MA40254 Differential and geometric analysis : Exercises 2

Hand in answers by 1:15pm on Wednesday 18 October for the Seminar of Thursday 19 October Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

0 (Warmup). For $U \subseteq \mathbb{R}^{n}$ open, let $f: U \rightarrow \mathbb{R}^{n}$ be a local diffeomorphism. Show $f(U)$ is open.
[Hint: Apply the Inverse Function Theorem at each $x \in U$: this implies the existence of a neighbourhood $U^{\prime} \subseteq U$ of x such that $f\left(U^{\prime}\right)$ is open in \mathbb{R}^{n}. Thus $f(U)$ contains an open neighbourhood of each of its elements.]

1. Let $U \subseteq \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{m}$ be C^{1}. Suppose $D f_{x}$ is surjective for every $x \in U$. Show that $f(U)$ be open in \mathbb{R}^{m} ?
[Hint: Reduce this problem to the solution of question 1 for each $x \in U$ by restricting f to $\{x+v$: $v \in W\}$ for a suitable m-dimensional subspace $W \leq \mathbb{R}^{n}$.]
2. Let U be an open subset of $\mathbb{R}^{2} \backslash\{0\}$, and let $f: U \rightarrow \mathbb{R}_{>0} \times \mathbb{R},(x, y) \mapsto(r, \theta)$ be a smooth function such that $x=r(x, y) \cos \theta(x, y)$ and $y=r(x, y) \sin \theta(x, y)$ for any $(x, y) \in U$. Compute $D f_{(x, y)}$ for $(x, y) \in U$.
[Hint: What is the relationship of f to $g: \mathbb{R}_{>0} \times \mathbb{R} \rightarrow \mathbb{R}^{2} \backslash\{0\},(r, \theta) \mapsto(r \cos \theta, r \sin \theta)$ and what does this imply about $D f$ and $D g$?]
3. Define $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by $f(x, y, z):=\left(x^{2}+y^{2}+z, x z^{2}-y z\right)$. For which $(x, y, z) \in \mathbb{R}^{3}$ is $D f_{(x, y, z)}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ surjective?
[Hint: When are the two rows of $D f_{(x, y, z)}$ linearly independent? One approach is to compute the three 2×2 minors. You should find that there are two cases depending on whether $z=0$ or not.]
4. Let $G L_{n}(\mathbb{R}) \subset M_{n, n}(\mathbb{R})$ be the subset of invertible matrices in the vector space of real $n \times n$ matrices. Let inv : $G L_{n}(\mathbb{R}) \rightarrow G L_{n}(\mathbb{R})$ be the (continuous) function $A \mapsto A^{-1}$.
(i) Explain why $G L_{n}(\mathbb{R})$ is open in $M_{n, n}(\mathbb{R})$.
(ii) Show that the derivative of inv at the identity matrix $I \in G L_{n}(\mathbb{R})$ is

$$
\operatorname{Dinv}_{I}=-\operatorname{Id}_{M_{n, n}(\mathbb{R})} .
$$

(iii) Identify the derivative $\operatorname{Dinv}_{A}: M_{n, n}(\mathbb{R}) \rightarrow M_{n, n}(\mathbb{R})$ at $A \in G L_{n}(\mathbb{R})$, and deduce that inv is smooth.
[Hint: (i) The determinant is a continuous function. (ii) Note that $(I+X)\left((I+X)^{-1}-I+X\right)=X^{2}$. (iii) Define L_{A} and $R_{A}: \operatorname{Mat}_{n, n}(\mathbb{R}) \rightarrow$ Mat $_{n, n}(\mathbb{R})$ by $X \mapsto A X$ and $X \mapsto X A$. What can you say about $L_{A} \circ$ inv $\circ R_{A}$? Now apply the chain rule.]
5. (i) Let the function $\chi: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\chi(t):= \begin{cases}0 & \text { for } t \leq 0 \\ e^{-1 / t} & \text { for } t>0\end{cases}
$$

Show that there is a polynomial p_{n} of degree $\leq 2 n$ such that for $t>0$, the nth derivative of $\chi(t)$ is $p_{n}(1 / t) \chi(t)$. Hence or otherwise, prove that χ is a smooth function on \mathbb{R}. [You may assume results about "exponentials dominating polynomials".]
[Hint: Use induction: you don't need to find an explicit expression for p_{n}.]
(ii) For any $x \in \mathbb{R}^{n}$ and any $r>0$, show that there is a smooth function $\rho: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\left\{y \in \mathbb{R}^{n}: \rho(y) \neq 0\right\}$ is the open ball $B_{r}(x)$. [This is called a "bump function".]
[Hint: Precompose χ with a suitable function of $\|y-x\|$.]

