## MA40254 Differential and geometric analysis : Exercises 3

Hand in answers by 1:15pm on Wednesday 25 October for the Seminar of Thursday 26 October Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). Show that $M:=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}\right\}$ is a 1-dimensional submanifold of $\mathbb{R}^{2}$.
[Solution: $M$ is the graph of the smooth function $h: \mathbb{R} \rightarrow \mathbb{R}$ with $h(x)=x^{2}$. Thus there is a parametrization $\varphi: \mathbb{R} \rightarrow M$ with $\varphi(x)=\left(x, x^{2}\right)$. This is a diffeomorphism because $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $F(x, y)=x$ is smooth and $\left.F\right|_{M}=\varphi^{-1}$. Alternatively, we can apply the Regular Value Theorem: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f(x, y)=y-x^{2}$ is smooth and $D f_{(x, y)}$ is represented by the matrix $[-2 x 1]$. This is nonzero for all $(x, y)$ so 0 is a regular value and hence $M=f^{-1}(0)$ is a 1 -dimensional submanifold of $\mathbb{R}^{2}$. This is related to the first approach, because close to the origin, the proof of the regular value theorem gives a parametrization using the graph of $h$.]

1. Let $U \subset \mathbb{R}^{n}$ be open, and let $f: U \rightarrow \mathbb{R}^{n}$ be a twice differentiable function such that $D f_{x}$ is invertible at $x \in U$. Let $K$ be the operator norm of $\left(D f_{x}\right)^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $N$ the supremum of the operator norm of $D(D f)_{z}: \mathbb{R}^{n} \rightarrow \mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ for $z \in U$ (where $\mathcal{L}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ is itself equipped with the operator norm).

Suppose that $0<\delta<1 /(2 K N)$ and the open ball $B_{\delta}(x)$ is contained in $U$.
(i) Let $\tilde{f}:=\left(D f_{x}\right)^{-1} \circ f$. Show that the image $\tilde{f}\left(B_{\delta}(x)\right)$ contains $B_{\delta / 4}(\tilde{f}(x))$.
[Hint: Apply the Mean Value Inequality to $D f$ and use Lemma 1.22.]
(ii) Show that the image $f\left(B_{\delta}(x)\right)$ contains the ball $B_{\delta /(4 K)}(f(x))$.
[Hint: What can you say about the image of $B_{\delta /(4 K)}(f(x))$ under $\left(D f_{x}\right)^{-1}$ ?]
2. Consider parametrisations of $\varphi$ of $S^{n}:=\left\{y \in \mathbb{R}^{n+1}:\|y\|=1\right\}$ that are "graphs over a coordinate plane" in the following sense: $\varphi: B^{n} \rightarrow U$, for $B^{n}:=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ and $U \subset S^{n}$ some open subset, and all but one of the $n+1$ components of $\varphi(x)$ is equal to a component of $x$ (e.g., $\varphi$ could be of the form $\left.\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, g\left(x_{1}, \ldots, x_{n}\right), x_{i}, \ldots x_{n}\right)\right)$. How many parametrisations of this form are required for the images $U$ to cover $S^{n}$ ?
[Hint: If $e_{i} \in \mathbb{R}^{n+1}$ is one of the $n+1$ basis vectors, how many parametrisations of the given type have $e_{i}\left(o r-e_{i}\right)$ contained in their image?
3. Define two parametrisations $\varphi_{+}, \varphi_{-}: \mathbb{R}^{n} \rightarrow S^{n}$ as follows. For $x \in \mathbb{R}^{n}$, consider the line $L_{ \pm}$in $\mathbb{R}^{n+1}$ that contains $(x, 0)$ and $(0, \pm 1)$, and let $\varphi_{ \pm}(x)$ be the intersection point (other than $(0, \pm 1)$ ) of $L_{ \pm}$with $S^{n}$.

Show that

$$
\varphi_{ \pm}(x)=\frac{1}{1+\|x\|^{2}}\left(2 x, \pm\left(\|x\|^{2}-1\right)\right) .
$$

What are the images $U_{ \pm}$of $\varphi_{ \pm}$?
[Hint: Parametrize $L_{ \pm}$by $t \in \mathbb{R}$ and find $y \in L_{ \pm}$with $\left\|\|y\|^{2}=1\right\|$. This should give a quadratic equation for $t$-one solution gives the point $(0, \pm 1)$ and the other is $\varphi_{ \pm}(x)$.]
4. Let $k$ be a positive integer, and let $M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{k}+y^{k}+z^{k}=1\right\}$.
(i) Show that $M$ is a submanifold of $\mathbb{R}^{3}$.
[Hint: Show that 1 is a regular value of $(x, y, z) \mapsto x^{k}+y^{k}+z^{k}$.]
(ii) Show that if $k$ is even then $M$ is diffeomorphic to $S^{2}$.
[Hint: To see the difference between when $k$ is even or odd, it may be helpful to draw a sketch of the set $\left\{(x, y) \in \mathbb{R}^{2}: x^{k}+y^{k}=1\right\}$ for $k=1,2,3,4$. Now you need to find a smooth function $f: M \rightarrow S^{2}$ with a smooth inverse $g: S^{2} \rightarrow M$. To do this, find explicitly smooth maps $F: \mathbb{R}^{3} \backslash\{0\} \rightarrow S^{2}$ and $G: \mathbb{R}^{3} \backslash\{0\} \rightarrow M$ such that the restriction of $F$ to $M$ and the restriction of $G$ to $S^{2}$ are inverses.]
5. Fix $k>0$, and define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by

$$
f(x, y, z)=\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}+z^{2}+k\right)^{2}} .
$$

What are the regular values of $f$ ? For each regular value $q$ of $f$, describe $f^{-1}(q)$.
[Hint: First identify the points where $\frac{\partial f}{\partial z}=0$, then identify which of those have $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$ too.]

