## Exercises 8

Please submit solutions by 3pm on Thursday 19th April to the pigeonholes in 4W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Use the fact that $\mathbb{C}$ is a normed $\mathbb{R}$-algebra to show that the set $\left\{a^{2}+b^{2} \mid a, b \in \mathbb{Z}\right\}$ is closed under multiplication, and hence write 85 as a sum of two integer squares.
2. (W) Write sketch proofs of: Theorem 2.14 (including 2.11), Theorem 3.11; Theorem 3.17 (including 3.15); Proposition 3.20 (including 3.7); Theorem 3.21 (existence only); Theorem 4.13 and Theorem 4.15.
3. (W) Find the characteristic polynomials of the following complex matrices, and determine the algebraic and geometric multiplicity of each of the eigenvalues.

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), \quad B=\left(\begin{array}{cc}
0 & 2 \\
-2 & 4
\end{array}\right)
$$

4. (H) For each quaternionic number $z=a+b i+c j+d k \in \mathbb{H}$, define the algebraic conjugate of $z$ to be the quaternionic number $\bar{z}=a-b i-c j-d k \in \mathbb{H}$. Show that for all $z, w \in \mathbb{H}$, we have:

$$
z \bar{z}=\|z\|^{2}, \quad \overline{w \cdot z}=\bar{z} \cdot \bar{w}, \quad \text { and } \quad\|z \cdot w\|=\|z\| \cdot\|w\| .
$$

Deduce that $\mathbb{H}$ is a (noncommutative!) division ring that is also a normed $\mathbb{R}$-algebra.
5. (H) Use the fact that $\mathbb{H}$ is a normed $\mathbb{R}$-algebra to write 273 as a sum of four integer squares.
6. (A) Show that the set of all $2 \times 2$ matrices of the form $\left(\begin{array}{cc}\alpha & -\bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right)$ for some $\alpha, \beta \in \mathbb{C}$ defines a subring of $M_{2}(\mathbb{C})$, and use the matrices

$$
\mathbf{1}:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \quad \mathbf{i}:=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \mathbf{j}:=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \mathbf{k}:=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

to help you to write down a ring isomorphism from $\mathbb{H}$ to this subring of $M_{2}(\mathbb{C})$. In addition, show that the set of all unit quaternions (those $z=a+b i+c j+d k \in \mathbb{H}$ satisfying $\|z\|=1$ ) coincide under this isomorphism with the subgroup of $M_{2}(\mathbb{C})$ given by

$$
S U(2):=\left\{\left.A=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \in M_{2}(\mathbb{C}) \right\rvert\, \operatorname{det}(A)=1\right\} .
$$

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

## Solutions 8

1. We have

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) & =\|a+i b\|^{2}\|c+i d\|^{2} \\
& =\|(a+i b)(c+i d)\|^{2} \\
& =\|(a c-b d)+i(a d+b c)\|^{2} \\
& =(a c-b d)^{2}+(a d+b c)^{2} .
\end{aligned}
$$

Now compute that

$$
85=5 \cdot 17=\|1+2 i\|^{2}\|1+4 i\|^{2}=\|-7+6 i\|^{2}=7^{2}+6^{2} .
$$

2. No solution given.
3. We have that $\Delta_{A}(t)=(2-t)^{2}-1=(t-2)^{2}-1=(t-3)(t-1)$. As both the eigenspaces must be one dimensional, it is clear that $\mathrm{am}(3)=\operatorname{gm}(3)=\mathrm{am}(1)=\operatorname{gm}(1)=1$.

We then have $\Delta_{B}(t)=t(t-4)+4=t^{2}-4 t+4=(t-2)^{2}$, so $\operatorname{am}(2)=2$. To determine the geometric multiplicity, we must determine the eigenspace. We have

$$
\left(\begin{array}{ll}
-2 & 2 \\
-2 & 2
\end{array}\right) \cdot\binom{x}{y}=\binom{0}{0}
$$

which holds if and only if $x=y$. Thus the eigenspace is one-dimensional spanned by $\binom{1}{1}$, so gm $(2)=1$.
4. Note first that

$$
\begin{aligned}
z \bar{z} & =(a+b i+c j+d k)(a-b i-c j-d k) \\
& =a^{2}-(b i+c j+d k)^{2} \\
& =a^{2}-(b i)^{2}-(c j)^{2}-(d k)^{2}-b c(i j+j i)-b d(i k+k i)-c d(j k+k j) \\
& =a^{2}+b^{2}+c^{2}+d^{2} \\
& =\|z\|^{2}
\end{aligned}
$$

For the next equality, both sides are bilinear, so we need only show that the equality holds when $z, w \in$ $\{i, j, k\}$. Now $\overline{i^{2}}=\overline{-1}=-1=(-i)(-i)=\bar{i}^{2}$, and similarly $\overline{j^{2}}=\bar{j}^{2}$ and $\overline{k^{2}}=\bar{k}^{2}$. Then

$$
\overline{i j}=\bar{k}=-k=(-j)(-i)=\bar{j} \cdot \bar{i}
$$

and

$$
\overline{j i}=\overline{-k}=k=(-i)(-j)=\bar{i} \cdot \bar{j} .
$$

By symmetry we also have $\overline{j k}=\bar{j} \cdot \bar{j}, \overline{k j}=\bar{j} \cdot \bar{k}, \overline{k i}=\bar{i} \cdot \bar{k}$ and $\overline{i k}=\bar{k} \cdot \bar{i}$ as required.
Finally, using the equality $\overline{w \cdot z}=\bar{z} \cdot \bar{w}$, we have

$$
\|z \cdot w\|^{2}=z w \overline{z w}=z w \bar{w} \cdot \bar{z}=z\|w\|^{2} \bar{z}=z \bar{z}\|w\|^{2}=\|z\|^{2} \cdot\|w\|^{2} .
$$

This last equality shows that $\mathbb{H}$, equipped with the standard inner product on $\mathbb{R}^{4}$, is a normed $\mathbb{R}$-algebra. For $z \neq 0$, the first equality above shows that $\frac{\bar{z}}{\|z\|^{2}}$ is a multiplicative inverse of $z$, so $\mathbb{H}$ is a division algebra.
5. We have

$$
\begin{aligned}
273=3 \cdot 7 \cdot 13=21 \cdot 13=\left(4^{2}+2^{2}+1^{2}\right)\left(3^{2}+2^{2}\right) & =\|4+2 i+j\|^{2}\|3+2 i\|^{2} \\
& =\|8+14 i+3 j-2 k\|^{2}=8^{2}+14^{2}+3^{2}+2^{2}
\end{aligned}
$$

6. Given two such matrices, say

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\gamma & -\bar{\delta} \\
\delta & \bar{\gamma}
\end{array}\right)
$$

we have that

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)-\left(\begin{array}{cc}
\gamma & -\bar{\delta} \\
\delta & \bar{\gamma}
\end{array}\right)=\left(\begin{array}{cc}
\alpha-\gamma & -\overline{(\beta-\delta)} \\
\beta-\delta & \overline{\alpha-\gamma}
\end{array}\right)
$$

and that

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \cdot\left(\begin{array}{cc}
\gamma & -\bar{\delta} \\
\delta & \bar{\gamma}
\end{array}\right)=\left(\begin{array}{cc}
\alpha \gamma-\delta \bar{\beta} & -\overline{(\beta \gamma+\bar{\alpha} \delta)} \\
\beta \gamma+\bar{\alpha} \delta & \overline{\alpha \gamma-\delta \bar{\beta}}
\end{array}\right)
$$

Therefore the given set is a subring of $M_{2}(\mathbb{C})$. To write down an isomorphism, define $\phi: \mathbb{H} \rightarrow M_{2}(\mathbb{C})$ by

$$
\phi(a+b i+c j+d k)=a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}
$$

The image of this map is precisely the subring introduced above, because

$$
a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}=\left(\begin{array}{cc}
a+b i & -\overline{(-c+d i)} \\
-c+d i & \overline{a+b i}
\end{array}\right)
$$

and because a given matrix $\left(\begin{array}{cc}\alpha & -\bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right)$ is of the form $\phi(a+b i+c j+d k)$ for

$$
a=\frac{\alpha+\bar{\alpha}}{2} ; \quad b=\frac{\alpha-\bar{\alpha}}{2 i} ; \quad c=-\frac{\beta+\bar{\beta}}{2} ; \quad d=\frac{\beta-\bar{\beta}}{2 i}
$$

To check that $\phi$ is a ring homomorphism, note that

$$
\phi(i \cdot i)=\phi(-1)=-\mathbf{1}=\mathbf{i} \cdot \mathbf{i}=\phi(i) \cdot \phi(i)
$$

(and similarly for $\phi(j \cdot j)=\phi(j) \cdot \phi(j)$ and $\phi(k \cdot k)=\phi(k) \cdot \phi(k)$ ), that

$$
\phi(i \cdot j)=\phi(k)=\mathbf{k}=\mathbf{i} \cdot \mathbf{j}=\phi(i) \cdot \phi(j)
$$

(and similarly for $\phi(j \cdot k)=\phi(j) \cdot \phi(k)$ and $\phi(k \cdot i)=\phi(k) \cdot \phi(i))$, and that

$$
\phi(j \cdot i)=\phi(-k)=-\mathbf{k}=\mathbf{j} \cdot \mathbf{i}=\phi(j) \cdot \phi(i)
$$

(and similarly for $\phi(k \cdot j)=\phi(k) \cdot \phi(j)$ and $\phi(i \cdot k)=\phi(i) \cdot \phi(k))$. Finally, note that $\phi$ has kernel equal to zero, so the fundamental isomorphism theorem shows that $\phi$ induces an isomorphism

$$
\phi: \mathbb{H} \longrightarrow\left\{\left.\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{C}\right\} .
$$

For the latter part about unit quaternions, we need only notice that under the above isomorphism, an element $z=a+b i+c j+d k \in \mathbb{H}$ satisfying $\|z\|=1$ is sent to

$$
\phi(z)=\left(\begin{array}{cc}
a+b i & -\overline{(-c+d i)} \\
-c+d i & \overline{a+b i}
\end{array}\right)
$$

which has determinant

$$
(a+b i)(\overline{a+b i})-(-c+d i) \cdot(-\overline{(-c+d i)})=a^{2}+b^{2}-\left(-c^{2}-d^{2}\right)=a^{2}+b^{2}+c^{2}-d^{2}=1
$$

