
Exercises 5

HePlease submit solutions by 3pm on Thursday 15th March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) This exercise investigates irreducible polynomials with coefficients in R.

(1) Let f ∈ R[x] be nonzero. By repeatedly applying the fundamental theorem of algebra (i.e., every
f ∈ C[x] has a root in C), write f as a product of linear factors in the ring C[x].

(2) For any non-real root a ∈ C of f , show that the complex conjugate ā is also a root of f , and deduce
that the non-real roots of f come in pairs a and ā. Show the polynomial (x − a)(x − ā) has real
coefficients, and show that (x− a)(x− ā) is irreducible in R[x].

(3) Hence write f is a product of irreducible polynomials of degree one and two in the ring R[x].

2. (W) Factorise the polynomial x4 +1 as a product of irreducibles in R[x], in C[x], in Q[x] and in Z5[x].
[Hint: you should get four different answers.]

3. (W) Prove that Q[x]/Q[x](x3− 2) is a field, and justify your response [Hint: see Theorem 3.17]. Find
the inverse of [x− 3]. [Hint: for the last part, choose a, b ∈ Q so that (x− 3)(x2 + ax+ b) is of the form
x3 + c for some c ∈ Q.]

4. (H) Let R = Z[x] and consider the ideal I := R2 +Rx = {2f + xg | f, g ∈ Z[x]}. Show that I is not
a principal ideal of R and conclude that R is an integral domain that is not a PID.

5. (H) Consider the subset R = Z + Z
√
−5 of C. We investigate some irreducibles that aren’t prime.

(1) Show that R is an integral domain. [Hint: prove that it’s a subring of C and apply Lemma 1.20]

(2) Let N(a) = a · ā. Show that N(ab) = N(a)N(b), and hence show that a is a unit in R iff N(a) = 1.
Use this to determine all the units in R.

(3) Use part (2) to show that 2, 3, 1 +
√
−5 and 1−

√
−5 are irreducible in R. Use this and

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

to deduce that R is not a UFD and that 2, 3, 1 +
√
−5 and 1−

√
−5 are not primes.

6. (A) Recall that the Gaussian integers Z[i] = {a + bi ∈ C : a, b ∈ Z} are a subring C. Show that the
function ν : Z[i] r {0} → {0, 1, 2, . . .} given by ν(a + bi) = a2 + b2 is a Euclidean valuation, so Z[i] is a
Euclidean domain. [Hint: for f, g ∈ Z[i], to find q consider f/g ∈ C: if it lies in Z[i] then set q = f/g;
otherwise let q ∈ Z[i] be the point with integer coefficients closest to f/g ∈ C in the Argand diagram.]
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Solutions 5

1. (1) Suppose that r ∈ R is the leading coefficient of f , i.e.,

f = r
(
xn + cn−1x

n−1 + · · ·+ c1x+ c0
)
,

where c0, . . . , cn−1 ∈ R. Applying the fundamental theorem of algebra repeatedly (you might prove
this by induction) gives

f = r(x− d1) · · · (x− dn).

where d1, . . . , dn ∈ C.

(2) Suppose that f(x) = r0 + r1x+ · · ·+ rnx
n. As a is a root of f , we have

r0 + r1a+ · · ·+ rna
n = 0.

As 0̄ = 0, we get

0 = r0 + r1a+ · · ·+ rnan = r0 + r1a+ · · ·+ rnan = r0 + r1a+ · · ·+ rna
n.

Hence ā is also a root of f . So if a is not real we get a distinct root ā. If a = r + is with r, s ∈ R
and where s 6= 0 then

(x− a)(x− ā) = x2 − (a+ ā)x+ aā = x2 − 2rx+ (r2 + s2)

is a polynomial in R[x]. It must be irreducible in R[x], otherwise it must have a linear factor in
R[x] which is not the case here because neither a nor ā lies in R.

(3) Let a1, . . . , ar be the real roots of f and let b1, b̄1, . . . , bs, b̄s be the non-real roots. If r is the leading
coefficient of f we get the factorisation

f = r(x− a1) · · · (x− ar)[(x− b1)(x− b̄1)] · · · [(x− bs)(x− b̄s)],

which leads to a factorisation in R[x] with r+s irreducible factors: the r factors (x−a1), . . . , (x−ar)
are linear; and the s irreducible factors (x− b1)(x− b̄1), . . . , (x− bs)(x− b̄s) in R[x] are quadratic.

2. (1) We have that

x4 + 1 = (x2 + 1)2 − 2x2 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1).

As neither of these quadratics has a real root, they are irreducible in R[x].

(2) We continue with the factorisation from (2) above. We have

x4 + 1 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1)

=
(
(x+

√
2
2 )2 + 1

2

)(
(x−

√
2
2 )2 + 1

2

)
= (x+

√
2
2 + i

√
2
2 )(x+

√
2
2 − i

√
2
2 )(x−

√
2
2 + i

√
2
2 )(x−

√
2
2 − i

√
2
2 )

(3) From (1) we know that the unique monic (= leading coefficient is 1) irreducible factors in R[x] are
not in Q[x]. Hence x4 + 1 is irreducible in Q[x].

(4) We have that x4 + 1 = x4 − 4 = (x2 + 2)(x2 − 2). Inspection shows that x4 + 1 has no root in Z5,
so we can’t factorise further.



3. Since Q is a field, the ring Q[x] is a Euclidean domain and hence a PID. The polynomial x3 − 2 is
irreducible in Q[x], because a reducible polynomial of degree 3 must have a linear factor, yet none of the
roots of x3 − 2 is rational. Theorem 3.16 implies that the quotient ring Q[x]/Q[x](x3 − 2) is a field.

We have
[x− 3] · [x2 + 3x+ 9] = [x3 − 27] = [x3 − 2] + [−25] = [−25],

so the inverse of [x− 3] = [(−1/25)(x2 + 3x+ 9)].

4. We argue by contradiction and suppose that

R2 +Rx = Rf

for some f ∈ R = Z[x]. In particular, both 2, x ∈ Rf , so there exists nonzero polynomials g1, g2 ∈ Z[x]
such that 2 = g1f and x = g2f . It follows that deg(f) ≤ deg(g1f) = deg(2) = 0, so f is constant. The
only constant polynomials that divide 2 are ±1 and ±2, and of these only ±1 divide x. Therefore f = 1
or f = −1, so R · 2 +R · x = R. It follows that there exists polynomials r, s ∈ Z[x] such that

1 = 2 · r + x · s.

Evaluating at x = 0 gives
1 = 2 · r(0) + 0 · s(0),

and hence r(0) = 1
2 . But r(0) is the constant term of r(x) ∈ Z[x], so it must be an integer. This is a

contradiction, so the ideal I is not principal. Since Z is an integral domain, we know from Exercise 2.2(3)
that R = Z[x] is an integral domain, yet we’ve just shown that R is not a principal ideal domain.

5. (1) Clearly R contains 0 = 0 + 0
√
−5, so it’s nonempty. We have

(a+ b
√
−5)− (c+ d

√
−5) = (a− c) + (b− d)

√
−5 ∈ R

and
(a+ b

√
−5)(c+ d

√
−5) = (ac− 5bd) + (ad+ bc)

√
−5 ∈ R

for a, b, c, d ∈ Z, so R is a subring of C. Every field is an integral domain, and since R contains
1 ∈ C, it’s an integral domain by Lemma 1.20.

(2) First, note that
N(ab) = ab · ab = abāb̄ = aā · bb̄ = N(a) ·N(b)

as required. Next, let a = r + s
√
−5 ∈ R then N(a) = r2 + 5s2. Notice that the value is always a

non-negative integer. If this is equal to 1 then we must have r = ±1 and s = 0 and we get a = −1
or a = 1. Clearly both these are units. Conversely suppose that a is a unit and say ab = 1 then
1 = N(1) = N(ab) = N(a)N(b) and as N(a), N(b) are integers this can only happen if N(a) = 1.
So 1 and −1 are the only units of R.

(3) First notice that r2 + 5s2 does not take the values 2 or 3 for any integers r, s. We use this to show
that 2, 3, 1 +

√
−5 and 1−

√
−5 are irreducible. Firstly if 2 = ab then 4 = N(2) = N(a)N(b) and as

N does not take the value 2 we must have that one of N(a), N(b) takes the value 1 and thus one of
a, b must be a unit. This shows that 2 is irreducible. Similarly 3 = ab implies that 9 = N(a)N(b)
and as N does not take the value 3 we must have that one of N(a), N(b) is 1 and thus one of a, b
is a unit, so 3 is irreducible. As N(1 +

√
−5) = N(1 −

√
−5) = 6 the same argument shows that

1 +
√
−5 and 1−

√
−5 are irreducible.

The factorisation
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5)

gives two factorisations of 6 and as 2 doesn’t generate the same ideal as either (1 +
√
−5) or

(1 −
√
−5), it follows that the factorisation of 6 is not unique. This also shows that none of the

four elements is a prime.



6. The map ν clearly takes only nonnegative integer values. For f = a+ bi and g = c+ di we have

ν(fg) = ν
(
(ac− bd) + (bc+ ad)i

)
= (a2 + b2)(c2 + d2) ≥ ν(f) for g 6= 0.

Now fix f, g ∈ Z[i] with g 6= 0, and consider the complex number f
g . If it is a Gaussian integer then

set q = f
g and r = 0, so we have f = qg. Otherwise, plot the complex number f

g as a point on the Argand
diagram representing C and choose a point q ∈ Z[i] such that the real and imaginary parts of the complex
number c := f

g − q are at most 1
2 , and define a Gaussian integer r = f − qg. We already have f = qg + r

with r 6= 0, but we must still show that ν(r) < ν(g). Since the real and imaginary parts of c are at most
1
2 we have |c| ≤ 1√

2
. Therefore r = gc satisfies

ν(r) = |r|2 = |g|2|c|2 = |c|2ν(g) ≤ 1

2
ν(g) < ν(g).

This shows that ν is a Euclidean valuation.


