
Exercises 9

Please submit solutions by 3pm on Thursday 26th April to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Let λ ∈ C and let f(t) ∈ C[t] be of degree n.

(1) Find a1, . . . , an ∈ C such that f(t) = a0 + a1(t− λ) + a2(t− λ)2 + · · · an(t− λ)n.

(2) For λ = 2 and f(t) = t4 − 3t3 + 2t− 1, compute the scalars a0, a1, . . . , a4 ∈ C from part (1).

2. (W) Write sketch proofs of Theorem 5.7 and Proposition 5.19.

3. (W) Let V be a finite dimensional vector space, and let v ∈ V be nonzero. Let s be the smallest
integer such that αsv = 0. Show that v, αv, . . . , αs−1v are linearly independent.

4. (H) For λ ∈ C, n ∈ N, consider the n× n complex matrix

J(λ, n) =


λ 1

. . .
. . .

λ 1
λ


in which every entry that is not shown is equal to zero. Compute the algebraic and geometric multiplicities
of the unique eigenvalue λ. Also, compute the minimal polynomial.

5. (H) Consider the real-valued matrix

A =

1 −5 −7
1 4 2
0 1 4

 .

Find an invertible real-valued matrix P such that

P−1AP =

3 1 0
0 3 1
0 0 3

 .

6. (A) For k > 0 and for 1 ≤ i ≤ k, let αi : Vi → Vi be a k-linear map for some field k. Prove by
induction that

det(α1 ⊕ · · · ⊕ αk) = det(α1) · det(α2) · · · det(αk).

[Hint: it suffices to show that for A1 ∈Mm(k) and A2 ∈Mn(k), we have det(A1⊕A2) = det(A1)·det(A2).
You might try proving this by induction on m.]
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Solutions 9

1. (1) We proceed by induction on the degree n of f . If n = 0 then the result is clear. Suppose n > 0.
Since C[t] is a Euclidean domain, we have f = (t−λ)q+ r for some q, a0 ∈ C[t], where q has degree
n− 1 and deg(a0) < 1. By induction,

q(t) = a1 + a2(t− λ) + · · ·+ an(t− λ)n−1

for some ai ∈ C (1 ≤ i ≤ n). Thus for a0 := r, we get f(t) = a0 + a1(t− λ) + · · ·+ an(t− λ)n

(2) We seek ai ∈ C such that f(t) = a0+a1(t−2)+ · · ·+a4(t−2)4. Cleary a0 = f(2) = 16−24+4−1 =
−5. Also taking derivatives gives

4t3 − 9t2 + 2 =
d

dt
f(t) = a1 + 2a2(t− 2) + · · ·+ 4a4(t− 2)3.

Evaluating this at 2 yields a1 = 32− 36 + 2 = −2. Arguing in the same manner yields

a2 =
1

2
(12t2 − 18t)|t=2 = 6; a3 =

1

6
(24t− 18)|t=2 = 5; a4 =

1

24
(24) = 1.

Therefore f(t) = −5− 2(t− 2) + 6(t− 2)2 + 5(t− 2)3 + (t− 2)4.

2. No solution given.

3. Suppose
a0v + a1αv + · · ·+ an−1α

s−1v = 0.

Applying αs−1 to both sides gives a0α
s−1v = 0 and as αs−1v 6= 0 it follows that a0 = 0. Next apply

αs−2 to both sides and this gives a1α
s−1v = 0 that imples that a1 = 0. Continuing like this with

αs−3, αs−4, . . . α0 = id, gives that a2 = . . . = an−1 = 0.

4. Note that ∆J(t) = (λ − t)n. The algebraic multiplicity of λ is n by definition. To determine the
geometric multiplicity notice that v = (a1, . . . , an) is in the λ-eigenspace if and only if

0
·
·
·
0
0

 =


0 1
· ·
· ·

0 1
0





a1
·
·
·

an−1

an

 =



a2
·
·
·
an
0

 ,

which happens if and only if a2 = a3 = · · · = an = 0, that is, if and only if v = a1e1. Therefore the
λ-eigenspace is 〈e1〉 which has dimension 1, so the geometric multiplicity of λ is 1.

For A = J(λ, n), we compute that ∆A(t) = (λ− t)n, so mA(t) = (t− λ)s for some 1 ≤ s ≤ n. Let Eij

be the matrix with 1 in position (i, j) and 0 elsewhere. Notice that

A− λI = E12 + E23 + · · ·+ E(n−1)n

and that
(A− λI)n−1 = E12E23 · · ·E(n−1)n = E1n 6= 0,

whereas (A− λI)n = E1n(E12 + E23 + · · ·+ E(n−1)n) = 0. Hence mA(t) = (t− λ)n.



5. The characteristic polynomial of A is ∆A(t) = (3− t)3, so the eigenvalue λ = 3 has multiplicity three.
We compute that

A− 3I 6= 0; (A− 3I)2 6= 0; (A− 3I)3 = 0,

so the minimal polynomial is mA(t) = (t−3)3. Thus, there is at least one Jordan block J(3, 3), and since
A is a 3× 3 matrix, we see that the Jordan normal form of A must be J(3, 3). It remain to find the basis
in which the corresponding linear map α is represented by this matrix.

Perform ERO’s on the matrix

A− 3I =

−2 −5 −7
1 1 2
0 1 1

 to obtain

−2 −5 −7
0 1 1
0 0 0

 .

Thus, we solve y+ z = 0 and −2x− 5y− 7z = 0. The set of such solutions is spanned by the eigenvector

v1 =

−1
−1
1

 ,

so the eigenspace of λ = 3 has dimension one (confirming that λ = 3 determines only one block). This is
the vector v1 from Proposition 5.19. To compute v2, Proposition 5.19 shows that

(α− λid)v2 = v1, i.e., (A− 3I)v2 = v1.

That is, to compute v2 we must solve−2 −5 −7
1 1 2
0 1 1

xy
z

 =

−1
−1
1

 to get v2 =

−2
1
0

 .

Repeat for the system −2 −5 −7
1 1 2
0 1 1

xy
z

 =

−2
1
0

 to get v3 =

 2
1
−1

 .

Thus, putting the vectors in the correct order from left to right gives the invertible matrix

P =

−1 −2 2
−1 1 1
1 0 −1

 ,

and the Jordan normal form of A is

P−1AP =

3 1 0
0 3 1
0 0 3

 = J.

To check this you needn’t compute the inverse of P ; just check that AP = PJ . [The question didn’t ask
you to check that your answer P was correct, but doing this is a good habit to get in to.]

6. Let A1 ∈Mm(k) and A2 ∈Mn(k). If m = 1, then A1 = (a11) and expanding about the top row of the
matrix A1 ⊕ A2 immediately gives det(A1 ⊕ A2) = a11 · det(A2) = det(A1) · det(A2). Assume the result
holds for the direct sum of any two square matrices where the first matrix lies in M`(k) with ` < m. Now



for A1 ∈ Mm(k), write Aij for the cofactor of the entry aij of A1 = (aij). Then expand along the top
row of A1 ⊕A2 to see that

det(A1 ⊕A2) = a11 det(A11 ·A2)− · · ·+ (−1)m+1a1m det(A1m ·A2)

= a11 det(A11) det(A2)− · · ·+ (−1)m+1a1m det(A1m) det(A2) by induction

=
(
a11 det(A11)− · · ·+ (−1)m+1a1m det(A1m)

)
det(A2)

= det(A1) det(A2)

as required. This proves the statement in the hint. Induction on k gives

det(A1 ⊕ · · · ⊕Ak) = det(A1) · · · · det(Ak)

which is the matrix version of the statement det(α1 ⊕ · · · ⊕ αk) = det(α1) · det(α2) · · · det(αk).


