MA40254 Differential and geometric analysis : Exercises 4

Hand in answers by 1:15pm on Wednesday 1 November for the Seminar of Thursday 2 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Compute the tangent space T_pM to the 1-dimensional submanifold $M := \{(x, y) \in \mathbb{R}^2 : y = x^2\}$ of \mathbb{R}^2 at the point $p = (t, t^2)$.

[Solution: As in Exercises 3, there are two approaches. The first is to use the parametrization $\varphi \colon \mathbb{R} \to M$ with $\varphi(x) = (x, x^2)$. Then $D\varphi_p$ has matrix $\begin{bmatrix} 1\\ 2t \end{bmatrix}$, and $T_pM = \operatorname{im} D\varphi_p = \{(\lambda, 2\lambda t) \in \mathbb{R}^2 : \lambda \in \mathbb{R}\}$. Alternatively, since $M = f^{-1}(0)$ is the inverse image of a regular value of $f(x, y) = x^2 - y$, the exercise below implies $T_pM = \ker Df_p = \{(a, b) \in \mathbb{R}^2 : -2ta + b = 0\}$, since Df_p is represented by the matrix $[-2t \ 1]$.

- 1. (i) Let $M \subseteq \mathbb{R}^s$ be a submanifold. Let $P \subseteq \mathbb{R}^s$ be an open subset that contains M, and let $f: P \to \mathbb{R}^m$ be a smooth function. Suppose that the restriction of f to M is constant. Show that $T_pM \subseteq \ker Df_p \subseteq \mathbb{R}^s$ for any $p \in M$.
 - (ii) Let $P \subseteq \mathbb{R}^s$ be an open subset, $f: P \to \mathbb{R}^m$ a smooth function, $q \in \mathbb{R}^m$ a regular value of f, and $M := f^{-1}(q)$. Show that $T_p M = \ker Df_p \subseteq \mathbb{R}^s$ for any $p \in M$.

[Hint: Let φ be a parametrisation of M, and consider the derivative of $f \circ \varphi$. The chain rule and the rank-nullity theorem may be helpful!]

2. For points $x, y \in \mathbb{R}^2$ with $x \neq y$, let $S(x, y) = \{tx + (1-t)y : t \in (0, 1)\} \subset \mathbb{R}^2$. For which $x, y, x', y' \in \mathbb{R}^2$ is $S(x, y) \cup S(x', y')$ a submanifold of \mathbb{R}^2 ?

[Hint: One way that the union of the line segments can fail to be a submanifold is if they intersect in a single point. Consider a neighbourhood of such a point, with the point itself removed from it. How many pieces does it have?]

3. Let $O(n) = \{A \in GL_n(\mathbb{R}) : A^T = A^{-1}\}$. Show that O(n) is a submanifold of $M_{n,n}(\mathbb{R})$. What is $T_I O(n) \subseteq M_{n,n}(\mathbb{R})$ (the tangent space of O(n) at the identity matrix $I \in O(n)$)?

[**Hint**: Describe O(n) using the function $Mat_{n,n}(\mathbb{R}) \to \{symmetric \ matrices\}, A \mapsto A^T A.$]

4. Let V be a real vector space of dimension n, and $\operatorname{Alt}^2(V)$ the space of alternating 2-forms on V, that is bilinear maps $\omega : V \times V \to \mathbb{R}$ such that $\omega(v, v) = 0$ for any $v \in V$. What is the dimension of $\operatorname{Alt}^2(V)$?

[**Hint**: Use a basis to identify $Alt^2(V)$ with a subspace of the space of $n \times n$ matrices.]

5. For $v_1, \ldots, v_n \in \mathbb{R}^n$, let $\text{Det}(v_1, \ldots, v_n) \in \mathbb{R}$ denote the determinant of the $n \times n$ matrix with columns v_1, \ldots, v_n .

(i) Show that Det spans $\operatorname{Alt}^n(\mathbb{R}^n)$.

[**Hint**: You could argue in terms of the characterisation of the determinant function from Algebra 1B, or make use of the result on the dimension of $Alt^n(\mathbb{R}^n)$.]

(ii) For any $u, v \in \mathbb{R}^3$, show that there is a unique $u \times v \in \mathbb{R}^3$ such that for any $w \in \mathbb{R}^3$,

$$Det(u, v, w) = (u \times v).w.$$

Here the right hand side is the Euclidean inner product of the vectors $u \times v$ and w.

[Hint: For fixed u, v, the left hand side is linear in w. Now recall the Riesz representation theorem for inner product spaces (Alg 2A).]