
MA40254 Differential and geometric analysis : Exercises 6

Hand in answers by 1:15pm on Wednesday 15 November for the Seminar of Thursday 16 November
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let γ = −x2 dx1 + x1 dx2
x2

1 + x2
2

∈ Ω1(R2 \ {0}). Show that dγ = 0.

[Solution: By the product rule

dγ = d(−x2 dx1 + x1 dx2)
x2

1 + x2
2

− 2x1 dx1 + 2x2 dx2
(x2

1 + x2
2)2 ∧ (−x2 dx1 + x1 dx2) = 0,

since d(−x2 dx1 +x1 dx2) = 2dx1 ∧dx2 and (x1 dx1 +x2 dx2)∧(−x2 dx1 +x1 dx2) = (x2
1 +x2

2)dx1 ∧dx2.]

1. Let U = {p ∈ R4 : x2(p) ̸= 0}, and φ =
(
x1, x2

2x3, x4/x2
)

: U → R3, where x1, x2, x3, x4 are the
coordinate functions on U ⊆ R4. Let α = y1dy2∧dy3 ∈ Ω2(R3) where y1, y2, y3 : R3 → R denote the
coordinate functions.

(i) Express φ∗α and φ∗dα in standard form, i.e., as a sum of terms fdxI .

[Hint: First expand φ∗α as (φ∗y1)d(φ∗y2) ∧ d(φ∗y3) and similarly φ∗dα.]

(ii) Compute directly d(φ∗α). What do you observe?

[Hint: To save work, just compute the terms that don’t appear in φ∗dα.]

2. For U open in Rn, α ∈ Ωk(U), p ∈ U , and v1, . . . , vk ∈ Rn, show that

dαp(v0, . . . , vk) =
k∑

i=0
(−1)iDαp(vi)(v0, . . . , v̂i, . . . , vk)

where v0, . . . , v̂i, . . . , vk denotes the list obtained from v0, . . . , vk by omitting vi. Equivalently

dαp =
k∑

i=0
sgn(σi) σi · Dα∨

p ,

where σi = (0 1 · · · i)−1 ∈ G := Sym({0, 1, . . . k}) ∼= Sk+1, and for σ ∈ G and β ∈ Altk+1(Rn),
(σ · β)(v0, . . . , vk) = β(vσ(0), . . . , vσ(k)) (which is β(vi, v0, . . . , v̂i, . . . , vk) when σ = σi).
[Hint: One approach, using the second formula, is to let H ∼= Sk be the subgroup of G fixing 0, and
observe that σiH : i = 0, . . . k is a left coset partition of G. Now split the sum into sums over each
coset: what is τ · Dα∨

p for τ ∈ H ?]

3 (Less essential). Let U ⊆ R3 an open subset. Given a vector-valued function v = (v1, v2, v3) :
U → R3, define v♭ ∈ Ω1(U) and v ⌟Det ∈ Ω2(U) by applying the corresponding operations on vectors
pointwise.

(i) Let div(v) : U → R be defined by

div(v) = ∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

.

Show that
d(v ⌟Det) = div(v)Det ∈ Ω3(U).



(ii) Let curl(v) : U → R3 be defined by

curl(v) =
(

∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
.

Show that
d(v♭) = curl(v) ⌟Det ∈ Ω2(U).

[Hint: Write all the forms in standard form, e.g., v ⌟Det can be expressed as v1dx2∧dx3−v2dx1∧dx3+
v3dx1∧dx2.]

4. Let x1, x2 : R2\{0} → R be the coordinate functions. Which of the following elements of Ω1(R2\{0})
are closed? Which are exact?

(i) α = −2x1x2 dx1 + x2
1dx2

(ii) β = x2dx1 + x1dx2

(iii) γ = −x2dx1 + x1dx2
x2

1 + x2
2

[Hint: For (iii), consider φ : R → R2 \ {0} defined by t 7→ (cos t, sin t). Suppose that γ = df for
some f : R2 \ {0} → R. What can you say about φ∗f and φ∗γ? Or about

∫ 2π
0

d(f◦φ)
dt dt ?]
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1. (i)

φ∗(y1dy2 ∧ dy3) = (φ∗y1)d((φ∗y2) ∧ d(φ∗y3))) = x1d

(
x2

2x3
x2dx4 − x4dx2

x2
2

)
= x1(d(x3x2) ∧ dx4 − d(x3x4) ∧ dx2)
= 2x1x3dx2 ∧ dx4 + x1x4dx2 ∧ dx3 + x1x2dx3 ∧ dx4

Similarly, φ∗dα = d(φ∗y1) ∧ d((φ∗y2) ∧ d(φ∗y3))) = 2x3dx1 ∧ dx2 ∧ dx4 + x4dx1 ∧ dx2 ∧ dx3 +
x2dx1 ∧ dx3 ∧ dx4

(ii) Observe that 2x1dx3 ∧ dx2 ∧ dx4 + x1dx4 ∧ dx2 ∧ dx3 + x1dx2 ∧ dx3 ∧ dx4 = 0 so d(φ∗α) = φ∗dα.

2. Let H ∼= Sk be the subgroup of G fixing 0; then σiH consists of elements of G which send 0 to i,
so these cosets are disjoint, and there are k + 1 of them, which is the index of H in G. Hence

alt(Dα∨
p ) =

∑
σ∈G

sgn(σ)σ · Dα∨
p =

k∑
i=0

∑
τ∈H

sgn(σi) sgn(τ)σi · τ · Dα∨
p = k!

k∑
i=0

sgn(σi) σi · Dα∨
p ,

since τ · Dα∨
p = sgn(τ)Dα∨

p and |H| = k!. Dividing by k! proves the result.

3. (i) v ⌟Det = v1dx2∧dx3 + v2dx3∧dx1 + v3dx1∧dx2, so

d(v ⌟Det) = dv1∧dx2∧dx3 + dv2∧dx3∧dx1 + dv3∧dx1∧dx2

=
(

∂v1
∂x1

+ ∂v2
∂x2

+ ∂v3
∂x3

)
dx1∧dx2∧dx3.

(ii) v♭ = v1dx1 + v2dx2 + v3dx3, so

d(v♭) = dv1∧dx1 + dv2∧dx2 + dv3∧dx3

=
(

∂v1
∂x2

dx2 + ∂v1
∂x3

dx3

)
∧dx1 +

(
∂v2
∂x1

dx1 + ∂v2
∂x3

dx3

)
∧dx2 +

(
∂v3
∂x1

dx1 + ∂v3
∂x2

dx2

)
∧dx3

=
(

∂v3
∂x2

− ∂v2
∂x3

)
dx2∧dx3 +

(
∂v1
∂x3

− ∂v3
∂x1

)
dx3∧dx1 +

(
∂v2
∂x1

− ∂v1
∂x2

)
dx1∧dx2 = curl v ⌟Det.

4. (i) d(−2x1x2dx1 + x2
1dx2) = −2x1dx2∧dx1 + 2x1dx1∧dx2 = 4x1dx1∧dx2 is not zero everywhere,

so not closed. Hence also not exact.

(ii) x2dx1 + x1dx2 = d(x1x2), so exact, hence also closed.

(iii) We’ve seen in the warmup that γ is closed. However, suppose that γ = df for some f ∈ Ω0(U).
Let

φ : R → R2, θ 7→ (cos θ, sin θ).

Then φ∗γ = dθ. So φ∗f = f ◦ φ : R → R is a function such that d(φ∗f) = dθ. Then φ∗f − θ
is a constant function on R. In particular, (φ∗f)(2π) = (φ∗f)(0) + 2π. But that contradicts
(φ∗f)(0) = f(φ(0)) = f(φ(2π)) = (φ∗f)(2π).


