MA40254 Differential and geometric analysis: Exercises 6

Hand in answers by 1:15pm on Wednesday 15 November for the Seminar of Thursday 16 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let
$$\gamma = \frac{-x_2 dx_1 + x_1 dx_2}{x_1^2 + x_2^2} \in \Omega^1(\mathbb{R}^2 \setminus \{0\})$$
. Show that $d\gamma = 0$.

- 1. Let $U = \{p \in \mathbb{R}^4 : x_2(p) \neq 0\}$, and $\varphi = (x_1, x_2^2x_3, x_4/x_2) : U \to \mathbb{R}^3$, where x_1, x_2, x_3, x_4 are the coordinate functions on $U \subseteq \mathbb{R}^4$. Let $\alpha = y_1 dy_2 \wedge dy_3 \in \Omega^2(\mathbb{R}^3)$ where $y_1, y_2, y_3 : \mathbb{R}^3 \to \mathbb{R}$ denote the coordinate functions.
 - (i) Express $\varphi^*\alpha$ and $\varphi^*d\alpha$ in standard form, i.e., as a sum of terms fdx_I .
 - (ii) Compute directly $d(\varphi^*\alpha)$. What do you observe?
- **2.** For U open in \mathbb{R}^n , $\alpha \in \Omega^k(U)$, $p \in U$, and $v_1, \ldots, v_k \in \mathbb{R}^n$, show that

$$d\alpha_p(v_0,\ldots,v_k) = \sum_{i=0}^k (-1)^i D\alpha_p(v_i)(v_0,\ldots,\widehat{v}_i,\ldots,v_k)$$

where $v_0, \ldots, \hat{v}_i, \ldots, v_k$ denotes the list obtained from v_0, \ldots, v_k by omitting v_i . Equivalently

$$d\alpha_p = \sum_{i=0}^k \operatorname{sgn}(\sigma_i) \, \sigma_i \cdot D\alpha_p^{\vee},$$

where $\sigma_i = (0 \ 1 \ \cdots \ i)^{-1} \in G := \operatorname{Sym}(\{0, 1, \dots k\}) \cong S_{k+1}$, and for $\sigma \in G$ and $\beta \in \operatorname{Alt}^{k+1}(\mathbb{R}^n)$, $(\sigma \cdot \beta)(v_0, \dots, v_k) = \beta(v_{\sigma(0)}, \dots, v_{\sigma(k)})$ (which is $\beta(v_i, v_0, \dots, \widehat{v_i}, \dots, v_k)$ when $\sigma = \sigma_i$).

- **3** (Less essential). Let $U \subseteq \mathbb{R}^3$ an open subset. Given a vector-valued function $v = (v_1, v_2, v_3) : U \to \mathbb{R}^3$, define $v^{\flat} \in \Omega^1(U)$ and $v \, \lrcorner \, \text{Det} \in \Omega^2(U)$ by applying the corresponding operations on vectors pointwise.
 - (i) Let $\operatorname{div}(v): U \to \mathbb{R}$ be defined by

$$\operatorname{div}(v) = \frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} + \frac{\partial v_3}{\partial x_3}.$$

Show that

$$d(v \, \lrcorner \, \mathrm{Det}) = \mathrm{div}(v) \mathrm{Det} \in \Omega^3(U).$$

(ii) Let $\operatorname{curl}(v): U \to \mathbb{R}^3$ be defined by

$$\operatorname{curl}(v) = \left(\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3}, \ \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \ \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2}\right).$$

Show that

$$d(v^{\flat}) = \operatorname{curl}(v) \, \lrcorner \, \operatorname{Det} \in \Omega^2(U).$$

- **4.** Let $x_1, x_2 : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ be the coordinate functions. Which of the following elements of $\Omega^1(\mathbb{R}^2 \setminus \{0\})$ are closed? Which are exact?
 - (i) $\alpha = -2x_1x_2 dx_1 + x_1^2 dx_2$
 - (ii) $\beta = x_2 dx_1 + x_1 dx_2$

(iii)
$$\gamma = \frac{-x_2 dx_1 + x_1 dx_2}{x_1^2 + x_2^2}$$