MA40254 DIFFERENTIAL AND GEOMETRIC ANALYSIS : EXERCISES 2

Hand in answers by 1:15pm on Wednesday 18 October for the Seminar of Thursday 19 October
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). For U C R™ open, let f: U — R” be a local diffecomorphism. Show f(U) is open.

[Solution: Apply the Inverse Function Theorem at each x € U : this implies the existence of a neigh-
bourhood U' C U of x such that f(U’) is open in R™. Thus f(U) contains an open neighbourhood
of each of its elements.]

1. Let U C R™ be open and f : U — R™ be C'. Suppose Df, is surjective for every x € U. Show
that f(U) be open in R™?

[Hint: Reduce this problem to the solution of question 1 for each x € U by restricting f to {x + v :
v e W} for a suitable m-dimensional subspace W < R™.]

2. Let U be an open subset of R? \ {0}, and let f : U — Ryg x R, (x,9) ~ (r,0) be a smooth
function such that x = r(z,y)cosf(z,y) and y = r(z,y)sinf(z,y) for any (z,y) € U. Compute
Df(:c,y) for (l’,y) eU.

[Hint: What is the relationship of f to g : Rsg x R — R%\ {0}, (r,0) — (rcosf,rsinf) and what
does this imply about Df and Dg?

3. Define f : R® — R? by f(z,y,2) := (2% + y% + 2z, 222 — yz). For which (x,9,2) € R3 is
Dfy,z: R3 — R? surjective?

[Hint: When are the two rows of Dfsy,z linearly independent? One approach is to compute the
three 2 x 2 minors. You should find that there are two cases depending on whether z =0 or not.

4. Let GL,(R) C M, ,(R) be the subset of invertible matrices in the vector space of real n x n
matrices. Let inv : GL,(R) — GL,(R) be the (continuous) function A +— A~L.

(i) Explain why GL,(R) is open in M, ,(R).
(ii) Show that the derivative of inv at the identity matrix I € GL,(R) is
DinV[ = — IdMn,n(R) .

(iii) Identify the derivative Dinva : My n(R) — M, »(R) at A € GL,(R), and deduce that inv is
smooth.

[Hint: (i) The determinant is a continuous function. (ii) Note that (I+X)((I+X) ' —I+X) = X2
(iii) Define La and Ra : Mat, ,(R) — Mat, ,(R) by X — AX and X — XA. What can you say
about Ly oinvo Ra? Now apply the chain rule.]

5. (i) Let the function x : R — R be defined by

() = 0 fort <0
XUZ9 et fort >0
Show that there is a polynomial p,, of degree < 2n such that for ¢ > 0, the nth derivative of

X(t) is pn(1/t)x(t). Hence or otherwise, prove that x is a smooth function on R. [You may
assume results about “exponentials dominating polynomials”.]

[Hint: Use induction: you don’t need to find an explicit expression for py,.|

(ii) For any x € R™ and any r > 0, show that there is a smooth function p: R” — R such that
{y € R™: p(y) # 0} is the open ball B,(z). [This is called a “bump function”.]

[Hint: Precompose x with a suitable function of ||y — x||.]
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1. For any x € U, the hypothesis implies there is a subspace W < R", with R” = W @&ker D f,, such
that the restriction of D f, to W gives a linear isomorphism W — R". Now consider the translation
map T : W = R™, z — 2+ z. Then U := T, 1(U) is an open subset of W, containing the origin.
Let f:= foT,:U — R™. This is a smooth function, with D f, = Df.|w by the chain rule. Since
that is an isomorphism, the image f (f] ) contains an open neighbourhood of f (0) = f(x) by the
Inverse Function Theorem. Since f(U) C f(U), therefore f(U) too contains an open neighbourhood
of f(z). Applying this argument for each x € U shows that f(U) is open.

2. Let g: Rog x R — R?\ {0}, (r,0) — (rcos@,rsinf). Then go f =1dy, so D[, is the inverse
cosf —rsin6
sinf rcos6

of Dgs(z,)- The matrix representing Dg(, g is ( ), with inverse

£ Yy
1 (rcosf rsinf) _ | Va2+y? a2+y?
r \—sinf cosf) Yy x

_$2+y2 xQ—i—y?

3. Df : R3 — R? is represented by the matrix

2x 2y 1

22—z 2mz—vy)’
Df(4,y,- 1s not surjective if and only if this matrix has less than full rank—equivalently its rows are
linearly dependent, or its three minors are all zero. The first minor is

©,Y,2)

2m(—2) — 2yz? = —2z2(x + y2),
so vanishes if and only if x = —yz or 2 = 0. When & = —yz, the vanishing of the other two minors
2x(2z2 —y) — 22, 2y(2xz — y) + z,

reduces to y = £ On the other hand, if z = 0 then the vanishing of the other two minors

z
42242°
reduces to x = 0 or y = 0. The case x = 0 is already covered by © = —yz as before. On the other
hand, if ¥y = 0 then the same formula for y as before is still valid. All in all, we can say that the

derivative fails to be surjective precisely when
y=2=0, or

z
y:j: mandl‘:—yz.

4. (i) GLp(R) is the complement to the zero set of det : M), ,(R) — R. The determinant function
is continuous, so its zero set is closed.

(ii) We claim that Dinvy = —1Idyy, ,(r)- This is equivalent to saying that

I+ X))t —T+X|

— 0
X




(iii)

as X — 0in M, ,(R). We can use any norms we like, but lets use the operator norm. Then,
since (I—i—X)((I—i—X)’1 —I+X)=1+ (X2 —I)= X2

I +X) " =T+ X < (7 + X)X < 1+ )71
Because inv is continuous, certainly ||(I + X)7!| < 2||I| = 2 for || X|| small, so

(I + X))~ —T+X|
| X|]

<2|X]| =0

as X — 0, thus proving that Dinv;(X) = —X.
Given A € GL,(R), define linear maps

Ly : My n(R) = M, n(R), X — AX,
Ra:Mpp(R) = Mp,(R), X — XA

The fact that B~! = (AB)~!A for any B € GL,(R) means that inv = R4 oinvo L. By the
chain rule (and using that L4 and R4 are linear maps)

Dinv; = Rgo Dinvyg o Ly.

Hence
Dinvy = (Ra)™" o (= Idy, ,®)) 0 (La)™' = R_4-10Ly-,
i.e.,
Dinva(X)=-A"1xA71
An alternative proof is to observe that m o (Id,inv) : M, ,(R) — M, ,(R); A~ AA™L =T is
constant, so

0=Dmy g-10(DIda, Dinvy)(X) = Dmy 4-1(X, Dinva(X)) = XA~ + ADinv,(X)

(by the product rule) and again we get Dinva(X) = —A71X AL,

In other words Dinv = RL o inv where RL(B) = R_p o Lp is a product of the linear maps
B — R_p and B — Lpg, and hence is differentiable by the product rule with derivative
D(RL)g(Z) = R_zoLp+ R_poLy. Since inv is differentiable, Dinv is differentiable by the
chain rule with D(Dinv)4(X) = Ry-1x4-10 La-1 + R_g-1 0 L_4-1x4-1. Applying this to
Y we get

D?invs(X,Y) =AY A XA ) (At xAaHyat

In general, induction on k, using linearity, the chain rule, product rule and Dinv, shows that

DkinVA(Xl, X)) = (—l)k Z A_IXU(DA_IXU(Q) e A_lXa(k)A_l.

€Sk

Alternatively, observe that A~! = adj(A4)/det(A) where adj(A) and det(A) are polynomial
in the entries of A. Hence adj(A) and 1/det(A) have partial derivatives of all orders (by
induction in the latter case, since det(A) is nonvanishing), and now the iterated product rule
shows A~! is smooth.



(i) We use induction, as the claim clearly holds for n = 0 with p,(x) = 1. Suppose the claim
holds for n = k. Then for t > 0

XF (1) = % (pk (1/t) e‘l/t) = (—p;“(tlg/t) + B g/t)> e M,

so if we set pry1(x) := 2%(—p),(z) + pr(x)) we are done.

For t < 0 it is clear that the nth derivative of x(t) is 0. We prove x(™(t) is differentiable at
t = 0 with derivative x**1(0) = 0 by induction on n: (x™ (0 + ¢) — x™(0))/e = x™(e) /e
which is pp(1/e)e”1/¢/e for ¢ > 0 and zero for ¢ < 0. Thus it has limit 0 as ¢ — 0 since
exponentials dominate polynomials.

Define p : R® — R by
p(y) = x (r* = ly = =) .

This is a smooth function (by the chain rule) that is non-zero precisely on B, (z).



