Hand in answers by 1:15pm on Wednesday 2 November for the Seminar of Thursday 3 November
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709
$\mathbf{0}$ (Warmup). Compute the tangent space $T_{p} M$ to the 1-dimensional submanifold $M:=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$ of \mathbb{R}^{2} at the point $p=\left(t, t^{2}\right)$.

1. (i) Let $M \subseteq \mathbb{R}^{s}$ be a submanifold. Let $P \subseteq \mathbb{R}^{s}$ be an open subset that contains M, and let $f: P \rightarrow \mathbb{R}^{m}$ be a smooth function. Suppose that the restriction of f to M is constant. Show that $T_{p} M \subseteq \operatorname{ker} D f_{p} \subseteq \mathbb{R}^{s}$ for any $p \in M$.
(ii) Let $P \subseteq \mathbb{R}^{s}$ be an open subset, $f: P \rightarrow \mathbb{R}^{m}$ a smooth function, $q \in \mathbb{R}^{m}$ a regular value of f, and $M:=f^{-1}(q)$. Show that $T_{p} M=\operatorname{ker} D f_{p} \subseteq$ \mathbb{R}^{s} for any $p \in M$.
2. For points $x, y \in \mathbb{R}^{2}$ with $x \neq y$, let $S(x, y)=\{t x+(1-t) y: t \in(0,1)\} \subset$ \mathbb{R}^{2}. For which $x, y, x^{\prime}, y^{\prime} \in \mathbb{R}^{2}$ is $S(x, y) \cup S\left(x^{\prime}, y^{\prime}\right)$ a submanifold of \mathbb{R}^{2} ?
3. Let $O(n)=\left\{A \in G L_{n}(\mathbb{R}): A^{T}=A^{-1}\right\}$. Show that $O(n)$ is a submanifold of $M_{n, n}(\mathbb{R})$. What is $T_{I} O(n) \subseteq M_{n, n}(\mathbb{R})$ (the tangent space of $O(n)$ at the identity matrix $I \in O(n))$?
4. Let V be a real vector space of dimension n, and $\operatorname{Alt}^{2}(V)$ the space of alternating 2-forms on V, that is bilinear maps $\omega: V \times V \rightarrow \mathbb{R}$ such that $\omega(v, v)=0$ for any $v \in V$. What is the dimension of $\operatorname{Alt}^{2}(V)$?
5. For $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$, let $\operatorname{Det}\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}$ denote the determinant of the $n \times n$ matrix with columns v_{1}, \ldots, v_{n}.
(i) Show that Det spans $\operatorname{Alt}^{n}\left(\mathbb{R}^{n}\right)$.
(ii) For any $u, v \in \mathbb{R}^{3}$, show that there is a unique $u \times v \in \mathbb{R}^{3}$ such that for any $w \in \mathbb{R}^{3}$,

$$
\operatorname{Det}(u, v, w)=(u \times v) \cdot w
$$

Here the right hand side is the Euclidean inner product of the vectors $u \times v$ and w.

