: x_{2}(p) \neq 0\right\}$, and

$$
\alpha=\frac{x_{2} d x_{1}-x_{1} d x_{2}}{x_{2}^{2}} \wedge\left(x_{1} d x_{3}+x_{2}^{2} d x_{4}\right) \in \Omega^{2}(U) .
$$

Compute $d \alpha \in \Omega^{3}(U)$ and express it in standard form.
2. For each of the following differential 3 -forms α, find a differential 2-form β such that $d \beta=\alpha$. (Note we abbreviate multi-index notation as $d x_{i j k}=d x_{i} \wedge d x_{j} \wedge d x_{k}$.)
(i) $\alpha=x_{3} x_{4} d x_{123}+x_{3}^{2} d x_{124}+2 x_{2} x_{3} d x_{134}+x_{1} x_{3} d x_{234} \in \Omega^{3}\left(\mathbb{R}^{4}\right)$.
(ii) $\alpha=\log \left(x_{1}\right) \exp \left(x_{2}\right) \cos \left(x_{3}\right)^{2} d x_{123} \in \Omega^{3}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$.
3. (i) Show that any $\omega \in \operatorname{Alt}^{2}\left(\mathbb{R}^{3}\right)$ can be written as $\omega=\alpha \wedge \beta$ for some $\alpha, \beta \in \mathbb{R}^{3 *}$.
(ii) Show that $\varepsilon_{1} \wedge \varepsilon_{2}+\varepsilon_{3} \wedge \varepsilon_{4} \in \operatorname{Alt}^{2}\left(\mathbb{R}^{4}\right)$ cannot be written in the form $\alpha \wedge \beta$ for any $\alpha, \beta \in \mathbb{R}^{4 *}$. (Here ε_{i} is the standard dual basis of $\mathbb{R}^{4 *}$ as usual.)
4. Let $\alpha \in \Omega^{k}(U)$ and $\beta \in \Omega^{\ell}(U)$
(i) Show that if α and β are closed, then so is $\alpha \wedge \beta$.
(ii) Show that if α is closed and β is exact, then $\alpha \wedge \beta$ is exact.
5. Sketch a proof of the Inverse Function Theorem.
[Please also indicate if you are willing to have your sketch discussed in the seminar.]

