MA40254 Differential and geometric analysis : Exercises 6

Hand in answers by 1:15pm on Wednesday 15 November for the Seminar of Thursday 16 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let $\gamma=\frac{-x_{2} d x_{1}+x_{1} d x_{2}}{x_{1}^{2}+x_{2}^{2}} \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$. Show that $d \gamma=0$.

1. Let $U=\left\{p \in \mathbb{R}^{4}: x_{2}(p) \neq 0\right\}$, and $\varphi=\left(x_{1}, x_{2}^{2} x_{3}, x_{4} / x_{2}\right): U \rightarrow \mathbb{R}^{3}$, where $x_{1}, x_{2}, x_{3}, x_{4}$ are the coordinate functions on $U \subseteq \mathbb{R}^{4}$. Let $\alpha=y_{1} d y_{2} \wedge d y_{3} \in \Omega^{2}\left(\mathbb{R}^{3}\right)$ where $y_{1}, y_{2}, y_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ denote the coordinate functions.
(i) Express $\varphi^{*} \alpha$ and $\varphi^{*} d \alpha$ in standard form, i.e., as a sum of terms $f d x_{I}$.
(ii) Compute directly $d\left(\varphi^{*} \alpha\right)$. What do you observe?
2. For U open in $\mathbb{R}^{n}, \alpha \in \Omega^{k}(U), p \in U$, and $v_{1}, \ldots, v_{k} \in \mathbb{R}^{n}$, show that

$$
d \alpha_{p}\left(v_{0}, \ldots, v_{k}\right)=\sum_{i=0}^{k}(-1)^{i} D \alpha_{p}\left(v_{i}\right)\left(v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{k}\right)
$$

where $v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{k}$ denotes the list obtained from v_{0}, \ldots, v_{k} by omitting v_{i}. Equivalently

$$
d \alpha_{p}=\sum_{i=0}^{k} \operatorname{sgn}\left(\sigma_{i}\right) \sigma_{i} \cdot D \alpha_{p}^{\vee},
$$

where $\sigma_{i}=\left(\begin{array}{llll}0 & 1 & \cdots\end{array}\right)^{-1} \in G:=\operatorname{Sym}(\{0,1, \ldots k\}) \cong S_{k+1}$, and for $\sigma \in G$ and $\beta \in \operatorname{Alt}^{k+1}\left(\mathbb{R}^{n}\right)$, $(\sigma \cdot \beta)\left(v_{0}, \ldots, v_{k}\right)=\beta\left(v_{\sigma(0)}, \ldots, v_{\sigma(k)}\right)$ (which is $\beta\left(v_{i}, v_{0}, \ldots, \widehat{v}_{i}, \ldots, v_{k}\right)$ when $\left.\sigma=\sigma_{i}\right)$.
3 (Less essential). Let $U \subseteq \mathbb{R}^{3}$ an open subset. Given a vector-valued function $v=\left(v_{1}, v_{2}, v_{3}\right)$: $U \rightarrow \mathbb{R}^{3}$, define $v^{b} \in \Omega^{1}(U)$ and $\left.v\right\lrcorner$ Det $\in \Omega^{2}(U)$ by applying the corresponding operations on vectors pointwise.
(i) Let $\operatorname{div}(v): U \rightarrow \mathbb{R}$ be defined by

$$
\operatorname{div}(v)=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}} .
$$

Show that

$$
d(v\lrcorner \operatorname{Det})=\operatorname{div}(v) \operatorname{Det} \in \Omega^{3}(U) .
$$

(ii) Let $\operatorname{curl}(v): U \rightarrow \mathbb{R}^{3}$ be defined by

$$
\operatorname{curl}(v)=\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}, \frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}, \frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) .
$$

Show that

$$
\left.d\left(v^{b}\right)=\operatorname{curl}(v)\right\lrcorner \operatorname{Det} \in \Omega^{2}(U) .
$$

4. Let $x_{1}, x_{2}: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ be the coordinate functions. Which of the following elements of $\Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ are closed? Which are exact?
(i) $\alpha=-2 x_{1} x_{2} d x_{1}+x_{1}^{2} d x_{2}$
(ii) $\beta=x_{2} d x_{1}+x_{1} d x_{2}$
(iii) $\gamma=\frac{-x_{2} d x_{1}+x_{1} d x_{2}}{x_{1}^{2}+x_{2}^{2}}$
