Exercises 6

Please submit solutions by 3 pm on Thursday 22 nd March to the pigeonholes in 4W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Write the given polynomial as a product of irreducible polynomials in each ring:
(1) $f=42 x^{3}-126 x^{2}+84 x-252$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$.
(2) $f=x^{4}-5 x^{2}+6$ in $\mathbb{Q}[x]$ and $\mathbb{Z}_{5}[x]$.
2. (H) Let R be an integral domain and let $p \in R$. Show that p is prime if and only if the quotient ring $R / R p$ is an integral domain.
3. $\mathbf{(H)}$ Consider the ring $R=\mathbb{Z}[x] /\left\langle x^{2}+5\right\rangle$.
(1) Show that R is an integral domain. [Hint: use the previous question!]
(2) Show that R is not a UFD. [Hint: adapt the proof of Exercise 4.2 to show that R is isomorphic to the ring from Exercise 5.5; this would be straightforward if the coefficients were in \mathbb{R}, but having coefficients in \mathbb{Z} makes it more challenging.]
4. (H) Show that $x^{3}-3 x-1$ is irreducible in $\mathbb{Q}[x]$. [Hint: Gauss' Lemma.]
5. (A) Let \mathbb{k} be a field. For the ring of formal power series $\mathbb{k}[[x]]$, consider the 'reverse' degree function $\nu: \mathbb{k}[[x]] \backslash\{0\} \rightarrow\{0,1,2, \ldots\}$ given by $\nu\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)=k$ if $a_{i}=0$ for $i<k$ but $a_{k} \neq 0$.
(1) Show that for $f, g \in \mathbb{k}[[x]] \backslash\{0\}$, we have $\nu(f g)=\nu(f)+\nu(g)$.
(2) Prove that $\mathbb{k}[[x]]$ is a Euclidean domain. [Hint: to show part (2) of Definition 3.8 for $f, g \in R[[x]]$ with $g \neq 0$, one can always choose q so that $f=q g$, i.e., $r=0$.]

Solutions 6

1. (1) We have $f=42\left(x^{3}-3 x^{2}+2 x-6\right)$. By inspecting the integer factors of the constant coefficient -6 , we see that 3 is a root of f, and on division by $x-3$ we get that

$$
f=42(x-3)\left(x^{2}+2\right) .
$$

The latter factor has no roots in \mathbb{Q}, so it's irreducible in both $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$. Note that 42 is a unit in \mathbb{Q}, so the above description as the product of a unit with monic, irreducible polynomials is a nice way to write f in $\mathbb{Q}[x]$. However, to present f purely as a product of irreducible factors in $\mathbb{Q}[x]$ we might write

$$
f=(42 x-126)\left(x^{2}+2\right),
$$

though there are many alternatives (obtained by multiplying the first factor by a nonzero rational number and the second factor by its multiplicative inverse). As for the ring $\mathbb{Z}[x]$, we have

$$
f=2 \cdot 3 \cdot 7 \cdot(x-3)\left(x^{2}+2\right),
$$

though again there are many alternatives obtained by multiplying an even number of factors on the right hand side by -1 .
(2) For $t=x^{2}$, first solve $t^{2}-5 t+6=0$ and then substitute x back in to see that

$$
f=\left(x^{2}-2\right)\left(x^{2}-3\right)
$$

None of the roots $\pm \sqrt{2}, \pm \sqrt{3}$ of f in \mathbb{C} lies in \mathbb{Q}, so this is the required decomposition in $\mathbb{Q}[x]$. In $\mathbb{Z}_{5}[x]$, we have that $f=x^{4}+1$, and the result is given in Exercise Sheet 5 .
2. (\Rightarrow) Assume p is prime. Since R is a commutative ring with 1 , Theorem 1.26 shows that $R / R p$ is a commutative ring with 1 . Also, since p is not a unit, we have $R p \neq R$ and therefore $R / R p$ is not the zero ring. Finally, suppose that the product of two elemets in $R / R p$ equals zero, i.e., supose that for $a, b \in R$ we have

$$
0+R p=(a+R p) \cdot(b+R p)=a b+R p .
$$

This means that $a b \in R p$, or equivalently, that $p \mid a b$. Since p is prime, it follows that $p \mid a$ or $p \mid b$, which means that $a \in R p$ or $b \in R p$. Therefore either $a+R p=0+R p$ or $b+R p=0+R p$ as required.
(\Leftarrow) Suppose that $R / R p$ is an integral domain. Let $a, b \in R$ satisfy $p \mid a b$. Then

$$
(a+R p) \cdot(b+R p)=a b+R p=0+R p
$$

where the last equality follows fomr $p \mid a b$. Since R is an integral domain, either $a+R p=0+R p$, in which case $p \mid a$, or $b+R p=0+R p$, in which case $p \mid b$ as required.
3. The polynomial $x^{2}+5 \in \mathbb{Z}[x]$ is irreducible, because it has no roots in \mathbb{Z}. The ring $\mathbb{Z}[x]$ is a UFD because \mathbb{Z} is a UFD, so $x^{2}+5$ is prime by Proposition 3.19. The previous exercise implies that $R=\mathbb{Z}[x] /\left\langle x^{2}+5\right\rangle$ is an integral domain.

To see that R is not a UFD, we show that R is isomorphic to the ring $\mathbb{Z}[\sqrt{-5}]=\mathbb{Z}+\mathbb{Z} \sqrt{-5}$ from Exercise Sheet 5. Since this latter ring is not a UFD, and since isomorphisms preserve all ring-theoretic properties, it follows that R is not a UFD. To construct the isomorphism, consider the evaluation map

$$
\phi: \mathbb{Z}[x] \longrightarrow \mathbb{Z}[\sqrt{-5}] \text { given by } \phi(f)=f(\sqrt{-5}) .
$$

This is a ring homomorphism by Example 2.6, and it's surjective, since $a+b \sqrt{-5}$ lies in the image of the polynomial $f=a+b x$. We claim that $\operatorname{Ker}(\phi)=\left\langle x^{2}+5\right\rangle$, in which case the first isomorphism theorem
gives that R is isomorphic to $\mathbb{Z}[\sqrt{-5}]$. To compute the kernel, suppose $f \in \mathbb{Z}[x]$ has degree n and satisfies $f(\sqrt{-5})=0$. Regard $f \in \mathbb{R}[x]$ and apply Exercise 5.1 to see that

$$
f(x)=\left(x^{2}+5\right) \cdot g(x)
$$

where $g \in \mathbb{R}[x]$ has degree $n-2$. Write $g=\sum_{0 \leq i \leq n-2} a_{i} x^{i}$. I claim that $a_{i} \in \mathbb{Z}$. To see this, multiply out the above product and compare coefficients to see that

$$
\begin{aligned}
a_{n-2} & \in \mathbb{Z} \\
a_{n-3} & \in \mathbb{Z} \\
a_{n-4}+5 a_{n-2} & \in \mathbb{Z} \Rightarrow a_{n-4} \in \mathbb{Z} \\
a_{n-5}+5 a_{n-3} & \in \mathbb{Z} \Rightarrow a_{n-5} \in \mathbb{Z}
\end{aligned}
$$

and so on, giving $g \in \mathbb{Z}[x]$. Therefore $f \in\left\langle x^{2}+5\right\rangle$, so $\operatorname{Ker}(\phi) \subseteq\left\langle x^{2}+5\right\rangle$. The opposite inclusion is obvious, so $\operatorname{Ker}(\phi)=\left\langle x^{2}+5\right\rangle$. This completes the proof that R is not a UFD.
4. The polynomial $f(x)=x^{3}-3 x-1 \in \mathbb{Z}[x]$ has degree 3 , so if it's reducible it would have a factor of degree 1. But -1 only has two integer divisors, neither of which is a root of f. Therefore f is irreducible in $\mathbb{Z}[x]$, so f is irreducible in $\mathbb{Q}[x]$ by Gauss' Lemma.
5. (1) For $f \in \mathbb{k}[[x]] \backslash\{0\}$ such that $\nu(f)=k$, we can write $f=\sum_{i=k}^{\infty} a_{i} x^{i}$ with $a_{k} \neq 0$. Similarly, for $g \in R[[x]] \backslash\{0\}$ such that $\nu(g)=\ell$, write $g=\sum_{i=\ell}^{\infty} b_{i} x^{i} \quad$ with $b_{\ell} \neq 0$. Then

$$
f g=a_{k} b_{\ell} x^{k+\ell}+\left(a_{k+1} b_{\ell}+a_{k} b_{\ell+1}\right) x^{k+\ell+1}+\cdots
$$

Since \mathbb{k} is an integral domain by Remark 1.12, having $a_{k} \neq 0$ and $b_{\ell} \neq 0$ forces $a_{k} b_{\ell} \neq 0$, so $\nu(f g)=k+\ell=\nu(f)+\nu(g)$.
(2) Part (1) shows that the the first statement of Definition 3.8 holds, namely $\nu(f) \leq \nu(f g)$. As for the second statement, consider again $f=\sum_{i=k}^{\infty} a_{i} x^{i}$ with $a_{k} \neq 0$ and $g=\sum_{i=\ell}^{\infty} b_{i} x^{i}$ with $b_{\ell} \neq 0$. There are two cases:
(a) If $k<\ell$, then $\nu(f)<\nu(g)$, and defining the quotient $q=0$ and the remainder $r=f$ gives $f=g q+r$ with $\nu(r)<\nu(g)$ as required.
(b) Otherwise, $k \geq \ell$. Consider the power series $g / x^{\ell}=b_{\ell}+b_{\ell+1} x+\cdots$. Since \mathbb{k} is a field, b_{ℓ} is a unit and therefore the power series g / x^{ℓ} has an inverse h by Exercise 2.4(1). Notice that $h g=x^{\ell}$. Now define

$$
q=h \cdot\left(a_{k} x^{k-\ell}+a_{k+1} x^{k-\ell+1}+\cdots\right)
$$

Then

$$
q g=h g \cdot\left(a_{k} x^{k-\ell}+a_{k+1} x^{k-\ell+1}+\cdots\right)=x^{\ell} \cdot\left(a_{k} x^{k-\ell}+a_{k+1} x^{k-\ell+1}+\cdots\right)=f
$$

as required.

