Hand in answers by 1:15pm on Wednesday 2 November for the Seminar of Thursday 3 November Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Compute the tangent space T_pM to the 1-dimensional submanifold $M := \{(x, y) \in \mathbb{R}^2 : y = x^2\}$ of \mathbb{R}^2 at the point $p = (t, t^2)$.

- 1. (i) Let $M \subseteq \mathbb{R}^s$ be a submanifold. Let $P \subseteq \mathbb{R}^s$ be an open subset that contains M, and let $f: P \to \mathbb{R}^m$ be a smooth function. Suppose that the restriction of f to M is constant. Show that $T_pM \subseteq \ker Df_p \subseteq \mathbb{R}^s$ for any $p \in M$.
 - (ii) Let $P \subseteq \mathbb{R}^s$ be an open subset, $f : P \to \mathbb{R}^m$ a smooth function, $q \in \mathbb{R}^m$ a regular value of f, and $M := f^{-1}(q)$. Show that $T_p M = \ker Df_p \subseteq \mathbb{R}^s$ for any $p \in M$.

2. For points $x, y \in \mathbb{R}^2$ with $x \neq y$, let $S(x, y) = \{tx + (1-t)y : t \in (0, 1)\} \subset \mathbb{R}^2$. For which $x, y, x', y' \in \mathbb{R}^2$ is $S(x, y) \cup S(x', y')$ a submanifold of \mathbb{R}^2 ?

3. Let $O(n) = \{A \in GL_n(\mathbb{R}) : A^T = A^{-1}\}$. Show that O(n) is a submanifold of $M_{n,n}(\mathbb{R})$. What is $T_IO(n) \subseteq M_{n,n}(\mathbb{R})$ (the tangent space of O(n) at the identity matrix $I \in O(n)$)?

4. Let V be a real vector space of dimension n, and $\operatorname{Alt}^2(V)$ the space of alternating 2-forms on V, that is bilinear maps $\omega : V \times V \to \mathbb{R}$ such that $\omega(v, v) = 0$ for any $v \in V$. What is the dimension of $\operatorname{Alt}^2(V)$?

5. For $v_1, \ldots, v_n \in \mathbb{R}^n$, let $\text{Det}(v_1, \ldots, v_n) \in \mathbb{R}$ denote the determinant of the $n \times n$ matrix with columns v_1, \ldots, v_n .

- (i) Show that Det spans $\operatorname{Alt}^n(\mathbb{R}^n)$.
- (ii) For any $u, v \in \mathbb{R}^3$, show that there is a unique $u \times v \in \mathbb{R}^3$ such that for any $w \in \mathbb{R}^3$,

$$Det(u, v, w) = (u \times v).w.$$

Here the right hand side is the Euclidean inner product of the vectors $u \times v$ and w.

DMJC 25 October