MA40254 DIFFERENTIAL AND GEOMETRIC ANALYSIS: EXERCISES 5

Hand in answers by 1:15pm on Wednesday 8 November for the Seminar of Thursday 9 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Let V be a real vector space of dimension n, $\alpha_1, \alpha_2 \dots \alpha_k, \beta_j \in \mathcal{M}^1(V)$ and $\lambda, \mu \in \mathbb{R}$. Show that $\alpha_1 \alpha_2 \cdots (\lambda \alpha_j + \mu \beta_j) \alpha_{j+1} \cdots \alpha_k = \lambda \alpha_1 \alpha_2 \cdots \alpha_j \alpha_{j+1} \cdots \alpha_k + \mu \alpha_1 \alpha_2 \cdots \beta_j \alpha_{j+1} \cdots \alpha_k$ in $\mathcal{M}^k(V)$ and deduce that

$$\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge (\lambda \alpha_j + \mu \beta_j) \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_k$$

$$= \lambda \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_j \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_k + \mu \alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \beta_j \wedge \alpha_{j+1} \wedge \cdots \wedge \alpha_k.$$

[Solution: Evaluating the left hand side of the first identity on $v_1, v_2, \dots v_k \in V$ (using the definition) gives

$$\alpha_1(v_1)\alpha_2(v_2)\cdots(\lambda\alpha_j+\mu\beta_j)(v_j)\alpha_{j+1}(v_{j+1})\cdots\alpha_k(v_k)\in\mathbb{R}$$

Now $(\lambda \alpha_j + \mu \beta_j)(v_j) = \lambda \alpha_j(v_j) + \mu \beta_j(v_j)$ (pointwise operations) so the result follows by the distributive law. To obtain the second identity, apply alt to both sides of the first identity, and use that alt: $\mathcal{M}^k(V) \to \operatorname{Alt}^k(V)$ is linear: $\operatorname{alt}(\lambda \alpha + \mu \beta) = \sum_{\sigma \in S_k} \operatorname{sgn}(\sigma) \sigma \cdot (\lambda \alpha + \mu \beta)$ and it is easy to see that $\sigma \cdot (\lambda \alpha + \mu \beta) = \lambda \sigma \cdot \alpha + \mu \sigma \cdot \beta$ (evaluate both sides on $v_1, v_2, \ldots v_k$).]

- **1.** Let V be a real vector space of dimension n.
 - (i) Let $v_1, \ldots, v_k \in V$ and $\alpha_1, \ldots, \alpha_k \in V^*$. Let $A \in M_{k,k}(\mathbb{R})$ be the matrix with $A_{ij} = \alpha_i(v_j)$. Show that $(\alpha_1 \wedge \cdots \wedge \alpha_k)(v_1, \ldots, v_k) = \det A$.

[Hint: Compare the result of evaluating the full antisymmetrisation of $\alpha_1 \cdots \alpha_k \in \mathcal{M}^k(V)$ on v_1, \ldots, v_k with the sum formula for the determinant of a matrix.]

(ii) Let $\phi: V \to V$ be a linear operator. Show that for any $\alpha \in \operatorname{Alt}^n(V)$,

$$\phi^* \alpha = (\det \phi) \alpha \in \operatorname{Alt}^n(V)$$

[**Hint**: Recall that $\det \phi$ means the determinant of the matrix A representing ϕ with respect to any basis $e_1, e_2, \ldots e_n$ of V. Use the dual basis $\varepsilon_1, \varepsilon_2, \ldots \varepsilon_n$ to write the entries A_{ij} in the form of part (i), and note that $\varepsilon_1 \wedge \varepsilon_2 \wedge \ldots \wedge \varepsilon_n$ is a basis for $Alt^n(V)$.]

2. Let $e_1, \ldots, e_5 \in \mathbb{R}^5$ be the standard basis, and let $\varepsilon_1, \ldots, \varepsilon_5 \in (\mathbb{R}^5)^*$ be the dual basis. Let

$$\alpha = 3\varepsilon_1 \wedge \varepsilon_3 + \varepsilon_2 \wedge (7\varepsilon_3 - 2\varepsilon_5) \in Alt^2(\mathbb{R}^5).$$

- (i) Evaluate $\alpha(e_1 + 2e_3, e_3 + e_4) \in \mathbb{R}$.
- (ii) Express $\alpha \wedge (2\varepsilon_1 + \varepsilon_2 3\varepsilon_4) \in Alt^3(\mathbb{R}^5)$ in terms of the standard basis $\varepsilon_1 \wedge \varepsilon_2 \wedge \varepsilon_3$, $\varepsilon_1 \wedge \varepsilon_2 \wedge \varepsilon_4$, ..., $\varepsilon_3 \wedge \varepsilon_4 \wedge \varepsilon_5$.

[**Hint**: When expanding, bear in mind that $\varepsilon_i \wedge \varepsilon_j = -\varepsilon_j \wedge \varepsilon_i$, and $\varepsilon_i \wedge \varepsilon_i = 0$.]

3 (Less essential). For a real inner product space V and $v \in V$, define $v^{\flat} \in V^*$ to be the linear map $V \to \mathbb{R}$, $w \mapsto v.w$. For $\alpha \in \mathrm{Alt}^{k+1}(V)$ and $v \in V$, define the 'contraction' $v \, \lrcorner \, \alpha \in \mathrm{Alt}^k(V)$ by

$$(v \,\lrcorner\, \alpha)(w_1,\ldots,w_k) = \alpha(v,w_1,\ldots,w_k)$$

for all $w_1, \ldots, w_k \in V$. Show that the cross product on \mathbb{R}^3 is related to the wedge product on $(\mathbb{R}^3)^*$ by

$$(u \times v) \, \lrcorner \, \mathrm{Det} = u^{\flat} \wedge v^{\flat} \in \mathrm{Alt}^2(\mathbb{R}^3)$$

for any $u, v \in \mathbb{R}^3$.

[Hint: Express u and v in terms of the standard basis, i.e., write $u = u_1e_1 + u_2e_2 + u_3e_3$ etc., and find the components of both sides of the equation with respect to the standard basis $\varepsilon_1 \wedge \varepsilon_2, \varepsilon_1 \wedge \varepsilon_3, \varepsilon_2 \wedge \varepsilon_3$ of Alt² \mathbb{R}^3 .]

- **4.** Let $\phi: V \to W$ be a linear map between real vector spaces. Show that
 - (i) $\phi^* \operatorname{alt}(\alpha) = \operatorname{alt}(\phi^* \alpha) \in \operatorname{Alt}^k(V)$ for any $\alpha \in \mathcal{M}^k(W)$.

[Hint: First check that $\sigma \cdot (\phi^* \alpha) = \phi^*(\sigma \cdot \alpha) \in \mathcal{M}^k(V)$ for any $\alpha \in \mathcal{M}^k(W)$ and $\sigma \in S_k$.]

(ii) $\phi^*(\alpha_1 \wedge \cdots \wedge \alpha_k) = (\phi^*\alpha_1) \wedge \cdots \wedge (\phi^*\alpha_k) \in Alt^k(V)$ for any $\alpha_1, \ldots, \alpha_k \in Alt^1(W)$.

[Hint: First show $\phi^*(\alpha_1 \cdots \alpha_k) = (\phi^* \alpha_1) \cdots (\phi^* \alpha_k)$ by evaluating both sides on $v_1, \ldots v_k$.]

5. Let V and W be vector spaces with bases v_1, v_2, v_3 and w_1, w_2, w_3, w_4 respectively. Let $\phi : V \to W$ be the linear map represented with respect to these bases by

$$\begin{pmatrix}
2 & 0 & -3 \\
1 & 6 & 0 \\
0 & 1 & -1 \\
1 & 0 & 5
\end{pmatrix}$$

Let $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in V^*$ and $\delta_1, \delta_2, \delta_3, \delta_4 \in W^*$ denote the dual bases to the given bases. Compute

$$\phi^*(3\delta_1 \wedge \delta_3 + \delta_2 \wedge \delta_4) \in \operatorname{Alt}^2(V)$$

in terms of the standard basis $\varepsilon_i \wedge \varepsilon_j : i < j$ for $\mathrm{Alt}^2(V)$.

[**Hint**: What matrix represents $\phi^*: W^* \to V^*$ with respect to the bases δ_i and ε_j ? There is a reason why the dual map ϕ^* is sometimes called the "transpose" of ϕ ! You should find, for instance, that $\phi^*\delta_1 = 2\varepsilon_1 - 3\varepsilon_3$.]

DMJC 31 October