MA40254 Differential and geometric analysis : Exercises 6

Hand in answers by 1:15pm on Wednesday 15 November for the Seminar of Thursday 16 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let $\gamma = \frac{-x_2 dx_1 + x_1 dx_2}{x_1^2 + x_2^2} \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$. Show that $d\gamma = 0$.

Solution: By the product rule

$$d\gamma = \frac{d(-x_2 \, dx_1 + x_1 \, dx_2)}{x_1^2 + x_2^2} - \frac{2x_1 \, dx_1 + 2x_2 \, dx_2}{(x_1^2 + x_2^2)^2} \wedge (-x_2 \, dx_1 + x_1 \, dx_2) = 0,$$

since $d(-x_2 dx_1 + x_1 dx_2) = 2dx_1 \wedge dx_2$ and $(x_1 dx_1 + x_2 dx_2) \wedge (-x_2 dx_1 + x_1 dx_2) = (x_1^2 + x_2^2) dx_1 \wedge dx_2$.] **1.** Let $U = \{p \in \mathbb{R}^4 : x_2(p) \neq 0\}$, and $\varphi = (x_1, x_2^2 x_3, x_4/x_2) : U \to \mathbb{R}^3$, where x_1, x_2, x_3, x_4 are the coordinate functions on $U \subseteq \mathbb{R}^4$. Let $\alpha = y_1 dy_2 \wedge dy_3 \in \Omega^2(\mathbb{R}^3)$ where $y_1, y_2, y_3 : \mathbb{R}^3 \to \mathbb{R}$ denote the coordinate functions.

(i) Express $\varphi^* \alpha$ and $\varphi^* d\alpha$ in standard form, i.e., as a sum of terms $f dx_I$.

[Hint: First expand $\varphi^* \alpha$ as $(\varphi^* y_1) d(\varphi^* y_2) \wedge d(\varphi^* y_3)$ and similarly $\varphi^* d\alpha$.]

(ii) Compute directly $d(\varphi^*\alpha)$. What do you observe?

[**Hint**: To save work, just compute the terms that don't appear in $\varphi^* d\alpha$.]

2. For U open in \mathbb{R}^n , $\alpha \in \Omega^k(U)$, $p \in U$, and $v_1, \ldots, v_k \in \mathbb{R}^n$, show that

$$d\alpha_p(v_0,\ldots,v_k) = \sum_{i=0}^k (-1)^i D\alpha_p(v_i)(v_0,\ldots,\hat{v}_i,\ldots,v_k)$$

where $v_0, \ldots, \hat{v}_i, \ldots, v_k$ denotes the list obtained from v_0, \ldots, v_k by omitting v_i . Equivalently

$$d\alpha_p = \sum_{i=0}^k \operatorname{sgn}(\sigma_i) \, \sigma_i \cdot D\alpha_p^{\vee},$$

where $\sigma_i = (0 \ 1 \ \cdots \ i)^{-1} \in G := \text{Sym}(\{0, 1, \dots, k\}) \cong S_{k+1}$, and for $\sigma \in G$ and $\beta \in \text{Alt}^{k+1}(\mathbb{R}^n)$, $(\sigma \cdot \beta)(v_0, \dots, v_k) = \beta(v_{\sigma(0)}, \dots, v_{\sigma(k)})$ (which is $\beta(v_i, v_0, \dots, \hat{v}_i, \dots, v_k)$ when $\sigma = \sigma_i$).

[Hint: One approach, using the second formula, is to let $H \cong S_k$ be the subgroup of G fixing 0, and observe that $\sigma_i H : i = 0, ..., k$ is a left coset partition of G. Now split the sum into sums over each coset: what is $\tau \cdot D\alpha_p^{\vee}$ for $\tau \in H$?]

3 (Less essential). Let $U \subseteq \mathbb{R}^3$ an open subset. Given a vector-valued function $v = (v_1, v_2, v_3) : U \to \mathbb{R}^3$, define $v^{\flat} \in \Omega^1(U)$ and $v \lrcorner \text{Det} \in \Omega^2(U)$ by applying the corresponding operations on vectors pointwise.

(i) Let $\operatorname{div}(v): U \to \mathbb{R}$ be defined by

$$\operatorname{div}(v) = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}$$

Show that

$$d(v \,\lrcorner\, \text{Det}) = \operatorname{div}(v) \operatorname{Det} \in \Omega^3(U).$$

(ii) Let $\operatorname{curl}(v): U \to \mathbb{R}^3$ be defined by

$$\operatorname{curl}(v) = \left(\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3}, \ \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \ \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right).$$

Show that

$$d(v^{\flat}) = \operatorname{curl}(v) \,\lrcorner\, \operatorname{Det} \in \Omega^2(U).$$

[**Hint**: Write all the forms in standard form, e.g., $v \,\lrcorner\,$ Det can be expressed as $v_1 dx_2 \land dx_3 - v_2 dx_1 \land dx_3 + v_3 dx_1 \land dx_2$.]

4. Let $x_1, x_2: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ be the coordinate functions. Which of the following elements of $\Omega^1(\mathbb{R}^2 \setminus \{0\})$ are closed? Which are exact?

- (i) $\alpha = -2x_1x_2 dx_1 + x_1^2 dx_2$
- (ii) $\beta = x_2 dx_1 + x_1 dx_2$
- (iii) $\gamma = \frac{-x_2 dx_1 + x_1 dx_2}{x_1^2 + x_2^2}$

[**Hint**: For (iii), consider $\varphi : \mathbb{R} \to \mathbb{R}^2 \setminus \{0\}$ defined by $t \mapsto (\cos t, \sin t)$. Suppose that $\gamma = df$ for some $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$. What can you say about $\varphi^* f$ and $\varphi^* \gamma$? Or about $\int_0^{2\pi} \frac{d(f \circ \varphi)}{dt} dt$?]

DMJC 7 November