Exercises 9

Please submit solutions by 3 pm on Thursday 26 th April to the pigeonholes in 4 W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Let $\lambda \in \mathbb{C}$ and let $f(t) \in \mathbb{C}[t]$ be of degree n.
(1) Find $a_{1}, \ldots, a_{n} \in \mathbb{C}$ such that $f(t)=a_{0}+a_{1}(t-\lambda)+a_{2}(t-\lambda)^{2}+\cdots a_{n}(t-\lambda)^{n}$.
(2) For $\lambda=2$ and $f(t)=t^{4}-3 t^{3}+2 t-1$, compute the scalars $a_{0}, a_{1}, \ldots, a_{4} \in \mathbb{C}$ from part (1).
2. (W) Write sketch proofs of Theorem 5.7 and Proposition 5.19.
3. (W) Let V be a finite dimensional vector space, and let $v \in V$ be nonzero. Let s be the smallest integer such that $\alpha^{s} v=0$. Show that $v, \alpha v, \ldots, \alpha^{s-1} v$ are linearly independent.
4. (H) For $\lambda \in \mathbb{C}, n \in \mathbb{N}$, consider the $n \times n$ complex matrix

$$
J(\lambda, n)=\left(\begin{array}{cccc}
\lambda & 1 & & \\
& \ddots & \ddots & \\
& & \lambda & 1 \\
& & & \lambda
\end{array}\right)
$$

in which every entry that is not shown is equal to zero. Compute the algebraic and geometric multiplicities of the unique eigenvalue λ. Also, compute the minimal polynomial.
5. (H) Consider the real-valued matrix

$$
A=\left(\begin{array}{ccc}
1 & -5 & -7 \\
1 & 4 & 2 \\
0 & 1 & 4
\end{array}\right) .
$$

Find an invertible real-valued matrix P such that

$$
P^{-1} A P=\left(\begin{array}{lll}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right) .
$$

6. (A) For $k>0$ and for $1 \leq i \leq k$, let $\alpha_{i}: V_{i} \rightarrow V_{i}$ be a \mathbb{k}-linear map for some field \mathbb{k}. Prove by induction that

$$
\operatorname{det}\left(\alpha_{1} \oplus \cdots \oplus \alpha_{k}\right)=\operatorname{det}\left(\alpha_{1}\right) \cdot \operatorname{det}\left(\alpha_{2}\right) \cdots \operatorname{det}\left(\alpha_{k}\right) .
$$

[Hint: it suffices to show that for $A_{1} \in M_{m}(\mathbb{k})$ and $A_{2} \in M_{n}(\mathbb{k})$, we have $\operatorname{det}\left(A_{1} \oplus A_{2}\right)=\operatorname{det}\left(A_{1}\right) \cdot \operatorname{det}\left(A_{2}\right)$. You might try proving this by induction on m.]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B

Solutions 9

1. (1) We proceed by induction on the degree n of f. If $n=0$ then the result is clear. Suppose $n>0$. Since $\mathbb{C}[t]$ is a Euclidean domain, we have $f=(t-\lambda) q+r$ for some $q, a_{0} \in \mathbb{C}[t]$, where q has degree $n-1$ and $\operatorname{deg}\left(a_{0}\right)<1$. By induction,

$$
q(t)=a_{1}+a_{2}(t-\lambda)+\cdots+a_{n}(t-\lambda)^{n-1}
$$

for some $a_{i} \in \mathbb{C}(1 \leq i \leq n)$. Thus for $a_{0}:=r$, we get $f(t)=a_{0}+a_{1}(t-\lambda)+\cdots+a_{n}(t-\lambda)^{n}$
(2) We seek $a_{i} \in \mathbb{C}$ such that $f(t)=a_{0}+a_{1}(t-2)+\cdots+a_{4}(t-2)^{4}$. Cleary $a_{0}=f(2)=16-24+4-1=$ -5 . Also taking derivatives gives

$$
4 t^{3}-9 t^{2}+2=\frac{d}{d t} f(t)=a_{1}+2 a_{2}(t-2)+\cdots+4 a_{4}(t-2)^{3} .
$$

Evaluating this at 2 yields $a_{1}=32-36+2=-2$. Arguing in the same manner yields

$$
a_{2}=\left.\frac{1}{2}\left(12 t^{2}-18 t\right)\right|_{t=2}=6 ; \quad a_{3}=\left.\frac{1}{6}(24 t-18)\right|_{t=2}=5 ; \quad a_{4}=\frac{1}{24}(24)=1 .
$$

Therefore $f(t)=-5-2(t-2)+6(t-2)^{2}+5(t-2)^{3}+(t-2)^{4}$.
2. No solution given.
3. Suppose

$$
a_{0} v+a_{1} \alpha v+\cdots+a_{n-1} \alpha^{s-1} v=0 .
$$

Applying α^{s-1} to both sides gives $a_{0} \alpha^{s-1} v=0$ and as $\alpha^{s-1} v \neq 0$ it follows that $a_{0}=0$. Next apply α^{s-2} to both sides and this gives $a_{1} \alpha^{s-1} v=0$ that imples that $a_{1}=0$. Continuing like this with $\alpha^{s-3}, \alpha^{s-4}, \ldots \alpha^{0}=$ id, gives that $a_{2}=\ldots=a_{n-1}=0$.
4. Note that $\Delta_{J}(t)=(\lambda-t)^{n}$. The algebraic multiplicity of λ is n by definition. To determine the geometric multiplicity notice that $v=\left(a_{1}, \ldots, a_{n}\right)$ is in the λ-eigenspace if and only if

$$
\left(\begin{array}{c}
0 \\
\cdot \\
\cdot \\
\cdot \\
0 \\
0
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 1 & & & \\
& \cdot & \cdot & & \\
& \cdot & \cdot & & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\cdot \\
\cdot \\
\cdot \\
a_{n-1} \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{n} \\
0
\end{array}\right),
$$

which happens if and only if $a_{2}=a_{3}=\cdots=a_{n}=0$, that is, if and only if $v=a_{1} e_{1}$. Therefore the λ-eigenspace is $\left\langle e_{1}\right\rangle$ which has dimension 1 , so the geometric multiplicity of λ is 1 .

For $A=J(\lambda, n)$, we compute that $\Delta_{A}(t)=(\lambda-t)^{n}$, so $m_{A}(t)=(t-\lambda)^{s}$ for some $1 \leq s \leq n$. Let $E_{i j}$ be the matrix with 1 in position (i, j) and 0 elsewhere. Notice that

$$
A-\lambda I=E_{12}+E_{23}+\cdots+E_{(n-1) n}
$$

and that

$$
(A-\lambda I)^{n-1}=E_{12} E_{23} \cdots E_{(n-1) n}=E_{1 n} \neq 0,
$$

whereas $(A-\lambda I)^{n}=E_{1 n}\left(E_{12}+E_{23}+\cdots+E_{(n-1) n}\right)=0$. Hence $m_{A}(t)=(t-\lambda)^{n}$.
5. The characteristic polynomial of A is $\Delta_{A}(t)=(3-t)^{3}$, so the eigenvalue $\lambda=3$ has multiplicity three. We compute that

$$
A-3 I \neq 0 ; \quad(A-3 I)^{2} \neq 0 ; \quad(A-3 I)^{3}=0
$$

so the minimal polynomial is $m_{A}(t)=(t-3)^{3}$. Thus, there is at least one Jordan block $J(3,3)$, and since A is a 3×3 matrix, we see that the Jordan normal form of A must be $J(3,3)$. It remain to find the basis in which the corresponding linear map α is represented by this matrix.

Perform ERO's on the matrix

$$
A-3 I=\left(\begin{array}{ccc}
-2 & -5 & -7 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right) \text { to obtain }\left(\begin{array}{ccc}
-2 & -5 & -7 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, we solve $y+z=0$ and $-2 x-5 y-7 z=0$. The set of such solutions is spanned by the eigenvector

$$
v_{1}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
$$

so the eigenspace of $\lambda=3$ has dimension one (confirming that $\lambda=3$ determines only one block). This is the vector v_{1} from Proposition 5.19. To compute v_{2}, Proposition 5.19 shows that

$$
(\alpha-\lambda i d) v_{2}=v_{1}, \quad \text { i.e., } \quad(A-3 I) v_{2}=v_{1}
$$

That is, to compute v_{2} we must solve

$$
\left(\begin{array}{ccc}
-2 & -5 & -7 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) \quad \text { to get } \quad v_{2}=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right)
$$

Repeat for the system

$$
\left(\begin{array}{ccc}
-2 & -5 & -7 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right) \quad \text { to get } \quad v_{3}=\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)
$$

Thus, putting the vectors in the correct order from left to right gives the invertible matrix

$$
P=\left(\begin{array}{ccc}
-1 & -2 & 2 \\
-1 & 1 & 1 \\
1 & 0 & -1
\end{array}\right)
$$

and the Jordan normal form of A is

$$
P^{-1} A P=\left(\begin{array}{ccc}
3 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right)=J
$$

To check this you needn't compute the inverse of P; just check that $A P=P J$. [The question didn't ask you to check that your answer P was correct, but doing this is a good habit to get in to.]
6. Let $A_{1} \in M_{m}(\mathbb{k})$ and $A_{2} \in M_{n}(\mathbb{k})$. If $m=1$, then $A_{1}=\left(a_{11}\right)$ and expanding about the top row of the matrix $A_{1} \oplus A_{2}$ immediately gives $\operatorname{det}\left(A_{1} \oplus A_{2}\right)=a_{11} \cdot \operatorname{det}\left(A_{2}\right)=\operatorname{det}\left(A_{1}\right) \cdot \operatorname{det}\left(A_{2}\right)$. Assume the result holds for the direct sum of any two square matrices where the first matrix lies in $M_{\ell}(\mathbb{k})$ with $\ell<m$. Now
for $A_{1} \in M_{m}(\mathbb{k})$, write $A_{i j}$ for the cofactor of the entry $a_{i j}$ of $A_{1}=\left(a_{i j}\right)$. Then expand along the top row of $A_{1} \oplus A_{2}$ to see that

$$
\begin{aligned}
\operatorname{det}\left(A_{1} \oplus A_{2}\right) & =a_{11} \operatorname{det}\left(A_{11} \cdot A_{2}\right)-\cdots+(-1)^{m+1} a_{1 m} \operatorname{det}\left(A_{1 m} \cdot A_{2}\right) \\
& =a_{11} \operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{2}\right)-\cdots+(-1)^{m+1} a_{1 m} \operatorname{det}\left(A_{1 m}\right) \operatorname{det}\left(A_{2}\right) \quad \text { by induction } \\
& =\left(a_{11} \operatorname{det}\left(A_{11}\right)-\cdots+(-1)^{m+1} a_{1 m} \operatorname{det}\left(A_{1 m}\right)\right) \operatorname{det}\left(A_{2}\right) \\
& =\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{2}\right)
\end{aligned}
$$

as required. This proves the statement in the hint. Induction on k gives

$$
\operatorname{det}\left(A_{1} \oplus \cdots \oplus A_{k}\right)=\operatorname{det}\left(A_{1}\right) \cdots \operatorname{det}\left(A_{k}\right)
$$

which is the matrix version of the statement $\operatorname{det}\left(\alpha_{1} \oplus \cdots \oplus \alpha_{k}\right)=\operatorname{det}\left(\alpha_{1}\right) \cdot \operatorname{det}\left(\alpha_{2}\right) \cdots \operatorname{det}\left(\alpha_{k}\right)$.

