Exercises 7

Please submit solutions by 3 pm on Thursday 12 th April to the pigeonholes in 4 W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (\mathbf{W}) Consider the quaternions $\mathbb{H}=\mathbb{R}+\mathbb{R} i+\mathbb{R} j+\mathbb{R} k$.
(1) For $a \in \mathbb{H}$, let $T_{a}: \mathbb{H} \rightarrow \mathbb{H}$ be the linear map given by 'multiply on the right by a '. Apply T_{i} and T_{j} to each of the basis vectors $1, i, j, k$ in \mathbb{H} and write the result in this basis.
(2) Let $I, J \in \operatorname{End}\left(\mathbb{R}^{4}\right)$ be the linear operators that act on the standard basis $e_{1}, e_{2}, e_{3}, e_{4}$ of \mathbb{R}^{4} in the same way that T_{i}, T_{j} act on $1, i, j, k$. Show that $I^{2}=J^{2}=-\mathrm{id}$ and $J I=-I J$. [Hint: check each identity holds on each standard basis vector of \mathbb{R}^{4}.] Deduce that the subring $\mathbb{R i d}+\mathbb{R} I+\mathbb{R} J+\mathbb{R}(I J)$ of End $\left(\mathbb{R}^{4}\right)$ is isomorphic to \mathbb{H}. This shows that \mathbb{H} is a (noncommutative) ring with 1.
2. (W) For a ring R and for $n \geq 1$, let $S=R\left[x_{1}, \ldots, x_{n-1}\right]$ denote the polynomial ring in $n-1$ variables with coefficients in R. Show that $R\left[x_{1}, \ldots, x_{n}\right]$ is isomorphic to the polynomial ring $S\left[x_{n}\right]$ in one variable x_{n} with coefficients in S. [Hint: see Proposition 4.8 in the lecture notes for the idea of the proof.]
3. (\mathbf{W}) For $n \geq 2$ and for any integral domain R, show that the ideal in $R\left[x_{1}, \ldots, x_{n}\right]$ given by

$$
I=\left\{f x_{1}+g x_{2} \in R\left[x_{1}, \ldots, x_{n}\right] \mid f, g \in R\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

is not principal.
4. (H) Let \mathbb{k} be a field and let $n \in \mathbb{N}$. Let $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ be an ideal.
(1) Show that the quotient ring $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] / I$ is a \mathbb{k}-algebra.
(2) Find an ideal I such that $\mathbb{k}\left[x_{1}, x_{2}\right] / I$ has dimension 13 , and write the image of the polynomial $f\left(x_{1}, x_{2}\right)=x_{1}^{7}+x_{1}^{4} x_{2}^{2}+x_{2}^{4} \in \mathbb{k}\left[x_{1}, x_{2}\right]$ in the quotient ring in terms of your basis.
5. (H) Let \mathbb{k} be a field and let $f \in \mathbb{k}[x]$ be nonconstant. Show that there exists a field extension $\mathbb{k} \subseteq K$ such that f can be written as a product of polynomials of degree 1 in $K[x]$. [Hint: Use induction on the degree of f, and decompose f as a product of irreducible polynomials.]
6. (A) Let p be a prime and let $q=p^{n}$ where n is a positive integer. For $x^{q}-x \in \mathbb{Z}_{p}[x]$, let K be a field containing all the roots of $x^{q}-x$. Show that the set S of roots of $x^{q}-x$ is a subfield of K.

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Solutions 7

1. (1) We have

$$
T_{i}(1)=1 \cdot i=i, \quad T_{i}(i)=i^{2}=-1, \quad T_{i}(j)=j i=-k, \quad T_{i}(k)=k i=j
$$

and

$$
T_{j}(1)=j, \quad T_{j}(i)=k, \quad T_{j}(j)=-1, \quad T_{j}(k)=-i .
$$

(2) We have

$$
I\left(e_{1}\right)=e_{2}, \quad I\left(e_{2}\right)=-e_{1}, \quad I\left(e_{3}\right)=-e_{4}, \quad I\left(e_{4}\right)=e_{3}
$$

and

$$
J\left(e_{1}\right)=e_{3}, \quad J\left(e_{2}\right)=e_{4}, \quad J\left(e_{3}\right)=-e_{1}, \quad J\left(e_{4}\right)=-e_{2} .
$$

Calculations show that $I^{2}\left(e_{i}\right)=J^{2}\left(e_{i}\right)=-e_{i}$ and thus $I^{2}=J^{2}=-\mathrm{id}$. Calculations also give that

$$
J I\left(e_{1}\right)=J\left(e_{2}\right)=e_{4}, \quad J I\left(e_{2}\right)=J\left(-e_{1}\right)=-e_{3}, \quad J I\left(e_{3}\right)=J\left(-e_{4}\right)=e_{2}, \quad J I\left(e_{4}\right)=J\left(e_{3}\right)=-e_{1}
$$

whereas

$$
I J\left(e_{1}\right)=I\left(e_{3}\right)=-e_{4}, \quad I J\left(e_{2}\right)=I\left(e_{4}\right)=e_{3}, \quad I J\left(e_{3}\right)=I\left(-e_{1}\right)=-e_{2}, \quad I J\left(e_{4}\right)=I\left(-e_{2}\right)=e_{1} .
$$

Thus $J I=-I J$.
To establish the isomorphism, consider the map

$$
\phi: \mathbb{R i d}+\mathbb{R} I+\mathbb{R} J+\mathbb{R}(I J) \longrightarrow \mathbb{H}
$$

satisfying $\Phi(a i d+b I+c J+d(I J))=a+b i+c j+d k$. This map is an \mathbb{R}-linear isomorphism of vector spaces (not that both are isomorphic to \mathbb{R}^{4}). We'll show now that it preserves the multiplicative structure. Since the domain is a ring, it will follow that the image is also a ring, i.e., \mathbb{H} really is a ring; in fact it's an \mathbb{R}-algebra!

Checking that ϕ preserves multiplication means checking that the image of the product of two basis elements is equal to the product of the images of those two basis elements. We know that $\phi(\mathrm{id})=1 \in \mathbb{H}$ which is the multiplcative identity, so certainly any product involving id (either on the right or left) is preserved, e.g.,

$$
\phi(\mathrm{id} \cdot I)=\phi(I)=i=1 \cdot i=\phi(\mathrm{id}) \cdot \phi(I) .
$$

To check the other properties, we use the calculations above. For example, since $I^{2}=-\mathrm{id}$, we have

$$
\phi(I \cdot I)=\phi(-\mathrm{id})=-1=i \cdot i=\phi(I) \cdot \phi(I)
$$

and similarly for J in place of I. Also,

$$
\phi(I \cdot J)=\phi(I J)=k=i \cdot j=\phi(I) \cdot \phi(J) .
$$

and

$$
\phi(I \cdot I J)=\phi\left(I^{2} J\right)=\phi(-\mathrm{id} J)=-j=i \cdot k=\phi(I) \cdot \phi(I J) .
$$

This takes care of all the products of basis elements in which I is the element on the left; now check for yourself those that have J on the left and then $I J$ on the left.

In short, the basis elements id, $I, J, I J$ multiply each other in exactly the same way as the basis elements $1, i, j, k$ do in \mathbb{H}. Since the ring structure in an \mathbb{R}-algebra is completely determined by how the basis elements multiply (see Remark 4.2(2)), we're done.
2. Consider the map $\phi: R\left[x_{1}, \ldots, x_{n}\right] \rightarrow S\left[x_{n}\right]$ defined by sending $f=\sum_{i_{1}, \ldots, i_{n} \geq 0} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ to

$$
\begin{equation*}
\phi(f)=\sum_{i_{n} \geq 0}\left(\sum_{i_{1}, \ldots, i_{n-1} \geq 0} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n-1}^{i_{n-1}}\right) x_{n}^{i_{n}} \tag{0.1}
\end{equation*}
$$

Notice that f and $\phi(f)$ share precisely the same terms, i.e, in passing from f to $\phi(f)$ we haven't done anything (!!!) except gather terms in a particular way. Thus, if we expand the parentheses in $\phi(f)$ then we recover precisely the same terms as those that appear in f. It follows that ϕ is a ring homomorphism because addition and multiplication in both $R\left[x_{1}, \ldots, x_{n}\right]$ and $S\left[x_{n}\right]$ can be understood purely in terms of addition and multiplication term by term.

The map ϕ is surjective because for any polynomial $\sum_{i \geq 0} g_{i} x_{n}^{i}$ in $S\left[x_{n}\right]$, we can multiply each polynomial g_{i} by x_{n}^{i} and sum up to obtain a polynomial $f \in R\left[x_{1}, \ldots, x_{n}\right]$ such that $\phi(f)=\sum_{i \geq 0} g_{i} x_{n}^{i}$. Finally, to see that it's injective, notice that

$$
0=\phi(f)=\sum_{i_{n} \geq 0} g_{i_{n}} x_{n}^{i_{n}}
$$

is the zero polynomial in $S\left[x_{n}\right]$, so all of its coefficients equal zero, i.e., $g_{i_{n}}=0 \in R$ for all $i_{n} \geq 0$. If we substitute these equations into the parentheses from (0.1), we have for each i_{n} that

$$
0=g_{i_{n}}=\sum_{i_{1}, \ldots, i_{n-1} \geq 0} a_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n-1}^{i_{n-1}}
$$

in the ring $R\left[x_{1}, \ldots, x_{n-1}\right]$. Equate coefficients on the left and right again to see that $a_{i_{1}, \ldots, i_{n}}=0$ for all $i_{1}, \ldots, i_{n} \geq 0$, which in turn forces $f=0$ as required.
3. Assume there exists $f \in R\left[x_{1}, \ldots, x_{n}\right]$ such that $R\left[x_{1}, \ldots, x_{n}\right] x_{1}+R\left[x_{1}, \ldots, x_{n}\right] x_{2}=R\left[x_{1}, \ldots, x_{n}\right] f$. Then there exists $g, h \in R\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
f=g x_{1}+h x_{2} .
$$

Since $x_{1} \in R\left[x_{1}, \ldots, x_{n}\right] f$, there exists $r \in R\left[x_{1}, \ldots, x_{n}\right] f$ such that

$$
x_{1}=r f=r\left(g x_{1}+h x_{2}\right)=r g x_{1}+r h x_{2} .
$$

Compare coefficients in x_{1} on the left and right to see that $1=r g$ and $0=r h$. If $r=0$ then $0=r g=1$ which is absurd in an integral domain. Thus $r \neq 0$, in which case the equality $0=r h$ forces $h=0$. Thus, $f=g x_{1}$. This forces everything in the ideal $R\left[x_{1}, \ldots, x_{n}\right] f$ to be divisible by x_{1}. In particular, the variable x_{2} is divisible by x_{1}, but this is absurd.
4. (1) Write $V:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] / I$, and consider the map $\mathbb{k} \times V \rightarrow V$ given by

$$
(\lambda, g+I) \mapsto(\lambda g)+I
$$

(you might equally well use equivalence class notation $[g]$ in place of coset notation $g+I$). This map is well-defined because if $g+I=h+I$, then $g-h \in I$ and hence $\lambda(g-h) \in I$, giving $\lambda g-\lambda h \in I$, that is, $\lambda g+I=\lambda h+I$ as required.
Since V is a ring, $(V,+)$ is an abelian group, and for $g+I \in V$ and $\lambda, \mu \in \mathbb{k}$ we have

$$
\begin{aligned}
\lambda(\mu(g+I)) & =\lambda(\mu g+I)=\lambda \mu g+I=(\lambda \mu)(g+I), \\
1 \cdot(g+I) & =1 g+I=g+I, \\
(\lambda+\mu)(g+I) & =(\lambda+\mu) g+I=(\lambda g+\mu g)+I=\lambda(g+I)+\mu(g+I), \\
\lambda((g+I)+(h+I)) & =\lambda((g+h)+I)=(\lambda g+\lambda h)+I=\lambda(g+I)+\lambda(h+I),
\end{aligned}
$$

so V is a vector space over \mathbb{k}. In addition, we have

$$
(\lambda(g+I)) \cdot(h+I)=(g+I) \cdot(\lambda(h+I))=\lambda((g+I) \cdot(h+I))
$$

because each is equal to $(\lambda g h)+I$. Therefore $V:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right] / I$ is a \mathbb{k}-algebra.
(2) Set $x=x_{1}$ and $y=x_{2}$ to make the notation easier. There are many candidates:

- One correct answer is $I=\left\langle x^{13}, y\right\rangle$, that is $I=\left\{g x^{13}+h y \mid g, h \in \mathbb{k}[x, y]\right\}$. The point is, the class of a polynomial $f \in \mathbb{k}[x, y]$ in the quotient ring is such that every term that is divisible by either x^{13} or y equals zero. Therefore, the only terms of f that are nonzero in the quotient ring are scalar multiples of $\left(1, x, x^{2}, \ldots, x^{12}\right)$, so the quotient ring has dimension 13. In this case, the image of the polynomial f given in the question is $x^{7}+I$.
- Similarly, $I=\left\langle x, y^{13}\right\rangle$ works equally well, in which case the image of the given polynomial f is $y^{4}+I$.
- Another correct answer is the ideal $I=\left\langle x^{4}, x^{3} y, y^{4}\right\rangle=\left\{f x^{4}+g x^{3} y+h y^{4} \mid f, g, h \in \mathbb{k}[x, y]\right\}$, where a basis for the quotient ring over \mathbb{k} is $\left(1, x, x^{2}, x^{3}, y, x y, x^{2} y, y^{2}, x y^{2}, x^{2} y^{2}, y^{3}, x y^{3}, x^{2} y^{3}\right)$. In this example, the image of f is $0+I$.

There are lots of other correct answers.
5. We prove this by induction on $n=\operatorname{deg}(f)$. If $n=1$ then f has a root in \mathbb{k} and we're done by setting $K=\mathbb{k}$. For $n>1$, assume that the result holds for smaller values of $\operatorname{deg}(f)$. Let p be an irreducible factor of f, say $f=p g$. Since p is irreducible, the ring

$$
F=\mathbb{k}[x] /\langle p\rangle
$$

is a field by Corollary 3.19. By Theorem 4.15, this quotient ring contains \mathbb{k} as a subfield and has a root a of the polynomial p. Now $f(a)=p(a) g(a)=0 \cdot g(t)=0$, so a is also a root of f. We can then factorise f in $F[x]$, say $f=(x-a) h$ for some $h \in F[x]$. As h is of smaller degree than f we can apply the induction hypothesis to get a field K that contains F as a subfield such that h can be written as a product of linear factors $h=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right)$ in $K[x]$. Then

$$
f=c\left(x-a_{1}\right) \cdots\left(x-a_{n-1}\right)(x-a)
$$

is a factorisation in $K[x]$.
6. Note that $a \in S$ if and only if $a^{q}=a$. We first show that S is a subring. Since $0^{q}=0$, we have $0 \in S$, so S is nonempty. Next, if $a, b \in S$, then $a^{q}=a$ and $b^{q}=b$ and hence

$$
(a b)^{q}=a^{q} b^{q}=a b
$$

where we've used the fact that K is commutative. This shows that $a b \in S$. To show that S is a subring of K, it remains to show that for $a, b \in S$, we have $a-b \in S$. One can tackle this head on, but it's an effort getting the signs right, so instead note first that

$$
(a+b)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{i} b^{p-i}=a^{p}+b^{p}
$$

where we have used the fact that the characteristic is p and that p divides $\binom{p}{1}, \ldots\binom{p}{p-1}$. It follows by induction for $a, b \in S$ that

$$
\begin{equation*}
(a+b)^{q}=(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}=a+b \tag{0.2}
\end{equation*}
$$

and thus $a+b \in S$. Furthermore, for $b \in S$ we have

$$
(-b)^{q}=\left\{\begin{array}{cl}
(-1)^{q} b^{q}=-b & \text { when } q \text { is odd } \\
b^{q}=b=-b & \text { otherwise, since the characteristic equals } 2 \text { in this case }
\end{array}\right.
$$

This shows that $b \in S \Rightarrow-b \in S$. Now, for $a, b \in S$, we have $-b \in S$ and substitute both a and $-b$ into (0.2) to see that $(a-b)^{q}=a-b$. This shows that $a-b \in S$, so S is indeed a subring.

It remains to show that S is a field, i.e., every non-zero element in S is a unit. But if $0 \neq a \in S$, then

$$
0=a^{q}-a=a\left(a^{q-1}-1\right)
$$

implies that $a^{q-1}=1$ and thus a is a unit.

