
MA40254 Differential and geometric analysis : Exercises 4

Hand in answers by 1:15pm on Wednesday 1 November for the Seminar of Thursday 2 November
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Compute the tangent space TpM to the 1-dimensional submanifold M := {(x, y) ∈
R2 : y = x2} of R2 at the point p = (t, t2).
[Solution: As in Exercises 3, there are two approaches. The first is to use the parametrization
φ : R → M with φ(x) = (x, x2). Then Dφp has matrix

[ 1
2t

]
, and TpM = im Dφp = {(λ, 2λt) ∈ R2 :

λ ∈ R}. Alternatively, since M = f−1(0) is the inverse image of a regular value of f(x, y) = x2 − y,
the exercise below implies TpM = ker Dfp = {(a, b) ∈ R2 : −2ta + b = 0}, since Dfp is represented
by the matrix [−2t 1]. ]

1. (i) Let M ⊆ Rs be a submanifold. Let P ⊆ Rs be an open subset that contains M , and let
f : P → Rm be a smooth function. Suppose that the restriction of f to M is constant. Show
that TpM ⊆ ker Dfp ⊆ Rs for any p ∈ M .

(ii) Let P ⊆ Rs be an open subset, f : P → Rm a smooth function, q ∈ Rm a regular value of f ,
and M := f−1(q). Show that TpM = ker Dfp ⊆ Rs for any p ∈ M .

[Hint: Let φ be a parametrisation of M , and consider the derivative of f ◦ φ. The chain rule and
the rank-nullity theorem may be helpful!]

2. For points x, y ∈ R2 with x ̸= y, let S(x, y) = {tx + (1−t)y : t ∈ (0, 1)} ⊂ R2. For which
x, y, x′, y′ ∈ R2 is S(x, y) ∪ S(x′, y′) a submanifold of R2?
[Hint: One way that the union of the line segments can fail to be a submanifold is if they intersect
in a single point. Consider a neighbourhood of such a point, with the point itself removed from it.
How many pieces does it have?]

3. Let O(n) = {A ∈ GLn(R) : AT = A−1}. Show that O(n) is a submanifold of Mn,n(R). What is
TIO(n) ⊆ Mn,n(R) (the tangent space of O(n) at the identity matrix I ∈ O(n))?
[Hint: Describe O(n) using the function Matn,n(R) → {symmetric matrices}, A 7→ AT A.]

4. Let V be a real vector space of dimension n, and Alt2(V ) the space of alternating 2-forms on V ,
that is bilinear maps ω : V × V → R such that ω(v, v) = 0 for any v ∈ V . What is the dimension
of Alt2(V )?
[Hint: Use a basis to identify Alt2(V ) with a subspace of the space of n × n matrices.]

5. For v1, . . . , vn ∈ Rn, let Det(v1, . . . , vn) ∈ R denote the determinant of the n × n matrix with
columns v1, . . . , vn.

(i) Show that Det spans Altn(Rn).

[Hint: You could argue in terms of the characterisation of the determinant function from
Algebra 1B, or make use of the result on the dimension of Altn(Rn).]

(ii) For any u, v ∈ R3, show that there is a unique u × v ∈ R3 such that for any w ∈ R3,

Det(u, v, w) = (u × v).w.

Here the right hand side is the Euclidean inner product of the vectors u × v and w.

[Hint: For fixed u, v, the left hand side is linear in w. Now recall the Riesz representation
theorem for inner product spaces (Alg 2A).]
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1. (i) Let φ : U ′ → U ⊆ M be a parametrisation with p ∈ U , say p = φ(x). Then f ◦φ : U ′ → Rm

is constant, so the chain rule gives

Dfp ◦ Dφx = D(f ◦ φ)x = 0.

Thus TpM , the image of Dφx : Rn → Rs, is contained in the kernel of Dfp : Rs → Rm.

(ii) The dimension of ker Dfp is s−m by the Rank-Nullity theorem. On the other hand, we know
that f−1(q) is a submanifold of dimension s − m, and that TpM has the same dimension as
M . Since TpM and ker Dfp have equal dimension, equality must hold in TpM ⊆ ker Dfp.

2. For S(x, y)∪S(x′, y′) to be a submanifold of R2, one needs S(x, y) to be disjoint from the closure
S(x′, y′) ⊂ R2 and vice versa, or that x, y, x′, y′ are all colinear.

If S(x, y) and S(x′, y′) intersect in a single point z, then for any open neighbourhood U ⊆
S(x, y) ∪ S(x′, y′) of z, U \ {z} has 4 connected components. Thus z has no neighbourhood U
diffeomorphic to an interval.

Similarly, if x ∈ S(x′, y′) then for any neighbourhood U of x, U\{x} has 3 connected components.

3. For any A ∈ Mn,n(R), the matrix AT A is symmetric. So if we let S ⊆ Mn,n(R) denote the
subspace of symmetric matrices, then f : Mn,n(R) → S, A 7→ AT A is a well-defined function, and
O(n) is f−1(I). Clearly f is smooth, so to show that O(n) is a submanifold, we need only check
that I ∈ S is a regular value of f .

For any A ∈ Mn,n(R), the derivative

DfA : Mn,n(R) → S

maps
X 7→ AT X + XT A.

We want to prove that this is surjective if A ∈ O(n). So suppose that Y ∈ S. Then setting
X = 1

2AY gives DfA(X) = Y . Thus DfA is indeed surjective whenever A ∈ O(n).
Now TIO(n) equals the kernel of DfI : Mn,n(R) → S, X 7→ X + XT , i.e., TIO(n) ⊆ Mn,n(R) is

the subspace of anti-symmetric matrices.

4. Recall that, if we choose a basis e1, . . . , en for V , then any bilinear form ω : V × V → R can be
represented by a matrix A ∈ Mn,n(R), namely

Aij := ω(ei, ej).

Conversely, any A ∈ Mn,n(R) defines a unique bilinear form. The condition that ω is alternating is
equivalent to A being anti-symmetric (i.e., A = −AT ), so Alt2(V ) is isomorphic to the subspace of
anti-symmetric n × n matrices, which has dimension

(n
2
)
.

5. (i) This is equivalent to the theorem from Algebra 1B that any function Mn,n(R) → R that is
multilinear and alternating as a function of the columns is a scalar multiple of det.
Alternatively, use the fact that dim Altn(Rn) =

(n
n

)
= 1. To deduce that Det is a basis,

it therefore suffices to check that Det ̸= 0. If e1, . . . , en ∈ Rn is the standard basis, then
Det(e1, . . . , en) = det I = 1, so Det is indeed a non-zero element of Altn(Rn).



(ii) Recall that the determinant is linear as a function of each column, e.g., if we fix u and v then
w 7→ Det(u, v, w) is a linear map R3 → R. The Riesz representation theorem implies that for
any linear function R3 → R there is a unique vector z ∈ R3 such that w 7→ z.w equals the
given functional. So in particular there is a z such that z.w = Det(u, v, w) for all w ∈ R3, and
we can define u × v to be this z. (Of course u × v turns out to have a familiar expression in
terms of the components of u and v.)


