EXERCISES 5

HePlease submit solutions by 3pm on Thursday 15th March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) This exercise investigates irreducible polynomials with coefficients in R.

(1) Let f € R[x] be nonzero. By repeatedly applying the fundamental theorem of algebra (i.e., every
f € C[z] has a root in C), write f as a product of linear factors in the ring C[z].

(2) For any non-real root a € C of f, show that the complex conjugate a is also a root of f, and deduce
that the non-real roots of f come in pairs a and a. Show the polynomial (x — a)(x — a) has real
coefficients, and show that (z — a)(z — a) is irreducible in R[z].

(3) Hence write f is a product of irreducible polynomials of degree one and two in the ring R[z].

2. (W) Factorise the polynomial 2% + 1 as a product of irreducibles in R[z], in C[z], in Q[z] and in Zs[z].
[Hint: you should get four different answers.]

3. (W) Prove that Q[z]/Q[z](x3 — 2) is a field, and justify your response [Hint: see Theorem 3.17]. Find
the inverse of [z — 3]. [Hint: for the last part, choose a,b € Q so that (z — 3)(22 + ax + b) is of the form
23 + ¢ for some ¢ € Q.]

4. (H) Let R = Z[x] and consider the ideal I := R2+ Rz = {2f + zg | f,g € Z[z]}. Show that I is not
a principal ideal of R and conclude that R is an integral domain that is not a PID.

5. (H) Consider the subset R = Z + Z+/—5 of C. We investigate some irreducibles that aren’t prime.
(1) Show that R is an integral domain. [Hint: prove that it’s a subring of C and apply Lemma 1.20]

(2) Let N(a) = a-a. Show that N(ab) = N(a)N(b), and hence show that a is a unit in R iff N(a) = 1.
Use this to determine all the units in R.

(3) Use part (2) to show that 2,3,1+ /=5 and 1 — /=5 are irreducible in R. Use this and
6=2-3=(1+v=5)(1—v=5)
to deduce that R is not a UFD and that 2,3,1 + +/—5 and 1 — /=5 are not primes.

6. (A) Recall that the Gaussian integers Z[i] = {a + bi € C : a,b € Z} are a subring C. Show that the
function v: Z[i] < {0} — {0,1,2,...} given by v(a + bi) = a® + b? is a Euclidean valuation, so Z[i] is a
Euclidean domain. [Hint: for f,g € Z]i], to find ¢ consider f/g € C: if it lies in Z[i] then set ¢ = f/g;
otherwise let ¢ € Z[i] be the point with integer coefficients closest to f/g € C in the Argand diagram.]
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SOLUTIONS 5

1. (1) Suppose that r € R is the leading coefficient of f, i.e.,
f=r@" + 12"+ e+ ),

where g, ...,c,—1 € R. Applying the fundamental theorem of algebra repeatedly (you might prove
this by induction) gives
f=r@—dy) - (xr—dy).

where dy,...,d, € C.
(2) Suppose that f(z) =19+ +---+rpz”™. As ais aroot of f, we have
ro+mra+---+rpa” =0.

As 0 =0, we get

O=ro+tria+ - +rpa”=rg+ma+ - +ra*=rg+ra+---+rpa"

Hence a is also a root of f. So if a is not real we get a distinct root a. If a = r +is with r,s € R
and where s # 0 then

(x_a)(x_a):x2_(a+a)$+ad:x2_2rx+(r2+82)

is a polynomial in R[z]. It must be irreducible in R[z|, otherwise it must have a linear factor in
R[z] which is not the case here because neither a nor a lies in R.

(3) Let ai,...,a, be the real roots of f and let by, b1, ..., bs, bs be the non-real roots. If 7 is the leading
coefficient of f we get the factorisation

f=rl@—a)(@—a)(@—b)(@—b)][(&—bs)(x - bs)],

which leads to a factorisation in R[z| with r+s irreducible factors: the r factors (z—a1),..., (v —a;)
are linear; and the s irreducible factors (z — by)(x — b1),..., (x — bs)(x — bs) in R[z] are quadratic.

2. (1) We have that
e+ 1= (2 +1)?—22% = (22 + V22 +1)(2? — V2z + 1).
As neither of these quadratics has a real root, they are irreducible in R[z].

(2) We continue with the factorisation from (2) above. We have

(m2+\/§m+1)(w2—\fx+1)

= (e+ 9’ +3) (@ %) +3)
= (J:—i—‘/—i-z‘f)(a:—l—‘[ ‘[)(x ﬂ%—i?)(x—@—

:n4+1

173

)

(3) From (1) we know that the unique monic (= leading coefficient is 1) irreducible factors in R[z] are
not in Q[z]. Hence x* + 1 is irreducible in Q[z].

(4) We have that z* +1 = 2* — 4 = (22 4 2)(2? — 2). Inspection shows that z* + 1 has no root in Zs,
so we can’t factorise further.



3. Since Q is a field, the ring Q[z] is a Euclidean domain and hence a PID. The polynomial 23 — 2 is
irreducible in Q[z], because a reducible polynomial of degree 3 must have a linear factor, yet none of the
roots of 3 — 2 is rational. Theorem 3.16 implies that the quotient ring Q[z]/Q[z](z® — 2) is a field.
We have
[ — 3] [2% + 32+ 9] = [2° — 27] = [#° — 2] + [-25] = [-25],
so the inverse of [x — 3] = [(—1/25)(z% + 3z + 9)].
4. We argue by contradiction and suppose that
R2+ Rx = Rf

for some f € R = Z[z]. In particular, both 2,z € Rf, so there exists nonzero polynomials gi, g2 € Z[z]
such that 2 = g1 f and x = gof. It follows that deg(f) < deg(g1f) = deg(2) = 0, so f is constant. The
only constant polynomials that divide 2 are +1 and +2, and of these only 4+1 divide x. Therefore f =1
or f=-1,s0 R-2+ R-z = R. It follows that there exists polynomials r, s € Z[z] such that

1=2-r+x-s.

Evaluating at = 0 gives
1=2-r(0)40-s(0),
1

and hence r(0) = 5. But r(0) is the constant term of r(x) € Z[z], so it must be an integer. This is a
contradiction, so the ideal I is not principal. Since Z is an integral domain, we know from Exercise 2.2(3)

that R = Z[z] is an integral domain, yet we’ve just shown that R is not a principal ideal domain.
5. (1) Clearly R contains 0 = 0+ 04/—5, so it’s nonempty. We have
(a+bvV=5) —(c+dV=5)=(a—c)+ (b—d)vV-5€R
and
(a + bvV/=5)(c + dvV/—=5) = (ac — 5bd) + (ad + bc)v/—5 € R
for a,b,c,d € Z, so R is a subring of C. Every field is an integral domain, and since R contains
1 € C, it’s an integral domain by Lemma 1.20.

(2) First, note that
N(ab) = ab - ab = abab = aa - bb = N(a) - N(b)
as required. Next, let a = 7 4+ sv/—5 € R then N(a) = r2 + 5s2. Notice that the value is always a
non-negative integer. If this is equal to 1 then we must have r = +1 and s = 0 and we get a = —1
or a = 1. Clearly both these are units. Conversely suppose that a is a unit and say ab = 1 then
1=N(1) = N(ab) = N(a)N(b) and as N(a), N(b) are integers this can only happen if N(a) = 1.
So 1 and —1 are the only units of R.

(3) First notice that 72 + 552 does not take the values 2 or 3 for any integers r,s. We use this to show
that 2,3,1++/=5 and 1 — /=5 are irreducible. Firstly if 2 = ab then 4 = N(2) = N(a)N(b) and as
N does not take the value 2 we must have that one of N(a), N(b) takes the value 1 and thus one of
a,b must be a unit. This shows that 2 is irreducible. Similarly 3 = ab implies that 9 = N(a)N(b)
and as N does not take the value 3 we must have that one of N(a), N(b) is 1 and thus one of a,b
is a unit, so 3 is irreducible. As N(1 + y/—5) = N(1 —+/=5) = 6 the same argument shows that
1+ +/=5 and 1 — /=5 are irreducible.

The factorisation

6=2-3=(1++v=5)(1—-+vV-5)
gives two factorisations of 6 and as 2 doesn’t generate the same ideal as either (1 + /—5) or
(1 — +/=5), it follows that the factorisation of 6 is not unique. This also shows that none of the
four elements is a prime.



6. The map v clearly takes only nonnegative integer values. For f = a + bi and g = ¢ + di we have
v(fg) = v((ac — bd) + (bc + ad)i) = (a® + b*)(c* + d*) > v(f) for g # 0.

Now fix f,g € Z[i] with g # 0, and consider the complex number 5. If it is a Gaussian integer then

set ¢ = 5 and r = 0, so we have f = qg. Otherwise, plot the complex number L asa point on the Argand
diagram representing C and choose a point ¢ € Z[i] such that the real and imaginary parts of the complex
number ¢ := g — q are at most %, and define a Gaussian integer r = f — qg. We already have f =qg+r
with r # 0, but we must still show that v(r) < v(g). Since the real and imaginary parts of ¢ are at most

1 1 :
5 we have [c| < ot Therefore r = gc satisfies

v(r) = I = lgPle? = le?u(9) < 51(9) < (o).

This shows that v is a Euclidean valuation.



