
MA40254 Differential and geometric analysis : Exercises 2

Hand in answers by 1:15pm on Wednesday 18 October for the Seminar of Thursday 19 October
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). For U ⊆ Rn open, let f : U → Rn be a local diffeomorphism. Show f(U) is open.
[Solution: Apply the Inverse Function Theorem at each x ∈ U : this implies the existence of a neigh-
bourhood U ′ ⊆ U of x such that f(U ′) is open in Rn. Thus f(U) contains an open neighbourhood
of each of its elements.]
1. Let U ⊆ Rn be open and f : U → Rm be C1. Suppose Dfx is surjective for every x ∈ U . Show
that f(U) be open in Rm?
[Hint: Reduce this problem to the solution of question 1 for each x ∈ U by restricting f to {x + v :
v ∈ W} for a suitable m-dimensional subspace W ≤ Rn.]
2. Let U be an open subset of R2 \ {0}, and let f : U → R>0 × R, (x, y) 7→ (r, θ) be a smooth
function such that x = r(x, y) cos θ(x, y) and y = r(x, y) sin θ(x, y) for any (x, y) ∈ U . Compute
Df(x,y) for (x, y) ∈ U .
[Hint: What is the relationship of f to g : R>0 × R → R2 \ {0}, (r, θ) 7→ (r cos θ, r sin θ) and what
does this imply about Df and Dg?]
3. Define f : R3 → R2 by f(x, y, z) := (x2 + y2 + z, xz2 − yz). For which (x, y, z) ∈ R3 is
Df(x,y,z) : R3 → R2 surjective?
[Hint: When are the two rows of Df(x,y,z) linearly independent? One approach is to compute the
three 2 × 2 minors. You should find that there are two cases depending on whether z = 0 or not.]
4. Let GLn(R) ⊂ Mn,n(R) be the subset of invertible matrices in the vector space of real n × n
matrices. Let inv : GLn(R) → GLn(R) be the (continuous) function A 7→ A−1.

(i) Explain why GLn(R) is open in Mn,n(R).

(ii) Show that the derivative of inv at the identity matrix I ∈ GLn(R) is
DinvI = − IdMn,n(R) .

(iii) Identify the derivative DinvA : Mn,n(R) → Mn,n(R) at A ∈ GLn(R), and deduce that inv is
smooth.

[Hint: (i) The determinant is a continuous function. (ii) Note that (I+X)((I+X)−1−I+X) = X2.
(iii) Define LA and RA : Matn,n(R) → Matn,n(R) by X 7→ AX and X 7→ XA. What can you say
about LA ◦ inv ◦ RA? Now apply the chain rule.]
5. (i) Let the function χ : R → R be defined by

χ(t) :=
{

0 for t ≤ 0
e−1/t for t > 0

Show that there is a polynomial pn of degree ≤ 2n such that for t > 0, the nth derivative of
χ(t) is pn(1/t)χ(t). Hence or otherwise, prove that χ is a smooth function on R. [You may
assume results about “exponentials dominating polynomials”.]

[Hint: Use induction: you don’t need to find an explicit expression for pn.]

(ii) For any x ∈ Rn and any r > 0, show that there is a smooth function ρ : Rn → R such that
{y ∈ Rn : ρ(y) ̸= 0} is the open ball Br(x). [This is called a “bump function”.]

[Hint: Precompose χ with a suitable function of ∥y − x∥.]
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1. For any x ∈ U , the hypothesis implies there is a subspace W ≤ Rn, with Rn = W ⊕ker Dfx, such
that the restriction of Dfx to W gives a linear isomorphism W → Rm. Now consider the translation
map Tx : W → Rn, z 7→ x + z. Then Ũ := T −1

x (U) is an open subset of W , containing the origin.
Let f̃ := f ◦ Tx : Ũ → Rm. This is a smooth function, with Df̃0 = Dfx|W by the chain rule. Since
that is an isomorphism, the image f̃(Ũ) contains an open neighbourhood of f̃(0) = f(x) by the
Inverse Function Theorem. Since f̃(Ũ) ⊆ f(U), therefore f(U) too contains an open neighbourhood
of f(x). Applying this argument for each x ∈ U shows that f(U) is open.

2. Let g : R>0 × R → R2 \ {0}, (r, θ) 7→ (r cos θ, r sin θ). Then g ◦ f = IdU , so Df(x,y) is the inverse
of Dgf(x,y). The matrix representing Dg(r,θ) is

( cos θ −r sin θ
sin θ r cos θ

)
, with inverse

1
r

(
r cos θ r sin θ
− sin θ cos θ

)
=


x√

x2 + y2
y√

x2 + y2

− y

x2 + y2
x

x2 + y2

 .

3. Df(x,y,z) : R3 → R2 is represented by the matrix(
2x 2y 1
z2 −z 2xz − y

)
.

Df(x,y,z) is not surjective if and only if this matrix has less than full rank—equivalently its rows are
linearly dependent, or its three minors are all zero. The first minor is

2x(−z) − 2yz2 = −2z(x + yz),

so vanishes if and only if x = −yz or z = 0. When x = −yz, the vanishing of the other two minors

2x(2xz − y) − z2, 2y(2xz − y) + z,

reduces to y = ±
√

z
4z2+2 . On the other hand, if z = 0 then the vanishing of the other two minors

reduces to x = 0 or y = 0. The case x = 0 is already covered by x = −yz as before. On the other
hand, if y = 0 then the same formula for y as before is still valid. All in all, we can say that the
derivative fails to be surjective precisely when

y = z = 0, or

y = ±
√

z

4z2 + 2 and x = −yz.

4. (i) GLn(R) is the complement to the zero set of det : Mn,n(R) → R. The determinant function
is continuous, so its zero set is closed.

(ii) We claim that DinvI = − IdMn,n(R). This is equivalent to saying that

∥(I + X)−1 − I + X∥
∥X∥

→ 0



as X → 0 in Mn,n(R). We can use any norms we like, but lets use the operator norm. Then,
since (I + X)((I + X)−1 − I + X) = I + (X2 − I) = X2,

∥(I + X)−1 − I + X∥ ≤ ∥(I + X)−1∥∥X2∥ ≤ ∥(I + X)−1∥∥X∥2.

Because inv is continuous, certainly ∥(I + X)−1∥ < 2∥I∥ = 2 for ∥X∥ small, so

∥(I + X)−1 − I + X∥
∥X∥

< 2∥X∥ → 0

as X → 0, thus proving that DinvI(X) = −X.

(iii) Given A ∈ GLn(R), define linear maps

LA : Mn,n(R) → Mn,n(R), X 7→ AX,

RA : Mn,n(R) → Mn,n(R), X 7→ XA.

The fact that B−1 = (AB)−1A for any B ∈ GLn(R) means that inv = RA ◦ inv ◦ LA. By the
chain rule (and using that LA and RA are linear maps)

DinvI = RA ◦ DinvA ◦ LA.

Hence
DinvA = (RA)−1 ◦ (− IdMn,n(R)) ◦ (LA)−1 = R−A−1 ◦ LA−1 ,

i.e.,
DinvA(X) = −A−1XA−1.

An alternative proof is to observe that m ◦ (Id, inv) : Mn,n(R) → Mn,n(R); A 7→ AA−1 = I is
constant, so

0 = DmA,A−1 ◦ (D IdA, DinvA)(X) = DmA,A−1(X, DinvA(X)) = XA−1 + ADinvA(X)

(by the product rule) and again we get DinvA(X) = −A−1XA−1.
In other words Dinv = RL ◦ inv where RL(B) = R−B ◦ LB is a product of the linear maps
B 7→ R−B and B 7→ LB, and hence is differentiable by the product rule with derivative
D(RL)B(Z) = R−Z ◦ LB + R−B ◦ LZ . Since inv is differentiable, Dinv is differentiable by the
chain rule with D(Dinv)A(X) = RA−1XA−1 ◦ LA−1 + R−A−1 ◦ L−A−1XA−1 . Applying this to
Y we get

D2invA(X, Y ) = A−1Y (A−1XA−1) + (A−1XA−1)Y A−1.

In general, induction on k, using linearity, the chain rule, product rule and Dinv, shows that

DkinvA(X1, . . . Xk) = (−1)k
∑

σ∈Sk

A−1Xσ(1)A
−1Xσ(2) · · · A−1Xσ(k)A

−1.

Alternatively, observe that A−1 = adj(A)/ det(A) where adj(A) and det(A) are polynomial
in the entries of A. Hence adj(A) and 1/ det(A) have partial derivatives of all orders (by
induction in the latter case, since det(A) is nonvanishing), and now the iterated product rule
shows A−1 is smooth.



5. (i) We use induction, as the claim clearly holds for n = 0 with pn(x) = 1. Suppose the claim
holds for n = k. Then for t > 0

χ(k+1)(t) = d

dt

(
pk (1/t) e−1/t

)
=
(

−p′
k(1/t)

t2 + pk (1/t)
t2

)
e−1/t,

so if we set pk+1(x) := x2(−p′
k(x) + pk(x)) we are done.

For t < 0 it is clear that the nth derivative of χ(t) is 0. We prove χ(n)(t) is differentiable at
t = 0 with derivative χ(n+1)(0) = 0 by induction on n: (χ(n)(0 + ε) − χ(n)(0))/ε = χ(n)(ε)/ε
which is pn(1/ε)e−1/ε/ε for ε > 0 and zero for ε < 0. Thus it has limit 0 as ε → 0 since
exponentials dominate polynomials.

(ii) Define ρ : Rn → R by
ρ(y) := χ

(
r2 − ∥y − x∥2

)
.

This is a smooth function (by the chain rule) that is non-zero precisely on Br(x).


