
Exercises 7

Please submit solutions by 3pm on Thursday 12th April to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Consider the quaternions H = R + Ri+ Rj + Rk.

(1) For a ∈ H, let Ta : H → H be the linear map given by ‘multiply on the right by a’. Apply Ti and
Tj to each of the basis vectors 1, i, j, k in H and write the result in this basis.

(2) Let I, J ∈ End (R4) be the linear operators that act on the standard basis e1, e2, e3, e4 of R4 in the
same way that Ti, Tj act on 1, i, j, k. Show that I2 = J2 = −id and JI = −IJ . [Hint: check each
identity holds on each standard basis vector of R4.] Deduce that the subring Rid+RI+RJ+R(IJ)
of End (R4) is isomorphic to H. This shows that H is a (noncommutative) ring with 1.

2. (W) For a ring R and for n ≥ 1, let S = R[x1, . . . , xn−1] denote the polynomial ring in n−1 variables
with coefficients in R. Show that R[x1, . . . , xn] is isomorphic to the polynomial ring S[xn] in one variable
xn with coefficients in S. [Hint: see Proposition 4.8 in the lecture notes for the idea of the proof.]

3. (W) For n ≥ 2 and for any integral domain R, show that the ideal in R[x1, . . . , xn] given by

I =
{
fx1 + gx2 ∈ R[x1, . . . , xn] | f, g ∈ R[x1, . . . , xn]

}
is not principal.

4. (H) Let k be a field and let n ∈ N. Let I ⊆ k[x1, . . . , xn] be an ideal.

(1) Show that the quotient ring k[x1, . . . , xn]/I is a k-algebra.

(2) Find an ideal I such that k[x1, x2]/I has dimension 13, and write the image of the polynomial
f(x1, x2) = x71 + x41x

2
2 + x42 ∈ k[x1, x2] in the quotient ring in terms of your basis.

5. (H) Let k be a field and let f ∈ k[x] be nonconstant. Show that there exists a field extension k ⊆ K
such that f can be written as a product of polynomials of degree 1 in K[x]. [Hint: Use induction on the
degree of f , and decompose f as a product of irreducible polynomials.]

6. (A) Let p be a prime and let q = pn where n is a positive integer. For xq − x ∈ Zp[x], let K be a field
containing all the roots of xq − x. Show that the set S of roots of xq − x is a subfield of K.
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Solutions 7

1. (1) We have

Ti(1) = 1 · i = i, Ti(i) = i2 = −1, Ti(j) = ji = −k, Ti(k) = ki = j

and
Tj(1) = j, Tj(i) = k, Tj(j) = −1, Tj(k) = −i.

(2) We have
I(e1) = e2, I(e2) = −e1, I(e3) = −e4, I(e4) = e3

and
J(e1) = e3, J(e2) = e4, J(e3) = −e1, J(e4) = −e2.

Calculations show that I2(ei) = J2(ei) = −ei and thus I2 = J2 = −id. Calculations also give that

JI(e1) = J(e2) = e4, JI(e2) = J(−e1) = −e3, JI(e3) = J(−e4) = e2, JI(e4) = J(e3) = −e1

whereas

IJ(e1) = I(e3) = −e4, IJ(e2) = I(e4) = e3, IJ(e3) = I(−e1) = −e2, IJ(e4) = I(−e2) = e1.

Thus JI = −IJ .

To establish the isomorphism, consider the map

φ : Rid + RI + RJ + R(IJ) −→ H

satisfying Φ(aid+bI+cJ+d(IJ)) = a+bi+cj+dk. This map is an R-linear isomorphism of vector spaces
(not that both are isomorphic to R4). We’ll show now that it preserves the multiplicative structure. Since
the domain is a ring, it will follow that the image is also a ring, i.e., H really is a ring; in fact it’s an
R-algebra!

Checking that φ preserves multiplication means checking that the image of the product of two basis
elements is equal to the product of the images of those two basis elements. We know that φ(id) = 1 ∈ H
which is the multiplcative identity, so certainly any product involving id (either on the right or left) is
preserved, e.g.,

φ(id · I) = φ(I) = i = 1 · i = φ(id) · φ(I).

To check the other properties, we use the calculations above. For example, since I2 = −id, we have

φ(I · I) = φ(−id) = −1 = i · i = φ(I) · φ(I).

and similarly for J in place of I. Also,

φ(I · J) = φ(IJ) = k = i · j = φ(I) · φ(J).

and
φ(I · IJ) = φ(I2J) = φ(−idJ) = −j = i · k = φ(I) · φ(IJ).

This takes care of all the products of basis elements in which I is the element on the left; now check for
yourself those that have J on the left and then IJ on the left.

In short, the basis elements id, I, J, IJ multiply each other in exactly the same way as the basis
elements 1, i, j, k do in H. Since the ring structure in an R-algebra is completely determined by how the
basis elements multiply (see Remark 4.2(2)), we’re done.



2. Consider the map φ : R[x1, . . . , xn]→ S[xn] defined by sending f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xinn to

φ(f) =
∑
in≥0

 ∑
i1,...,in−1≥0

ai1,...,inx
i1
1 · · ·x

in−1

n−1

xinn . (0.1)

Notice that f and φ(f) share precisely the same terms, i.e, in passing from f to φ(f) we haven’t done
anything (!!!) except gather terms in a particular way. Thus, if we expand the parentheses in φ(f) then
we recover precisely the same terms as those that appear in f . It follows that φ is a ring homomorphism
because addition and multiplication in both R[x1, . . . , xn] and S[xn] can be understood purely in terms
of addition and multiplication term by term.

The map φ is surjective because for any polynomial
∑

i≥0 gix
i
n in S[xn], we can multiply each polyno-

mial gi by xin and sum up to obtain a polynomial f ∈ R[x1, . . . , xn] such that φ(f) =
∑

i≥0 gix
i
n. Finally,

to see that it’s injective, notice that

0 = φ(f) =
∑
in≥0

ginx
in
n

is the zero polynomial in S[xn], so all of its coefficients equal zero, i.e., gin = 0 ∈ R for all in ≥ 0. If we
substitute these equations into the parentheses from (0.1), we have for each in that

0 = gin =
∑

i1,...,in−1≥0

ai1,...,inx
i1
1 · · ·x

in−1

n−1

in the ring R[x1, . . . , xn−1]. Equate coefficients on the left and right again to see that ai1,...,in = 0 for all
i1, . . . , in ≥ 0, which in turn forces f = 0 as required.

3. Assume there exists f ∈ R[x1, . . . , xn] such that R[x1, . . . , xn]x1 + R[x1, . . . , xn]x2 = R[x1, . . . , xn]f .
Then there exists g, h ∈ R[x1, . . . , xn] such that

f = gx1 + hx2.

Since x1 ∈ R[x1, . . . , xn]f , there exists r ∈ R[x1, . . . , xn]f such that

x1 = rf = r(gx1 + hx2) = rgx1 + rhx2.

Compare coefficients in x1 on the left and right to see that 1 = rg and 0 = rh. If r = 0 then 0 = rg = 1
which is absurd in an integral domain. Thus r 6= 0, in which case the equality 0 = rh forces h = 0.
Thus, f = gx1. This forces everything in the ideal R[x1, . . . , xn]f to be divisible by x1. In particular, the
variable x2 is divisible by x1, but this is absurd.

4. (1) Write V := k[x1, . . . , xn]/I, and consider the map k× V → V given by

(λ, g + I) 7→ (λg) + I

(you might equally well use equivalence class notation [g] in place of coset notation g+I). This map
is well-defined because if g+ I = h+ I, then g− h ∈ I and hence λ(g− h) ∈ I, giving λg− λh ∈ I,
that is, λg + I = λh+ I as required.

Since V is a ring, (V,+) is an abelian group, and for g + I ∈ V and λ, µ ∈ k we have

λ(µ(g + I)) = λ(µg + I) = λµg + I = (λµ)(g + I),

1 · (g + I) = 1g + I = g + I,

(λ+ µ)(g + I) = (λ+ µ)g + I = (λg + µg) + I = λ(g + I) + µ(g + I),

λ
(
(g + I) + (h+ I)

)
= λ

(
(g + h) + I

)
= (λg + λh) + I = λ(g + I) + λ(h+ I),



so V is a vector space over k. In addition, we have

(λ(g + I)) · (h+ I) = (g + I) · (λ(h+ I)) = λ
(
(g + I) · (h+ I)

)
because each is equal to (λgh) + I. Therefore V := k[x1, . . . , xn]/I is a k-algebra.

(2) Set x = x1 and y = x2 to make the notation easier. There are many candidates:

• One correct answer is I = 〈x13, y〉, that is I = {gx13 + hy | g, h ∈ k[x, y]}. The point is, the
class of a polynomial f ∈ k[x, y] in the quotient ring is such that every term that is divisible
by either x13 or y equals zero. Therefore, the only terms of f that are nonzero in the quotient
ring are scalar multiples of (1, x, x2, . . . , x12), so the quotient ring has dimension 13. In this
case, the image of the polynomial f given in the question is x7 + I.

• Similarly, I = 〈x, y13〉 works equally well, in which case the image of the given polynomial f
is y4 + I.

• Another correct answer is the ideal I = 〈x4, x3y, y4〉 = {fx4 + gx3y + hy4 | f, g, h ∈ k[x, y]},
where a basis for the quotient ring over k is (1, x, x2, x3, y, xy, x2y, y2, xy2, x2y2, y3, xy3, x2y3).
In this example, the image of f is 0 + I.

There are lots of other correct answers.

5. We prove this by induction on n = deg(f). If n = 1 then f has a root in k and we’re done by setting
K = k. For n > 1, assume that the result holds for smaller values of deg(f). Let p be an irreducible
factor of f , say f = pg. Since p is irreducible, the ring

F = k[x]/〈p〉

is a field by Corollary 3.19. By Theorem 4.15, this quotient ring contains k as a subfield and has a root a
of the polynomial p. Now f(a) = p(a)g(a) = 0 · g(t) = 0, so a is also a root of f . We can then factorise f
in F [x], say f = (x− a)h for some h ∈ F [x]. As h is of smaller degree than f we can apply the induction
hypothesis to get a field K that contains F as a subfield such that h can be written as a product of linear
factors h = c(x− a1)(x− a2) · · · (x− an−1) in K[x]. Then

f = c(x− a1) · · · (x− an−1)(x− a)

is a factorisation in K[x].

6. Note that a ∈ S if and only if aq = a. We first show that S is a subring. Since 0q = 0, we have 0 ∈ S,
so S is nonempty. Next, if a, b ∈ S, then aq = a and bq = b and hence

(ab)q = aqbq = ab

where we’ve used the fact that K is commutative. This shows that ab ∈ S. To show that S is a subring
of K, it remains to show that for a, b ∈ S, we have a − b ∈ S. One can tackle this head on, but it’s an
effort getting the signs right, so instead note first that

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i = ap + bp,

where we have used the fact that the characteristic is p and that p divides
(
p
1

)
, . . .

(
p

p−1

)
. It follows by

induction for a, b ∈ S that
(a+ b)q = (a+ b)p

n
= ap

n
+ bp

n
= a+ b (0.2)



and thus a+ b ∈ S. Furthermore, for b ∈ S we have

(−b)q =

{
(−1)qbq = −b when q is odd
bq = b = −b otherwise, since the characteristic equals 2 in this case

This shows that b ∈ S ⇒ −b ∈ S. Now, for a, b ∈ S, we have −b ∈ S and substitute both a and −b into
(0.2) to see that (a− b)q = a− b. This shows that a− b ∈ S, so S is indeed a subring.

It remains to show that S is a field, i.e., every non-zero element in S is a unit. But if 0 6= a ∈ S, then

0 = aq − a = a(aq−1 − 1)

implies that aq−1 = 1 and thus a is a unit.


