Please submit solutions by 3pm on Thursday 26th April to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Let $\lambda \in \mathbb{C}$ and let $f(t) \in \mathbb{C}[t]$ be of degree n.

- (1) Find $a_1, \ldots, a_n \in \mathbb{C}$ such that $f(t) = a_0 + a_1(t-\lambda) + a_2(t-\lambda)^2 + \cdots + a_n(t-\lambda)^n$.
- (2) For $\lambda = 2$ and $f(t) = t^4 3t^3 + 2t 1$, compute the scalars $a_0, a_1, \ldots, a_4 \in \mathbb{C}$ from part (1).

2. (W) Write sketch proofs of Theorem 5.7 and Proposition 5.19.

3. (W) Let V be a finite dimensional vector space, and let $v \in V$ be nonzero. Let s be the smallest integer such that $\alpha^s v = 0$. Show that $v, \alpha v, \ldots, \alpha^{s-1}v$ are linearly independent.

4. (H) For $\lambda \in \mathbb{C}$, $n \in \mathbb{N}$, consider the $n \times n$ complex matrix

$$J(\lambda, n) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

in which every entry that is not shown is equal to zero. Compute the algebraic and geometric multiplicities of the unique eigenvalue λ . Also, compute the minimal polynomial.

5. (H) Consider the real-valued matrix

$$A = \begin{pmatrix} 1 & -5 & -7 \\ 1 & 4 & 2 \\ 0 & 1 & 4 \end{pmatrix}.$$

Find an invertible real-valued matrix P such that

$$P^{-1}AP = \begin{pmatrix} 3 & 1 & 0\\ 0 & 3 & 1\\ 0 & 0 & 3 \end{pmatrix}.$$

6. (A) For k > 0 and for $1 \le i \le k$, let $\alpha_i : V_i \to V_i$ be a k-linear map for some field k. Prove by induction that

$$\det(\alpha_1 \oplus \cdots \oplus \alpha_k) = \det(\alpha_1) \cdot \det(\alpha_2) \cdots \det(\alpha_k).$$

[Hint: it suffices to show that for $A_1 \in M_m(\mathbb{k})$ and $A_2 \in M_n(\mathbb{k})$, we have $\det(A_1 \oplus A_2) = \det(A_1) \cdot \det(A_2)$. You might try proving this by induction on m.]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B

Algebra 2B, 2018

Solutions 9

1. (1) We proceed by induction on the degree n of f. If n = 0 then the result is clear. Suppose n > 0. Since $\mathbb{C}[t]$ is a Euclidean domain, we have $f = (t - \lambda)q + r$ for some $q, a_0 \in \mathbb{C}[t]$, where q has degree n - 1 and deg $(a_0) < 1$. By induction,

$$q(t) = a_1 + a_2(t - \lambda) + \dots + a_n(t - \lambda)^{n-1}$$

for some $a_i \in \mathbb{C}$ $(1 \le i \le n)$. Thus for $a_0 := r$, we get $f(t) = a_0 + a_1(t - \lambda) + \dots + a_n(t - \lambda)^n$

(2) We seek $a_i \in \mathbb{C}$ such that $f(t) = a_0 + a_1(t-2) + \cdots + a_4(t-2)^4$. Cleary $a_0 = f(2) = 16 - 24 + 4 - 1 = -5$. Also taking derivatives gives

$$4t^{3} - 9t^{2} + 2 = \frac{d}{dt}f(t) = a_{1} + 2a_{2}(t-2) + \dots + 4a_{4}(t-2)^{3}.$$

Evaluating this at 2 yields $a_1 = 32 - 36 + 2 = -2$. Arguing in the same manner yields

$$a_2 = \frac{1}{2}(12t^2 - 18t)|_{t=2} = 6; \quad a_3 = \frac{1}{6}(24t - 18)|_{t=2} = 5; \quad a_4 = \frac{1}{24}(24) = 1.$$

Therefore $f(t) = -5 - 2(t-2) + 6(t-2)^2 + 5(t-2)^3 + (t-2)^4$.

- 2. No solution given.
- 3. Suppose

$$a_0v + a_1\alpha v + \dots + a_{n-1}\alpha^{s-1}v = 0.$$

Applying α^{s-1} to both sides gives $a_0\alpha^{s-1}v = 0$ and as $\alpha^{s-1}v \neq 0$ it follows that $a_0 = 0$. Next apply α^{s-2} to both sides and this gives $a_1\alpha^{s-1}v = 0$ that imples that $a_1 = 0$. Continuing like this with $\alpha^{s-3}, \alpha^{s-4}, \ldots \alpha^0 = \text{id}$, gives that $a_2 = \ldots = a_{n-1} = 0$.

4. Note that $\Delta_J(t) = (\lambda - t)^n$. The algebraic multiplicity of λ is n by definition. To determine the geometric multiplicity notice that $v = (a_1, \ldots, a_n)$ is in the λ -eigenspace if and only if

$$\begin{pmatrix} 0\\ \cdot\\ \cdot\\ \cdot\\ 0\\ 0\\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1\\ & \cdot\\ & \cdot\\ & \cdot\\ & \cdot\\ & \cdot\\ & \cdot\\ & 0 & 1\\ & & 0 \end{pmatrix} \begin{pmatrix} a_1\\ \cdot\\ \cdot\\ \cdot\\ & \cdot\\ & a_{n-1}\\ a_n \end{pmatrix} = \begin{pmatrix} a_2\\ \cdot\\ \cdot\\ & \cdot\\ & a_n\\ & 0 \end{pmatrix},$$

which happens if and only if $a_2 = a_3 = \cdots = a_n = 0$, that is, if and only if $v = a_1e_1$. Therefore the λ -eigenspace is $\langle e_1 \rangle$ which has dimension 1, so the geometric multiplicity of λ is 1.

For $A = J(\lambda, n)$, we compute that $\Delta_A(t) = (\lambda - t)^n$, so $m_A(t) = (t - \lambda)^s$ for some $1 \le s \le n$. Let E_{ij} be the matrix with 1 in position (i, j) and 0 elsewhere. Notice that

$$A - \lambda I = E_{12} + E_{23} + \dots + E_{(n-1)n}$$

and that

$$(A - \lambda I)^{n-1} = E_{12}E_{23}\cdots E_{(n-1)n} = E_{1n} \neq 0,$$

whereas $(A - \lambda I)^n = E_{1n}(E_{12} + E_{23} + \dots + E_{(n-1)n}) = 0$. Hence $m_A(t) = (t - \lambda)^n$.

5. The characteristic polynomial of A is $\Delta_A(t) = (3-t)^3$, so the eigenvalue $\lambda = 3$ has multiplicity three. We compute that

$$A - 3I \neq 0;$$
 $(A - 3I)^2 \neq 0;$ $(A - 3I)^3 = 0,$

so the minimal polynomial is $m_A(t) = (t-3)^3$. Thus, there is at least one Jordan block J(3,3), and since A is a 3×3 matrix, we see that the Jordan normal form of A must be J(3,3). It remain to find the basis in which the corresponding linear map α is represented by this matrix.

Perform ERO's on the matrix

$$A - 3I = \begin{pmatrix} -2 & -5 & -7 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \text{ to obtain } \begin{pmatrix} -2 & -5 & -7 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus, we solve y + z = 0 and -2x - 5y - 7z = 0. The set of such solutions is spanned by the eigenvector

$$v_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix},$$

so the eigenspace of $\lambda = 3$ has dimension one (confirming that $\lambda = 3$ determines only one block). This is the vector v_1 from Proposition 5.19. To compute v_2 , Proposition 5.19 shows that

$$(\alpha - \lambda id)v_2 = v_1, \quad i.e., \quad (A - 3I)v_2 = v_1.$$

That is, to compute v_2 we must solve

$$\begin{pmatrix} -2 & -5 & -7 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \text{ to get } v_2 = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}.$$

Repeat for the system

$$\begin{pmatrix} -2 & -5 & -7 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix} \text{ to get } v_3 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}.$$

Thus, putting the vectors in the correct order from left to right gives the invertible matrix

$$P = \begin{pmatrix} -1 & -2 & 2\\ -1 & 1 & 1\\ 1 & 0 & -1 \end{pmatrix},$$

and the Jordan normal form of A is

$$P^{-1}AP = \begin{pmatrix} 3 & 1 & 0\\ 0 & 3 & 1\\ 0 & 0 & 3 \end{pmatrix} = J.$$

To check this you needn't compute the inverse of P; just check that AP = PJ. [The question didn't ask you to check that your answer P was correct, but doing this is a good habit to get in to.]

6. Let $A_1 \in M_m(\Bbbk)$ and $A_2 \in M_n(\Bbbk)$. If m = 1, then $A_1 = (a_{11})$ and expanding about the top row of the matrix $A_1 \oplus A_2$ immediately gives $\det(A_1 \oplus A_2) = a_{11} \cdot \det(A_2) = \det(A_1) \cdot \det(A_2)$. Assume the result holds for the direct sum of any two square matrices where the first matrix lies in $M_{\ell}(\Bbbk)$ with $\ell < m$. Now

for $A_1 \in M_m(\Bbbk)$, write A_{ij} for the cofactor of the entry a_{ij} of $A_1 = (a_{ij})$. Then expand along the top row of $A_1 \oplus A_2$ to see that

$$\det(A_1 \oplus A_2) = a_{11} \det(A_{11} \cdot A_2) - \dots + (-1)^{m+1} a_{1m} \det(A_{1m} \cdot A_2)$$

= $a_{11} \det(A_{11}) \det(A_2) - \dots + (-1)^{m+1} a_{1m} \det(A_{1m}) \det(A_2)$ by induction
= $(a_{11} \det(A_{11}) - \dots + (-1)^{m+1} a_{1m} \det(A_{1m})) \det(A_2)$
= $\det(A_1) \det(A_2)$

as required. This proves the statement in the hint. Induction on k gives

$$\det(A_1 \oplus \cdots \oplus A_k) = \det(A_1) \cdots \det(A_k)$$

which is the matrix version of the statement $\det(\alpha_1 \oplus \cdots \oplus \alpha_k) = \det(\alpha_1) \cdot \det(\alpha_2) \cdots \det(\alpha_k)$.