MA40254 Differential and geometric analysis : Exercises 1

Hand in answers by 1:15pm on Wednesday 11 October for the Seminar of Thursday 12 October
Homepage: http://moodle.bath.ac.uk/course/view.php?id=57709

1. Let U be the open interval $(-1,1) \subset \mathbb{R}$, and let $f: U \rightarrow \mathbb{R}, x \mapsto x^{2}$.
(i) For $x \in U$, what are the domain and codomain of $D f_{x}$, the derivative of f at x ?
(ii) For which $x \in U$ is $D f_{x}$ injective?
(iii) What are the domain and codomain of the derivative function $D f$?
(iv) Is $D f$ injective?
[Hint: $D f_{x}$ is a linear map represented by a 1×1 matrix, whose only entry is $\frac{d f}{d x}$.]
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2},(x, y) \mapsto\left(x^{3}-y^{2}, x y\right)$. For which $(x, y) \in \mathbb{R}^{2}$ is $D f_{(x, y)}$ an isomorphism?
[Hint: First find the 2×2 matrix that represents $D f_{(x, y)}$.]
3. Let $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be normed vector spaces, and let $\mathcal{L}(V, W)$ be the vector space of linear maps $V \rightarrow W$. For $\phi \in \mathcal{L}(V, W)$, define its operator norm by

$$
\|\phi\|_{o p}:=\sup _{v}\|\phi(v)\|_{W}
$$

where the supremum is taken over $v \in V$ such that $\|v\|_{V}=1$. Show that $\|\cdot\|_{o p}$ is a norm on $\mathcal{L}(V, W)$.
[Hint: Use the defining properties of the norm on W to derive the properties required for the operator norm.]
4. Which of the following functions are smooth?
(i) $f: S \rightarrow \mathbb{R}, x \mapsto \sqrt[3]{x^{3}-2}$, where $S:=\mathbb{Q} \subset \mathbb{R}$.
(ii) $g: S \rightarrow \mathbb{R},(x, y) \mapsto\left\{\begin{array}{r}\sqrt{y} \text { if } x \geq 0 \\ -\sqrt{y} \text { if } x \leq 0\end{array}\right.$, where $S:=\left\{(x, y): y=x^{2}\right\} \subset$ \mathbb{R}^{2}.
(iii) $h: S \rightarrow \mathbb{R},(x, y) \mapsto \sqrt{y}$, where $S:=\left\{(x, y): y=x^{2}\right\} \subset \mathbb{R}^{2}$.
$[$ Hint: (i) What is the biggest open subset $U \subset \mathbb{R}$ such that the function $x \mapsto \sqrt[3]{x^{3}-2}$ is differentiable on U ?
(ii) Find a simple function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the restriction of G to S equals g.
(iii) Suppose $U \subseteq \mathbb{R}^{2}$ is an open subset containing the origin, and H : $U \rightarrow \mathbb{R}$ is a smooth function whose restriction to $U \cap S$ equals h. For a suitable interval $I \subseteq \mathbb{R}$, what can you say about the composition of $I \rightarrow$ $\mathbb{R}^{2}, t \mapsto\left(t, t^{2}\right)$ with H ?]
5. Let $U \subseteq \mathbb{R}^{n}$ open, and let $f: U \rightarrow \mathbb{R}^{m}$ be a smooth function. If $D f_{x}$ is injective for every $x \in U$, must f be injective?
[Hint: We will see later that if $D f_{x}$ at x in U then f is injective on a neighbourhood of x-but does this imply f is injective on all of U ? Think of simple examples (angles on a circle maybe?)]
6. (i) Compute the derivative of the matrix multiplication map

$$
m: M_{m, n}(\mathbb{R}) \times M_{n, p}(\mathbb{R}) \rightarrow M_{m, p}(\mathbb{R}),(A, B) \mapsto A B
$$

(ii) Compute the derivative of $s: M_{n, n}(\mathbb{R}) \rightarrow M_{n, n}(\mathbb{R}), A \mapsto A^{2}$.
[Hint: (i) This is the product rule for matrix multiplication, so we expect $D m_{(A, B)}(X, Y)=X B+A Y$: prove that this expectation is correct, using the operator norm on matrices (viewed as linear maps), which satisfies $\|X Y\| \leq$ $\|X\|\|Y\|$.
(ii) Write s as the composition of the diagonal map $M_{n, n}(\mathbb{R}) \rightarrow M_{n, n}(\mathbb{R}) \times$ $M_{n, n}(\mathbb{R}), A \mapsto(A, A)$ and $\left.m: M_{n, n}(\mathbb{R}) \times M_{n, n}(\mathbb{R}) \rightarrow M_{n, n}(\mathbb{R}).\right]$

