Exercises 5

HePlease submit solutions by 3pm on Thursday 15th March to the pigeonholes in 4W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) This exercise investigates irreducible polynomials with coefficients in \mathbb{R}.
(1) Let $f \in \mathbb{R}[x]$ be nonzero. By repeatedly applying the fundamental theorem of algebra (i.e., every $f \in \mathbb{C}[x]$ has a root in \mathbb{C}), write f as a product of linear factors in the ring $\mathbb{C}[x]$.
(2) For any non-real root $a \in \mathbb{C}$ of f, show that the complex conjugate \bar{a} is also a root of f, and deduce that the non-real roots of f come in pairs a and \bar{a}. Show the polynomial $(x-a)(x-\bar{a})$ has real coefficients, and show that $(x-a)(x-\bar{a})$ is irreducible in $\mathbb{R}[x]$.
(3) Hence write f is a product of irreducible polynomials of degree one and two in the ring $\mathbb{R}[x]$.
2. (W) Factorise the polynomial $x^{4}+1$ as a product of irreducibles in $\mathbb{R}[x]$, in $\mathbb{C}[x]$, in $\mathbb{Q}[x]$ and in $\mathbb{Z}_{5}[x]$. [Hint: you should get four different answers.]
3. (W) Prove that $\mathbb{Q}[x] / \mathbb{Q}[x]\left(x^{3}-2\right)$ is a field, and justify your response [Hint: see Theorem 3.17]. Find the inverse of $[x-3]$. [Hint: for the last part, choose $a, b \in \mathbb{Q}$ so that $(x-3)\left(x^{2}+a x+b\right)$ is of the form $x^{3}+c$ for some $c \in \mathbb{Q}$.]
4. (H) Let $R=\mathbb{Z}[x]$ and consider the ideal $I:=R 2+R x=\{2 f+x g \mid f, g \in \mathbb{Z}[x]\}$. Show that I is not a principal ideal of R and conclude that R is an integral domain that is not a PID.
5. (H) Consider the subset $R=\mathbb{Z}+\mathbb{Z} \sqrt{-5}$ of \mathbb{C}. We investigate some irreducibles that aren't prime.
(1) Show that R is an integral domain. [Hint: prove that it's a subring of \mathbb{C} and apply Lemma 1.20]
(2) Let $N(a)=a \cdot \bar{a}$. Show that $N(a b)=N(a) N(b)$, and hence show that a is a unit in R iff $N(a)=1$. Use this to determine all the units in R.
(3) Use part (2) to show that $2,3,1+\sqrt{-5}$ and $1-\sqrt{-5}$ are irreducible in R. Use this and

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

to deduce that R is not a UFD and that $2,3,1+\sqrt{-5}$ and $1-\sqrt{-5}$ are not primes.
6. (A) Recall that the Gaussian integers $\mathbb{Z}[i]=\{a+b i \in \mathbb{C}: a, b \in \mathbb{Z}\}$ are a subring \mathbb{C}. Show that the function $\nu: \mathbb{Z}[i] \backslash\{0\} \rightarrow\{0,1,2, \ldots\}$ given by $\nu(a+b i)=a^{2}+b^{2}$ is a Euclidean valuation, so $\mathbb{Z}[i]$ is a Euclidean domain. [Hint: for $f, g \in \mathbb{Z}[i]$, to find q consider $f / g \in \mathbb{C}$: if it lies in $\mathbb{Z}[i]$ then set $q=f / g$; otherwise let $q \in \mathbb{Z}[i]$ be the point with integer coefficients closest to $f / g \in \mathbb{C}$ in the Argand diagram.]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B

Solutions 5

1. (1) Suppose that $r \in \mathbb{R}$ is the leading coefficient of f, i.e.,

$$
f=r\left(x^{n}+c_{n-1} x^{n-1}+\cdots+c_{1} x+c_{0}\right),
$$

where $c_{0}, \ldots, c_{n-1} \in \mathbb{R}$. Applying the fundamental theorem of algebra repeatedly (you might prove this by induction) gives

$$
f=r\left(x-d_{1}\right) \cdots\left(x-d_{n}\right) .
$$

where $d_{1}, \ldots, d_{n} \in \mathbb{C}$.
(2) Suppose that $f(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n}$. As a is a root of f, we have

$$
r_{0}+r_{1} a+\cdots+r_{n} a^{n}=0 .
$$

As $\overline{0}=0$, we get

$$
0=\overline{r_{0}+r_{1} a+\cdots+r_{n} a^{n}}=\overline{r_{0}}+\overline{r_{1} a}+\cdots+\overline{r_{n} a^{n}}=r_{0}+r_{1} \bar{a}+\cdots+r_{n} \bar{a}^{n} .
$$

Hence \bar{a} is also a root of f. So if a is not real we get a distinct root \bar{a}. If $a=r+i s$ with $r, s \in \mathbb{R}$ and where $s \neq 0$ then

$$
(x-a)(x-\bar{a})=x^{2}-(a+\bar{a}) x+a \bar{a}=x^{2}-2 r x+\left(r^{2}+s^{2}\right)
$$

is a polynomial in $\mathbb{R}[x]$. It must be irreducible in $\mathbb{R}[x]$, otherwise it must have a linear factor in $\mathbb{R}[x]$ which is not the case here because neither a nor \bar{a} lies in \mathbb{R}.
(3) Let a_{1}, \ldots, a_{r} be the real roots of f and let $b_{1}, \overline{b_{1}}, \ldots, b_{s}, \overline{b_{s}}$ be the non-real roots. If r is the leading coefficient of f we get the factorisation

$$
f=r\left(x-a_{1}\right) \cdots\left(x-a_{r}\right)\left[\left(x-b_{1}\right)\left(x-\overline{b_{1}}\right)\right] \cdots\left[\left(x-b_{s}\right)\left(x-\overline{b_{s}}\right)\right],
$$

which leads to a factorisation in $\mathbb{R}[x]$ with $r+s$ irreducible factors: the r factors $\left(x-a_{1}\right), \ldots,\left(x-a_{r}\right)$ are linear; and the s irreducible factors $\left(x-b_{1}\right)\left(x-\overline{b_{1}}\right), \ldots,\left(x-b_{s}\right)\left(x-\overline{b_{s}}\right)$ in $\mathbb{R}[x]$ are quadratic.
2. (1) We have that

$$
x^{4}+1=\left(x^{2}+1\right)^{2}-2 x^{2}=\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right) .
$$

As neither of these quadratics has a real root, they are irreducible in $\mathbb{R}[x]$.
(2) We continue with the factorisation from (2) above. We have

$$
\begin{aligned}
x^{4}+1 & =\left(x^{2}+\sqrt{2} x+1\right)\left(x^{2}-\sqrt{2} x+1\right) \\
& =\left(\left(x+\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}\right)\left(\left(x-\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}\right) \\
& =\left(x+\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)\left(x+\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)\left(x-\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}\right)\left(x-\frac{\sqrt{2}}{2}-i \frac{\sqrt{2}}{2}\right)
\end{aligned}
$$

(3) From (1) we know that the unique monic (= leading coefficient is 1) irreducible factors in $\mathbb{R}[x]$ are not in $\mathbb{Q}[x]$. Hence $x^{4}+1$ is irreducible in $\mathbb{Q}[x]$.
(4) We have that $x^{4}+1=x^{4}-4=\left(x^{2}+2\right)\left(x^{2}-2\right)$. Inspection shows that $x^{4}+1$ has no root in \mathbb{Z}_{5}, so we can't factorise further.
3. Since \mathbb{Q} is a field, the ring $\mathbb{Q}[x]$ is a Euclidean domain and hence a PID. The polynomial $x^{3}-2$ is irreducible in $\mathbb{Q}[x]$, because a reducible polynomial of degree 3 must have a linear factor, yet none of the roots of $x^{3}-2$ is rational. Theorem 3.16 implies that the quotient ring $\mathbb{Q}[x] / \mathbb{Q}[x]\left(x^{3}-2\right)$ is a field.

We have

$$
[x-3] \cdot\left[x^{2}+3 x+9\right]=\left[x^{3}-27\right]=\left[x^{3}-2\right]+[-25]=[-25]
$$

so the inverse of $[x-3]=\left[(-1 / 25)\left(x^{2}+3 x+9\right)\right]$.
4. We argue by contradiction and suppose that

$$
R 2+R x=R f
$$

for some $f \in R=\mathbb{Z}[x]$. In particular, both $2, x \in R f$, so there exists nonzero polynomials $g_{1}, g_{2} \in \mathbb{Z}[x]$ such that $2=g_{1} f$ and $x=g_{2} f$. It follows that $\operatorname{deg}(f) \leq \operatorname{deg}\left(g_{1} f\right)=\operatorname{deg}(2)=0$, so f is constant. The only constant polynomials that divide 2 are ± 1 and ± 2, and of these only ± 1 divide x. Therefore $f=1$ or $f=-1$, so $R \cdot 2+R \cdot x=R$. It follows that there exists polynomials $r, s \in \mathbb{Z}[x]$ such that

$$
1=2 \cdot r+x \cdot s
$$

Evaluating at $x=0$ gives

$$
1=2 \cdot r(0)+0 \cdot s(0)
$$

and hence $r(0)=\frac{1}{2}$. But $r(0)$ is the constant term of $r(x) \in \mathbb{Z}[x]$, so it must be an integer. This is a contradiction, so the ideal I is not principal. Since \mathbb{Z} is an integral domain, we know from Exercise 2.2(3) that $R=\mathbb{Z}[x]$ is an integral domain, yet we've just shown that R is not a principal ideal domain.
5. (1) Clearly R contains $0=0+0 \sqrt{-5}$, so it's nonempty. We have

$$
(a+b \sqrt{-5})-(c+d \sqrt{-5})=(a-c)+(b-d) \sqrt{-5} \in R
$$

and

$$
(a+b \sqrt{-5})(c+d \sqrt{-5})=(a c-5 b d)+(a d+b c) \sqrt{-5} \in R
$$

for $a, b, c, d \in \mathbb{Z}$, so R is a subring of \mathbb{C}. Every field is an integral domain, and since R contains $1 \in \mathbb{C}$, it's an integral domain by Lemma 1.20.
(2) First, note that

$$
N(a b)=a b \cdot \overline{a b}=a b \bar{a} \bar{b}=a \bar{a} \cdot b \bar{b}=N(a) \cdot N(b)
$$

as required. Next, let $a=r+s \sqrt{-5} \in R$ then $N(a)=r^{2}+5 s^{2}$. Notice that the value is always a non-negative integer. If this is equal to 1 then we must have $r= \pm 1$ and $s=0$ and we get $a=-1$ or $a=1$. Clearly both these are units. Conversely suppose that a is a unit and say $a b=1$ then $1=N(1)=N(a b)=N(a) N(b)$ and as $N(a), N(b)$ are integers this can only happen if $N(a)=1$. So 1 and -1 are the only units of R.
(3) First notice that $r^{2}+5 s^{2}$ does not take the values 2 or 3 for any integers r, s. We use this to show that $2,3,1+\sqrt{-5}$ and $1-\sqrt{-5}$ are irreducible. Firstly if $2=a b$ then $4=N(2)=N(a) N(b)$ and as N does not take the value 2 we must have that one of $N(a), N(b)$ takes the value 1 and thus one of a, b must be a unit. This shows that 2 is irreducible. Similarly $3=a b$ implies that $9=N(a) N(b)$ and as N does not take the value 3 we must have that one of $N(a), N(b)$ is 1 and thus one of a, b is a unit, so 3 is irreducible. As $N(1+\sqrt{-5})=N(1-\sqrt{-5})=6$ the same argument shows that $1+\sqrt{-5}$ and $1-\sqrt{-5}$ are irreducible.

The factorisation

$$
6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})
$$

gives two factorisations of 6 and as 2 doesn't generate the same ideal as either $(1+\sqrt{-5})$ or $(1-\sqrt{-5})$, it follows that the factorisation of 6 is not unique. This also shows that none of the four elements is a prime.
6. The map ν clearly takes only nonnegative integer values. For $f=a+b i$ and $g=c+d i$ we have

$$
\nu(f g)=\nu((a c-b d)+(b c+a d) i)=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \geq \nu(f) \quad \text { for } g \neq 0 .
$$

Now fix $f, g \in \mathbb{Z}[i]$ with $g \neq 0$, and consider the complex number $\frac{f}{g}$. If it is a Gaussian integer then set $q=\frac{f}{g}$ and $r=0$, so we have $f=q g$. Otherwise, plot the complex number $\frac{f}{g}$ as a point on the Argand diagram representing \mathbb{C} and choose a point $q \in \mathbb{Z}[i]$ such that the real and imaginary parts of the complex number $c:=\frac{f}{g}-q$ are at most $\frac{1}{2}$, and define a Gaussian integer $r=f-q g$. We already have $f=q g+r$ with $r \neq 0$, but we must still show that $\nu(r)<\nu(g)$. Since the real and imaginary parts of c are at most $\frac{1}{2}$ we have $|c| \leq \frac{1}{\sqrt{2}}$. Therefore $r=g c$ satisfies

$$
\nu(r)=|r|^{2}=|g|^{2}|c|^{2}=|c|^{2} \nu(g) \leq \frac{1}{2} \nu(g)<\nu(g) .
$$

This shows that ν is a Euclidean valuation.

