MA40254 Differential and geometric analysis : Exercises 5

Hand in answers by 1:15pm on Wednesday 8 November for the Seminar of Thursday 9 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let V be a real vector space of dimension $n, \alpha_{1}, \alpha_{2} \ldots \alpha_{k}, \beta_{j} \in \mathcal{M}^{1}(V)$ and $\lambda, \mu \in$ \mathbb{R}. Show that $\alpha_{1} \alpha_{2} \cdots\left(\lambda \alpha_{j}+\mu \beta_{j}\right) \alpha_{j+1} \cdots \alpha_{k}=\lambda \alpha_{1} \alpha_{2} \cdots \alpha_{j} \alpha_{j+1} \cdots \alpha_{k}+\mu \alpha_{1} \alpha_{2} \cdots \beta_{j} \alpha_{j+1} \cdots \alpha_{k}$ in $\mathcal{M}^{k}(V)$ and deduce that

$$
\begin{aligned}
\alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge\left(\lambda \alpha_{j}+\mu \beta_{j}\right) & \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_{k} \\
& =\lambda \alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \alpha_{j} \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_{k}+\mu \alpha_{1} \wedge \alpha_{2} \wedge \cdots \wedge \beta_{j} \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_{k}
\end{aligned}
$$

[Solution: Evaluating the left hand side of the first identity on $v_{1}, v_{2}, \ldots v_{k} \in V$ (using the definition) gives

$$
\alpha_{1}\left(v_{1}\right) \alpha_{2}\left(v_{2}\right) \cdots\left(\lambda \alpha_{j}+\mu \beta_{j}\right)\left(v_{j}\right) \alpha_{j+1}\left(v_{j+1}\right) \cdots \alpha_{k}\left(v_{k}\right) \in \mathbb{R}
$$

Now $\left(\lambda \alpha_{j}+\mu \beta_{j}\right)\left(v_{j}\right)=\lambda \alpha_{j}\left(v_{j}\right)+\mu \beta_{j}\left(v_{j}\right)$ (pointwise operations) so the result follows by the distributive law. To obtain the second identity, apply alt to both sides of the first identity, and use that alt: $\mathcal{M}^{k}(V) \rightarrow \operatorname{Alt}^{k}(V)$ is linear: $\operatorname{alt}(\lambda \alpha+\mu \beta)=\sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \sigma \cdot(\lambda \alpha+\mu \beta)$ and it is easy to see that $\sigma \cdot(\lambda \alpha+\mu \beta)=\lambda \sigma \cdot \alpha+\mu \sigma \cdot \beta$ (evaluate both sides on $\left.v_{1}, v_{2}, \ldots v_{k}\right)$.]

1. Let V be a real vector space of dimension n.
(i) Let $v_{1}, \ldots, v_{k} \in V$ and $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$. Let $A \in M_{k, k}(\mathbb{R})$ be the matrix with $A_{i j}=\alpha_{i}\left(v_{j}\right)$. Show that $\left(\alpha_{1} \wedge \cdots \wedge \alpha_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det} A$.
[Hint: Compare the result of evaluating the full antisymmetrisation of $\alpha_{1} \cdots \alpha_{k} \in \mathcal{M}^{k}(V)$ on v_{1}, \ldots, v_{k} with the sum formula for the determinant of a matrix.]
(ii) Let $\phi: V \rightarrow V$ be a linear operator. Show that for any $\alpha \in \operatorname{Alt}^{n}(V)$,

$$
\phi^{*} \alpha=(\operatorname{det} \phi) \alpha \in \operatorname{Alt}^{n}(V)
$$

[Hint: Recall that det ϕ means the determinant of the matrix A representing ϕ with respect to any basis $e_{1}, e_{2}, \ldots e_{n}$ of V. Use the dual basis $\varepsilon_{1}, \varepsilon_{2}, \ldots \varepsilon_{n}$ to write the entries $A_{i j}$ in the form of part (i), and note that $\varepsilon_{1} \wedge \varepsilon_{2} \wedge \ldots \wedge \varepsilon_{n}$ is a basis for $\operatorname{Alt}^{n}(V)$.]
2. Let $e_{1}, \ldots, e_{5} \in \mathbb{R}^{5}$ be the standard basis, and let $\varepsilon_{1}, \ldots, \varepsilon_{5} \in\left(\mathbb{R}^{5}\right)^{*}$ be the dual basis. Let

$$
\alpha=3 \varepsilon_{1} \wedge \varepsilon_{3}+\varepsilon_{2} \wedge\left(7 \varepsilon_{3}-2 \varepsilon_{5}\right) \in \operatorname{Alt}^{2}\left(\mathbb{R}^{5}\right)
$$

(i) Evaluate $\alpha\left(e_{1}+2 e_{3}, e_{3}+e_{4}\right) \in \mathbb{R}$.
(ii) Express $\alpha \wedge\left(2 \varepsilon_{1}+\varepsilon_{2}-3 \varepsilon_{4}\right) \in \operatorname{Alt}^{3}\left(\mathbb{R}^{5}\right)$ in terms of the standard basis $\varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{3}, \varepsilon_{1} \wedge \varepsilon_{2} \wedge \varepsilon_{4}, \ldots$, $\varepsilon_{3} \wedge \varepsilon_{4} \wedge \varepsilon_{5}$.
[Hint: When expanding, bear in mind that $\varepsilon_{i} \wedge \varepsilon_{j}=-\varepsilon_{j} \wedge \varepsilon_{i}$, and $\varepsilon_{i} \wedge \varepsilon_{i}=0$.]
3 (Less essential). For a real inner product space V and $v \in V$, define $v^{b} \in V^{*}$ to be the linear map $V \rightarrow \mathbb{R}, w \mapsto v$. w. For $\alpha \in \operatorname{Alt}^{k+1}(V)$ and $v \in V$, define the 'contraction' $\left.v\right\lrcorner \alpha \in \operatorname{Alt}^{k}(V)$ by

$$
(v\lrcorner \alpha)\left(w_{1}, \ldots, w_{k}\right)=\alpha\left(v, w_{1}, \ldots, w_{k}\right)
$$

for all $w_{1}, \ldots, w_{k} \in V$. Show that the cross product on \mathbb{R}^{3} is related to the wedge product on $\left(\mathbb{R}^{3}\right)^{*}$ by

$$
(u \times v)\lrcorner \text { Det }=u^{b} \wedge v^{b} \in \operatorname{Alt}^{2}\left(\mathbb{R}^{3}\right)
$$

for any $u, v \in \mathbb{R}^{3}$.
[Hint: Express u and v in terms of the standard basis, i.e., write $u=u_{1} e_{1}+u_{2} e_{2}+u_{3} e_{3}$ etc., and find the components of both sides of the equation with respect to the standard basis $\varepsilon_{1} \wedge \varepsilon_{2}, \varepsilon_{1} \wedge \varepsilon_{3}, \varepsilon_{2} \wedge \varepsilon_{3}$ of $\mathrm{Alt}^{2} \mathbb{R}^{3}$.]
4. Let $\phi: V \rightarrow W$ be a linear map between real vector spaces. Show that
(i) $\phi^{*} \operatorname{alt}(\alpha)=\operatorname{alt}\left(\phi^{*} \alpha\right) \in \operatorname{Alt}^{k}(V)$ for any $\alpha \in \mathcal{M}^{k}(W)$.
[Hint: First check that $\sigma \cdot\left(\phi^{*} \alpha\right)=\phi^{*}(\sigma \cdot \alpha) \in \mathcal{M}^{k}(V)$ for any $\alpha \in \mathcal{M}^{k}(W)$ and $\sigma \in S_{k}$.]
(ii) $\phi^{*}\left(\alpha_{1} \wedge \cdots \wedge \alpha_{k}\right)=\left(\phi^{*} \alpha_{1}\right) \wedge \cdots \wedge\left(\phi^{*} \alpha_{k}\right) \in \operatorname{Alt}^{k}(V)$ for any $\alpha_{1}, \ldots, \alpha_{k} \in \operatorname{Alt}^{1}(W)$.
[Hint: First show $\phi^{*}\left(\alpha_{1} \cdots \alpha_{k}\right)=\left(\phi^{*} \alpha_{1}\right) \cdots\left(\phi^{*} \alpha_{k}\right)$ by evaluating both sides on $v_{1}, \ldots v_{k}$.]
5. Let V and W be vector spaces with bases v_{1}, v_{2}, v_{3} and $w_{1}, w_{2}, w_{3}, w_{4}$ respectively. Let $\phi: V \rightarrow W$ be the linear map represented with respect to these bases by

$$
\left(\begin{array}{ccc}
2 & 0 & -3 \\
1 & 6 & 0 \\
0 & 1 & -1 \\
1 & 0 & 5
\end{array}\right)
$$

Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \in V^{*}$ and $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4} \in W^{*}$ denote the dual bases to the given bases. Compute

$$
\phi^{*}\left(3 \delta_{1} \wedge \delta_{3}+\delta_{2} \wedge \delta_{4}\right) \in \operatorname{Alt}^{2}(V)
$$

in terms of the standard basis $\varepsilon_{i} \wedge \varepsilon_{j}: i<j$ for $\operatorname{Alt}^{2}(V)$.
[Hint: What matrix represents $\phi^{*}: W^{*} \rightarrow V^{*}$ with respect to the bases δ_{i} and ε_{j} ? There is a reason why the dual map ϕ^{*} is sometimes called the "transpose" of ϕ ! You should find, for instance, that $\left.\phi^{*} \delta_{1}=2 \varepsilon_{1}-3 \varepsilon_{3}.\right]$

