
Exercises 8

Please submit solutions by 3pm on Thursday 19th April to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Use the fact that C is a normed R-algebra to show that the set {a2 + b2 | a, b ∈ Z} is closed
under multiplication, and hence write 85 as a sum of two integer squares.

2. (W) Write sketch proofs of: Theorem 2.14 (including 2.11), Theorem 3.11; Theorem 3.17 (including
3.15); Proposition 3.20 (including 3.7); Theorem 3.21 (existence only); Theorem 4.13 and Theorem 4.15.

3. (W) Find the characteristic polynomials of the following complex matrices, and determine the alge-
braic and geometric multiplicity of each of the eigenvalues.

A =

(
2 1
1 2

)
, B =

(
0 2
−2 4

)
.

4. (H) For each quaternionic number z = a+ bi+ cj + dk ∈ H, define the algebraic conjugate of z to be
the quaternionic number z = a− bi− cj − dk ∈ H. Show that for all z, w ∈ H, we have:

zz = ‖z‖2, w · z = z · w, and ‖z · w‖ = ‖z‖ · ‖w‖.

Deduce that H is a (noncommutative!) division ring that is also a normed R-algebra.

5. (H) Use the fact that H is a normed R-algebra to write 273 as a sum of four integer squares.

6. (A) Show that the set of all 2× 2 matrices of the form

(
α −β
β α

)
for some α, β ∈ C defines a subring

of M2(C), and use the matrices

1 :=

(
1 0
0 1

)
; i :=

(
i 0
0 −i

)
j :=

(
0 1
−1 0

)
k :=

(
0 i
i 0

)
to help you to write down a ring isomorphism from H to this subring of M2(C). In addition, show that
the set of all unit quaternions (those z = a + bi + cj + dk ∈ H satisfying ‖z‖ = 1) coincide under this
isomorphism with the subgroup of M2(C) given by

SU(2) :=

{
A =

(
α −β
β α

)
∈M2(C) | det(A) = 1

}
.
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Solutions 8

1. We have

(a2 + b2)(c2 + d2) = ‖a+ ib‖2 ‖c+ id‖2

= ‖(a+ ib)(c+ id)‖2

= ‖(ac− bd) + i(ad+ bc)‖2

= (ac− bd)2 + (ad+ bc)2.

Now compute that
85 = 5 · 17 = ‖1 + 2i‖2 ‖1 + 4i‖2 = ‖−7 + 6i‖2 = 72 + 62.

2. No solution given.

3. We have that ∆A(t) = (2 − t)2 − 1 = (t − 2)2 − 1 = (t − 3)(t − 1). As both the eigenspaces must be
one dimensional, it is clear that am(3) = gm(3) = am(1) = gm(1) = 1.

We then have ∆B(t) = t(t− 4) + 4 = t2− 4t+ 4 = (t− 2)2, so am(2) = 2. To determine the geometric
multiplicity, we must determine the eigenspace. We have(

−2 2
−2 2

)
·
(
x
y

)
=

(
0
0

)
,

which holds if and only if x = y. Thus the eigenspace is one-dimensional spanned by

(
1
1

)
, so gm(2) = 1.

4. Note first that

zz = (a+ bi+ cj + dk)(a− bi− cj − dk)

= a2 − (bi+ cj + dk)2

= a2 − (bi)2 − (cj)2 − (dk)2 − bc(ij + ji)− bd(ik + ki)− cd(jk + kj)

= a2 + b2 + c2 + d2

= ‖z‖2

For the next equality, both sides are bilinear, so we need only show that the equality holds when z, w ∈
{i, j, k}. Now i2 = −1 = −1 = (−i)(−i) = i

2
, and similarly j2 = j

2
and k2 = k

2
. Then

ij = k = −k = (−j)(−i) = j · i

and
ji = −k = k = (−i)(−j) = i · j.

By symmetry we also have jk = j · j, kj = j · k, ki = i · k and ik = k · i as required.
Finally, using the equality w · z = z · w, we have

‖z · w‖2 = zwzw = zww · z = z‖w‖2z = zz‖w‖2 = ‖z‖2 · ‖w‖2.

This last equality shows that H, equipped with the standard inner product on R4, is a normed R-algebra.
For z 6= 0, the first equality above shows that z

‖z‖2 is a multiplicative inverse of z, so H is a division

algebra.



5. We have

273 = 3 · 7 · 13 = 21 · 13 = (42 + 22 + 12)(32 + 22) = ‖4 + 2i+ j‖2 ‖3 + 2i‖2

= ‖8 + 14i+ 3j − 2k‖2 = 82 + 142 + 32 + 22.

6. Given two such matrices, say (
α −β
β α

)
and

(
γ −δ
δ γ

)
,

we have that (
α −β
β α

)
−
(
γ −δ
δ γ

)
=

(
α− γ −(β − δ)
β − δ α− γ

)
and that (

α −β
β α

)
·
(
γ −δ
δ γ

)
=

(
αγ − δβ −(βγ + αδ)

βγ + αδ αγ − δβ

)
.

Therefore the given set is a subring of M2(C). To write down an isomorphism, define φ : H→M2(C) by

φ(a+ bi+ cj + dk) = a1 + bi + cj + dk.

The image of this map is precisely the subring introduced above, because

a1 + bi + cj + dk =

(
a+ bi −(−c+ di)

−c+ di a+ bi

)
,

and because a given matrix

(
α −β
β α

)
is of the form φ(a+ bi+ cj + dk) for

a =
α+ α

2
; b =

α− α
2i

; c = −β + β

2
; d =

β − β
2i

To check that φ is a ring homomorphism, note that

φ(i · i) = φ(−1) = −1 = i · i = φ(i) · φ(i),

(and similarly for φ(j · j) = φ(j) · φ(j) and φ(k · k) = φ(k) · φ(k)), that

φ(i · j) = φ(k) = k = i · j = φ(i) · φ(j),

(and similarly for φ(j · k) = φ(j) · φ(k) and φ(k · i) = φ(k) · φ(i)), and that

φ(j · i) = φ(−k) = −k = j · i = φ(j) · φ(i),

(and similarly for φ(k · j) = φ(k) · φ(j) and φ(i · k) = φ(i) · φ(k)). Finally, note that φ has kernel equal
to zero, so the fundamental isomorphism theorem shows that φ induces an isomorphism

φ : H −→
{(

α −β
β α

)
| α, β ∈ C

}
.

For the latter part about unit quaternions, we need only notice that under the above isomorphism, an
element z = a+ bi+ cj + dk ∈ H satisfying ‖z‖ = 1 is sent to

φ(z) =

(
a+ bi −(−c+ di)

−c+ di a+ bi

)
,

which has determinant

(a+ bi)(a+ bi)− (−c+ di) ·
(
− (−c+ di)

)
= a2 + b2 − (−c2 − d2) = a2 + b2 + c2 − d2 = 1.


