MA40254 Differential and geometric analysis : Exercises 4

Hand in answers by 1:15pm on Wednesday 1 November for the Seminar of Thursday 2 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Compute the tangent space $T_{p} M$ to the 1-dimensional submanifold $M:=\{(x, y) \in$ $\left.\mathbb{R}^{2}: y=x^{2}\right\}$ of \mathbb{R}^{2} at the point $p=\left(t, t^{2}\right)$.
[Solution: As in Exercises 3, there are two approaches. The first is to use the parametrization $\varphi: \mathbb{R} \rightarrow M$ with $\varphi(x)=\left(x, x^{2}\right)$. Then D φ_{p} has matrix $\left[\begin{array}{c}1 \\ 2 t\end{array}\right]$, and $T_{p} M=\operatorname{im} D \varphi_{p}=\left\{(\lambda, 2 \lambda t) \in \mathbb{R}^{2}\right.$: $\lambda \in \mathbb{R}\}$. Alternatively, since $M=f^{-1}(0)$ is the inverse image of a regular value of $f(x, y)=x^{2}-y$, the exercise below implies $T_{p} M=\operatorname{ker} D f_{p}=\left\{(a, b) \in \mathbb{R}^{2}:-2 t a+b=0\right\}$, since $D f_{p}$ is represented by the matrix $[-2 t 1]$.]

1. (i) Let $M \subseteq \mathbb{R}^{s}$ be a submanifold. Let $P \subseteq \mathbb{R}^{s}$ be an open subset that contains M, and let $f: P \rightarrow \mathbb{R}^{m}$ be a smooth function. Suppose that the restriction of f to M is constant. Show that $T_{p} M \subseteq$ ker $D f_{p} \subseteq \mathbb{R}^{s}$ for any $p \in M$.
(ii) Let $P \subseteq \mathbb{R}^{s}$ be an open subset, $f: P \rightarrow \mathbb{R}^{m}$ a smooth function, $q \in \mathbb{R}^{m}$ a regular value of f, and $M:=f^{-1}(q)$. Show that $T_{p} M=\operatorname{ker} D f_{p} \subseteq \mathbb{R}^{s}$ for any $p \in M$.
[Hint: Let φ be a parametrisation of M, and consider the derivative of $f \circ \varphi$. The chain rule and the rank-nullity theorem may be helpful!]
2. For points $x, y \in \mathbb{R}^{2}$ with $x \neq y$, let $S(x, y)=\{t x+(1-t) y: t \in(0,1)\} \subset \mathbb{R}^{2}$. For which $x, y, x^{\prime}, y^{\prime} \in \mathbb{R}^{2}$ is $S(x, y) \cup S\left(x^{\prime}, y^{\prime}\right)$ a submanifold of \mathbb{R}^{2} ?
[Hint: One way that the union of the line segments can fail to be a submanifold is if they intersect in a single point. Consider a neighbourhood of such a point, with the point itself removed from it. How many pieces does it have?]
3. Let $O(n)=\left\{A \in G L_{n}(\mathbb{R}): A^{T}=A^{-1}\right\}$. Show that $O(n)$ is a submanifold of $M_{n, n}(\mathbb{R})$. What is $T_{I} O(n) \subseteq M_{n, n}(\mathbb{R})$ (the tangent space of $O(n)$ at the identity matrix $I \in O(n)$)?
[Hint: Describe $O(n)$ using the function $M a t_{n, n}(\mathbb{R}) \rightarrow\{$ symmetric matrices $\}, A \mapsto A^{T} A$.]
4. Let V be a real vector space of dimension n, and $\operatorname{Alt}^{2}(V)$ the space of alternating 2 -forms on V, that is bilinear maps $\omega: V \times V \rightarrow \mathbb{R}$ such that $\omega(v, v)=0$ for any $v \in V$. What is the dimension of $\operatorname{Alt}^{2}(V)$?
[Hint: Use a basis to identify $\operatorname{Alt}^{2}(V)$ with a subspace of the space of $n \times n$ matrices.]
5. For $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, let $\operatorname{Det}\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}$ denote the determinant of the $n \times n$ matrix with columns v_{1}, \ldots, v_{n}.
(i) Show that Det spans $\operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)$.
[Hint: You could argue in terms of the characterisation of the determinant function from Algebra 1B, or make use of the result on the dimension of $\operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)$.]
(ii) For any $u, v \in \mathbb{R}^{3}$, show that there is a unique $u \times v \in \mathbb{R}^{3}$ such that for any $w \in \mathbb{R}^{3}$,

$$
\operatorname{Det}(u, v, w)=(u \times v) \cdot w .
$$

Here the right hand side is the Euclidean inner product of the vectors $u \times v$ and w.
[Hint: For fixed u, v, the left hand side is linear in w. Now recall the Riesz representation theorem for inner product spaces (Alg 2A).]

1. (i) Let $\varphi: U^{\prime} \rightarrow U \subseteq M$ be a parametrisation with $p \in U$, say $p=\varphi(x)$. Then $f \circ \varphi: U^{\prime} \rightarrow \mathbb{R}^{m}$ is constant, so the chain rule gives

$$
D f_{p} \circ D \varphi_{x}=D(f \circ \varphi)_{x}=0
$$

Thus $T_{p} M$, the image of $D \varphi_{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{s}$, is contained in the kernel of $D f_{p}: \mathbb{R}^{s} \rightarrow \mathbb{R}^{m}$.
(ii) The dimension of ker $D f_{p}$ is $s-m$ by the Rank-Nullity theorem. On the other hand, we know that $f^{-1}(q)$ is a submanifold of dimension $s-m$, and that $T_{p} M$ has the same dimension as M. Since $T_{p} M$ and ker $D f_{p}$ have equal dimension, equality must hold in $T_{p} M \subseteq \operatorname{ker} D f_{p}$.
2. For $S(x, y) \cup S\left(x^{\prime}, y^{\prime}\right)$ to be a submanifold of \mathbb{R}^{2}, one needs $S(x, y)$ to be disjoint from the closure $\overline{S\left(x^{\prime}, y^{\prime}\right)} \subset \mathbb{R}^{2}$ and vice versa, or that $x, y, x^{\prime}, y^{\prime}$ are all colinear.

If $S(x, y)$ and $S\left(x^{\prime}, y^{\prime}\right)$ intersect in a single point z, then for any open neighbourhood $U \subseteq$ $S(x, y) \cup S\left(x^{\prime}, y^{\prime}\right)$ of $z, U \backslash\{z\}$ has 4 connected components. Thus z has no neighbourhood U diffeomorphic to an interval.

Similarly, if $x \in S\left(x^{\prime}, y^{\prime}\right)$ then for any neighbourhood U of $x, U \backslash\{x\}$ has 3 connected components.
3. For any $A \in M_{n, n}(\mathbb{R})$, the matrix $A^{T} A$ is symmetric. So if we let $S \subseteq M_{n, n}(\mathbb{R})$ denote the subspace of symmetric matrices, then $f: M_{n, n}(\mathbb{R}) \rightarrow S, A \mapsto A^{T} A$ is a well-defined function, and $O(n)$ is $f^{-1}(I)$. Clearly f is smooth, so to show that $O(n)$ is a submanifold, we need only check that $I \in S$ is a regular value of f.

For any $A \in M_{n, n}(\mathbb{R})$, the derivative

$$
D f_{A}: M_{n, n}(\mathbb{R}) \rightarrow S
$$

maps

$$
X \mapsto A^{T} X+X^{T} A
$$

We want to prove that this is surjective if $A \in O(n)$. So suppose that $Y \in S$. Then setting $X=\frac{1}{2} A Y$ gives $D f_{A}(X)=Y$. Thus $D f_{A}$ is indeed surjective whenever $A \in O(n)$.

Now $T_{I} O(n)$ equals the kernel of $D f_{I}: M_{n, n}(\mathbb{R}) \rightarrow S, X \mapsto X+X^{T}$, i.e., $T_{I} O(n) \subseteq M_{n, n}(\mathbb{R})$ is the subspace of anti-symmetric matrices.
4. Recall that, if we choose a basis e_{1}, \ldots, e_{n} for V, then any bilinear form $\omega: V \times V \rightarrow \mathbb{R}$ can be represented by a matrix $A \in M_{n, n}(\mathbb{R})$, namely

$$
A_{i j}:=\omega\left(e_{i}, e_{j}\right) .
$$

Conversely, any $A \in M_{n, n}(\mathbb{R})$ defines a unique bilinear form. The condition that ω is alternating is equivalent to A being anti-symmetric (i.e., $A=-A^{T}$), so $\operatorname{Alt}^{2}(V)$ is isomorphic to the subspace of anti-symmetric $n \times n$ matrices, which has dimension $\binom{n}{2}$.
5. (i) This is equivalent to the theorem from Algebra 1B that any function $M_{n, n}(\mathbb{R}) \rightarrow \mathbb{R}$ that is multilinear and alternating as a function of the columns is a scalar multiple of det.
Alternatively, use the fact that $\operatorname{dim} \operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)=\binom{n}{n}=1$. To deduce that Det is a basis, it therefore suffices to check that Det $\neq 0$. If $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$ is the standard basis, then $\operatorname{Det}\left(e_{1}, \ldots, e_{n}\right)=\operatorname{det} I=1$, so Det is indeed a non-zero element of $\operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)$.
(ii) Recall that the determinant is linear as a function of each column, e.g., if we fix u and v then $w \mapsto \operatorname{Det}(u, v, w)$ is a linear map $\mathbb{R}^{3} \rightarrow \mathbb{R}$. The Riesz representation theorem implies that for any linear function $\mathbb{R}^{3} \rightarrow \mathbb{R}$ there is a unique vector $z \in \mathbb{R}^{3}$ such that $w \mapsto z . w$ equals the given functional. So in particular there is a z such that $z . w=\operatorname{Det}(u, v, w)$ for all $w \in \mathbb{R}^{3}$, and we can define $u \times v$ to be this z. (Of course $u \times v$ turns out to have a familiar expression in terms of the components of u and v.)

