Please submit solutions by 3pm on Thursday 22nd March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

- 1. (W) Write the given polynomial as a product of irreducible polynomials in each ring:
 - (1) $f = 42x^3 126x^2 + 84x 252$ in $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$.
 - (2) $f = x^4 5x^2 + 6$ in $\mathbb{Q}[x]$ and $\mathbb{Z}_5[x]$.

2. (H) Let R be an integral domain and let $p \in R$. Show that p is prime if and only if the quotient ring R/Rp is an integral domain.

- **3.** (H) Consider the ring $R = \mathbb{Z}[x]/\langle x^2 + 5 \rangle$.
 - (1) Show that R is an integral domain. [Hint: use the previous question!]
 - (2) Show that R is not a UFD. [Hint: adapt the proof of Exercise 4.2 to show that R is isomorphic to the ring from Exercise 5.5; this would be straightforward if the coefficients were in \mathbb{R} , but having coefficients in \mathbb{Z} makes it more challenging.]
- 4. (H) Show that $x^3 3x 1$ is irreducible in $\mathbb{Q}[x]$. [Hint: Gauss' Lemma.]
- **5.** (A) Let k be a field. For the ring of formal power series $\mathbb{k}[[x]]$, consider the 'reverse' degree function $\nu : \mathbb{k}[[x]] \setminus \{0\} \to \{0, 1, 2, \ldots\}$ given by $\nu \left(\sum_{i=0}^{\infty} a_i x^i\right) = k$ if $a_i = 0$ for i < k but $a_k \neq 0$.
 - (1) Show that for $f, g \in \mathbb{k}[[x]] \setminus \{0\}$, we have $\nu(fg) = \nu(f) + \nu(g)$.
 - (2) Prove that $\mathbb{k}[[x]]$ is a Euclidean domain. [Hint: to show part (2) of Definition 3.8 for $f, g \in R[[x]]$ with $g \neq 0$, one can always choose q so that f = qg, i.e., r = 0.]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Algebra 2B, 2018

Solutions 6

1. (1) We have $f = 42(x^3 - 3x^2 + 2x - 6)$. By inspecting the integer factors of the constant coefficient -6, we see that 3 is a root of f, and on division by x - 3 we get that

$$f = 42(x-3)(x^2+2).$$

The latter factor has no roots in \mathbb{Q} , so it's irreducible in both $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$. Note that 42 is a unit in \mathbb{Q} , so the above description as the product of a unit with monic, irreducible polynomials is a nice way to write f in $\mathbb{Q}[x]$. However, to present f purely as a product of irreducible factors in $\mathbb{Q}[x]$ we might write

$$f = (42x - 126)(x^2 + 2),$$

though there are many alternatives (obtained by multiplying the first factor by a nonzero rational number and the second factor by its multiplicative inverse). As for the ring $\mathbb{Z}[x]$, we have

$$f = 2 \cdot 3 \cdot 7 \cdot (x - 3)(x^2 + 2),$$

though again there are many alternatives obtained by multiplying an even number of factors on the right hand side by -1.

(2) For $t = x^2$, first solve $t^2 - 5t + 6 = 0$ and then substitute x back in to see that

$$f = (x^2 - 2)(x^2 - 3).$$

None of the roots $\pm\sqrt{2}, \pm\sqrt{3}$ of f in \mathbb{C} lies in \mathbb{Q} , so this is the required decomposition in $\mathbb{Q}[x]$. In $\mathbb{Z}_5[x]$, we have that $f = x^4 + 1$, and the result is given in Exercise Sheet 5.

2. (\Rightarrow) Assume p is prime. Since R is a commutative ring with 1, Theorem 1.26 shows that R/Rp is a commutative ring with 1. Also, since p is not a unit, we have $Rp \neq R$ and therefore R/Rp is not the zero ring. Finally, suppose that the product of two elements in R/Rp equals zero, i.e., suppose that for $a, b \in R$ we have

$$0 + Rp = (a + Rp) \cdot (b + Rp) = ab + Rp.$$

This means that $ab \in Rp$, or equivalently, that p|ab. Since p is prime, it follows that p|a or p|b, which means that $a \in Rp$ or $b \in Rp$. Therefore either a + Rp = 0 + Rp or b + Rp = 0 + Rp as required.

(\Leftarrow) Suppose that R/Rp is an integral domain. Let $a, b \in R$ satisfy p|ab. Then

$$(a+Rp)\cdot(b+Rp) = ab+Rp = 0+Rp,$$

where the last equality follows form p|ab. Since R is an integral domain, either a + Rp = 0 + Rp, in which case p|a, or b + Rp = 0 + Rp, in which case p|b as required.

3. The polynomial $x^2+5 \in \mathbb{Z}[x]$ is irreducible, because it has no roots in \mathbb{Z} . The ring $\mathbb{Z}[x]$ is a UFD because \mathbb{Z} is a UFD, so $x^2 + 5$ is prime by Proposition 3.19. The previous exercise implies that $R = \mathbb{Z}[x]/\langle x^2+5 \rangle$ is an integral domain.

To see that R is not a UFD, we show that R is isomorphic to the ring $\mathbb{Z}[\sqrt{-5}] = \mathbb{Z} + \mathbb{Z}\sqrt{-5}$ from Exercise Sheet 5. Since this latter ring is not a UFD, and since isomorphisms preserve all ring-theoretic properties, it follows that R is not a UFD. To construct the isomorphism, consider the evaluation map

$$\phi \colon \mathbb{Z}[x] \longrightarrow \mathbb{Z}[\sqrt{-5}]$$
 given by $\phi(f) = f(\sqrt{-5})$.

This is a ring homomorphism by Example 2.6, and it's surjective, since $a + b\sqrt{-5}$ lies in the image of the polynomial f = a + bx. We claim that $\text{Ker}(\phi) = \langle x^2 + 5 \rangle$, in which case the first isomorphism theorem

gives that R is isomorphic to $\mathbb{Z}[\sqrt{-5}]$. To compute the kernel, suppose $f \in \mathbb{Z}[x]$ has degree n and satisfies $f(\sqrt{-5}) = 0$. Regard $f \in \mathbb{R}[x]$ and apply Exercise 5.1 to see that

$$f(x) = (x^2 + 5) \cdot g(x)$$

where $g \in \mathbb{R}[x]$ has degree n-2. Write $g = \sum_{0 \le i \le n-2} a_i x^i$. I claim that $a_i \in \mathbb{Z}$. To see this, multiply out the above product and compare coefficients to see that

 $a_{n-2} \in \mathbb{Z}$ $a_{n-3} \in \mathbb{Z}$ $a_{n-4} + 5a_{n-2} \in \mathbb{Z} \Rightarrow a_{n-4} \in \mathbb{Z}$ $a_{n-5} + 5a_{n-3} \in \mathbb{Z} \Rightarrow a_{n-5} \in \mathbb{Z}$

and so on, giving $g \in \mathbb{Z}[x]$. Therefore $f \in \langle x^2 + 5 \rangle$, so $\operatorname{Ker}(\phi) \subseteq \langle x^2 + 5 \rangle$. The opposite inclusion is obvious, so $\operatorname{Ker}(\phi) = \langle x^2 + 5 \rangle$. This completes the proof that R is not a UFD.

4. The polynomial $f(x) = x^3 - 3x - 1 \in \mathbb{Z}[x]$ has degree 3, so if it's reducible it would have a factor of degree 1. But -1 only has two integer divisors, neither of which is a root of f. Therefore f is irreducible in $\mathbb{Z}[x]$, so f is irreducible in $\mathbb{Q}[x]$ by Gauss' Lemma.

5. (1) For $f \in \mathbb{k}[[x]] \setminus \{0\}$ such that $\nu(f) = k$, we can write $f = \sum_{i=k}^{\infty} a_i x^i$ with $a_k \neq 0$. Similarly, for $g \in R[[x]] \setminus \{0\}$ such that $\nu(g) = \ell$, write $g = \sum_{i=\ell}^{\infty} b_i x^i$ with $b_\ell \neq 0$. Then

$$fg = a_k b_\ell x^{k+\ell} + (a_{k+1}b_\ell + a_k b_{\ell+1}) x^{k+\ell+1} + \cdots$$

Since k is an integral domain by Remark 1.12, having $a_k \neq 0$ and $b_\ell \neq 0$ forces $a_k b_\ell \neq 0$, so $\nu(fg) = k + \ell = \nu(f) + \nu(g)$.

- (2) Part (1) shows that the first statement of Definition 3.8 holds, namely $\nu(f) \leq \nu(fg)$. As for the second statement, consider again $f = \sum_{i=k}^{\infty} a_i x^i$ with $a_k \neq 0$ and $g = \sum_{i=\ell}^{\infty} b_i x^i$ with $b_\ell \neq 0$. There are two cases:
 - (a) If $k < \ell$, then $\nu(f) < \nu(g)$, and defining the quotient q = 0 and the remainder r = f gives f = gq + r with $\nu(r) < \nu(g)$ as required.
 - (b) Otherwise, $k \ge \ell$. Consider the power series $g/x^{\ell} = b_{\ell} + b_{\ell+1}x + \cdots$. Since k is a field, b_{ℓ} is a unit and therefore the power series g/x^{ℓ} has an inverse h by Exercise 2.4(1). Notice that $hg = x^{\ell}$. Now define

$$q = h \cdot (a_k x^{k-\ell} + a_{k+1} x^{k-\ell+1} + \cdots)$$

Then

$$qg = hg \cdot \left(a_k x^{k-\ell} + a_{k+1} x^{k-\ell+1} + \cdots\right) = x^{\ell} \cdot \left(a_k x^{k-\ell} + a_{k+1} x^{k-\ell+1} + \cdots\right) = f$$

as required.