
Exercises 6

Please submit solutions by 3pm on Thursday 22nd March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Write the given polynomial as a product of irreducible polynomials in each ring:

(1) f = 42x3 − 126x2 + 84x− 252 in Q[x] and Z[x].

(2) f = x4 − 5x2 + 6 in Q[x] and Z5[x].

2. (H) Let R be an integral domain and let p ∈ R. Show that p is prime if and only if the quotient ring
R/Rp is an integral domain.

3. (H) Consider the ring R = Z[x]/〈x2 + 5〉.

(1) Show that R is an integral domain. [Hint: use the previous question!]

(2) Show that R is not a UFD. [Hint: adapt the proof of Exercise 4.2 to show that R is isomorphic to
the ring from Exercise 5.5; this would be straightforward if the coefficients were in R, but having
coefficients in Z makes it more challenging.]

4. (H) Show that x3 − 3x− 1 is irreducible in Q[x]. [Hint: Gauss’ Lemma.]

5. (A) Let k be a field. For the ring of formal power series k[[x]], consider the ‘reverse’ degree function
ν : k[[x]] r {0} → {0, 1, 2, . . .} given by ν

(∑∞
i=0 aix

i
)

= k if ai = 0 for i < k but ak 6= 0.

(1) Show that for f, g ∈ k[[x]] \ {0}, we have ν(fg) = ν(f) + ν(g).

(2) Prove that k[[x]] is a Euclidean domain. [Hint: to show part (2) of Definition 3.8 for f, g ∈ R[[x]]
with g 6= 0, one can always choose q so that f = qg, i.e., r = 0.]
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Solutions 6

1. (1) We have f = 42(x3 − 3x2 + 2x− 6). By inspecting the integer factors of the constant coefficient
−6, we see that 3 is a root of f , and on division by x− 3 we get that

f = 42(x− 3)(x2 + 2).

The latter factor has no roots in Q, so it’s irreducible in both Q[x] and Z[x]. Note that 42 is a unit
in Q, so the above description as the product of a unit with monic, irreducible polynomials is a nice
way to write f in Q[x]. However, to present f purely as a product of irreducible factors in Q[x] we
might write

f = (42x− 126)(x2 + 2),

though there are many alternatives (obtained by multiplying the first factor by a nonzero rational
number and the second factor by its multiplicative inverse). As for the ring Z[x], we have

f = 2 · 3 · 7 · (x− 3)(x2 + 2),

though again there are many alternatives obtained by multiplying an even number of factors on the
right hand side by −1.

(2) For t = x2, first solve t2 − 5t+ 6 = 0 and then substitute x back in to see that

f = (x2 − 2)(x2 − 3).

None of the roots ±
√

2,±
√

3 of f in C lies in Q, so this is the required decomposition in Q[x]. In
Z5[x], we have that f = x4 + 1, and the result is given in Exercise Sheet 5.

2. (⇒) Assume p is prime. Since R is a commutative ring with 1, Theorem 1.26 shows that R/Rp is a
commutative ring with 1. Also, since p is not a unit, we have Rp 6= R and therefore R/Rp is not the zero
ring. Finally, suppose that the product of two elemets in R/Rp equals zero, i.e., supose that for a, b ∈ R
we have

0 +Rp = (a+Rp) · (b+Rp) = ab+Rp.

This means that ab ∈ Rp, or equivalently, that p|ab. Since p is prime, it follows that p|a or p|b, which
means that a ∈ Rp or b ∈ Rp. Therefore either a+Rp = 0 +Rp or b+Rp = 0 +Rp as required.

(⇐) Suppose that R/Rp is an integral domain. Let a, b ∈ R satisfy p|ab. Then

(a+Rp) · (b+Rp) = ab+Rp = 0 +Rp,

where the last equality follows fomr p|ab. Since R is an integral domain, either a+Rp = 0+Rp, in which
case p|a, or b+Rp = 0 +Rp, in which case p|b as required.

3. The polynomial x2+5 ∈ Z[x] is irreducible, because it has no roots in Z. The ring Z[x] is a UFD because
Z is a UFD, so x2 + 5 is prime by Proposition 3.19. The previous exercise implies that R = Z[x]/〈x2 + 5〉
is an integral domain.

To see that R is not a UFD, we show that R is isomorphic to the ring Z[
√
−5] = Z + Z

√
−5 from

Exercise Sheet 5. Since this latter ring is not a UFD, and since isomorphisms preserve all ring-theoretic
properties, it follows that R is not a UFD. To construct the isomorphism, consider the evaluation map

φ : Z[x] −→ Z[
√
−5] given by φ(f) = f(

√
−5).

This is a ring homomorphism by Example 2.6, and it’s surjective, since a+ b
√
−5 lies in the image of the

polynomial f = a + bx. We claim that Ker(φ) = 〈x2 + 5〉, in which case the first isomorphism theorem



gives that R is isomorphic to Z[
√
−5]. To compute the kernel, suppose f ∈ Z[x] has degree n and satisfies

f(
√
−5) = 0. Regard f ∈ R[x] and apply Exercise 5.1 to see that

f(x) = (x2 + 5) · g(x)

where g ∈ R[x] has degree n − 2. Write g =
∑

0≤i≤n−2 aix
i. I claim that ai ∈ Z. To see this, multiply

out the above product and compare coefficients to see that

an−2 ∈ Z
an−3 ∈ Z

an−4 + 5an−2 ∈ Z ⇒ an−4 ∈ Z
an−5 + 5an−3 ∈ Z ⇒ an−5 ∈ Z

and so on, giving g ∈ Z[x]. Therefore f ∈ 〈x2 + 5〉, so Ker(φ) ⊆ 〈x2 + 5〉. The opposite inclusion is
obvious, so Ker(φ) = 〈x2 + 5〉. This completes the proof that R is not a UFD.

4. The polynomial f(x) = x3 − 3x − 1 ∈ Z[x] has degree 3, so if it’s reducible it would have a factor of
degree 1. But −1 only has two integer divisors, neither of which is a root of f . Therefore f is irreducible
in Z[x], so f is irreducible in Q[x] by Gauss’ Lemma.

5. (1) For f ∈ k[[x]] \ {0} such that ν(f) = k, we can write f =
∑∞

i=k aix
i with ak 6= 0. Similarly, for

g ∈ R[[x]] \ {0} such that ν(g) = `, write g =
∑∞

i=` bix
i with b` 6= 0. Then

fg = akb`x
k+` + (ak+1b` + akb`+1)x

k+`+1 + · · ·

Since k is an integral domain by Remark 1.12, having ak 6= 0 and b` 6= 0 forces akb` 6= 0, so
ν(fg) = k + ` = ν(f) + ν(g).

(2) Part (1) shows that the the first statement of Definition 3.8 holds, namely ν(f) ≤ ν(fg). As for
the second statement, consider again f =

∑∞
i=k aix

i with ak 6= 0 and g =
∑∞

i=` bix
i with b` 6= 0.

There are two cases:

(a) If k < `, then ν(f) < ν(g), and defining the quotient q = 0 and the remainder r = f gives
f = gq + r with ν(r) < ν(g) as required.

(b) Otherwise, k ≥ `. Consider the power series g/x` = b` + b`+1x + · · · . Since k is a field, b` is
a unit and therefore the power series g/x` has an inverse h by Exercise 2.4(1). Notice that
hg = x`. Now define

q = h ·
(
akx

k−` + ak+1x
k−`+1 + · · ·

)
.

Then

qg = hg ·
(
akx

k−` + ak+1x
k−`+1 + · · ·

)
= x` ·

(
akx

k−` + ak+1x
k−`+1 + · · ·

)
= f

as required.


