Exercises 4

Please submit solutions by 3 pm on Thursday 8th March to the pigeonholes in 4W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Let R be a commutative ring, and let $a \in R$. Show that the equation $x^{2}=a$ has at most two solutions when R is an integral domain. Can you find a commutative ring R and a nonzero $a \in R$ such that $x^{2}=a$ has more than two solutions? [Hint: experiment with rings of the form \mathbb{Z}_{n}.]
2. (W) Let R and S be rings. Show that $R \times S=\{(r, s) \mid r \in R, s \in S\}$ becomes a ring if we define

$$
(a, b)+(c, d)=(a+c, b+d) \quad \text { and } \quad(a, b) \cdot(c, d)=(a c, b d)
$$

for $a, c \in R$ and $b, d \in S$; this ring is the direct product of R with S. [Hint: you require only the definition of a ring from week one to solve this problem.]
3. (H) Consider the evaluation homomorphism $\phi: \mathbb{R}[x] \rightarrow \mathbb{C}$ defined by setting $\phi(f)=f(i)$; this is simply Example 2.6 in the special case $R=\mathbb{C}, S=\mathbb{R}$ and the element $r=i=\sqrt{-1} \in \mathbb{C}$.
(1) Identify $\operatorname{Ker}(\phi)$ and prove carefully your assertion [Hint: the division algorithm!].
(2) What can we conclude from the First Isomorphism Theorem?
4. (H) Let R be a ring with 1 such that the number $|R|$ of elements in R is finite. Show that:
(1) the number of elements of R is divisible by $\operatorname{char}(R)$ [Hint: use Lemma 2.19 and apply Lagrange's theorem from Algebra 1A];
(2) if $|R|=p$ is a prime number, then $R \cong \mathbb{Z}_{p}$.
(3) if R is an integral domain, then it is a field. [Hint: for $0 \neq a \in R$, show that multiplication by a is a bijection from R to R.]
5. (A) Let I, J be ideals in a ring R.
(1) Prove that the set $I+J:=\{a+b \in R \mid a \in I, b \in J\}$ is an ideal in R (so it's a subring and therefore a ring in its own right), and that J is an ideal in the ring $I+J$.
(2) Prove that $I \cap J:=\{a \in R \mid a \in I, a \in J\}$ is an ideal in the ring I (where again we use the fact that since I is an ideal, it's a subring and therefore a ring in its own right).
(3) Prove the second isomorphism theorem ${ }^{1}$, namely, that the quotient ring $I /(I \cap J)$ is isomorphic to the quotient ring $(I+J) / J$.

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Algebra 2B, 2018

[^0]The conclusion of the second isomorphism theorem tells us that these two options give the same answer!

Solutions 4

1. (1) If $x^{2}=a$ has no solution there is nothing to prove. Otherwise, suppose that $b \in R$ provides one solution. If $c \in R$ is any solution we have

$$
(c-b) \cdot(c+b)=c^{2}-b^{2}=a-a=0
$$

Since R is an integral domain. we have either $c=b$ or $c=-b$, so there can be at most two solutions.
(2) Consider the ring \mathbb{Z}_{8}. Then $[1]^{2}=[3]^{2}=[-3]^{2}=[-1]^{2}=[1]$ and so $x^{2}=[1]$ has four solutions, namely [1], [3], [5], [7].
2. The idea is to show that each defining property of a ring holds for $R \times S$ using the corresponding property of R and S.

Both R and S are non-empty, so the corresponding pair of elements defines an element of $R \times S$ and hence $R \times S$ is nonempty. The operations of addition and multiplication defined in the question give binary operations on $R \times S$, because $a+c, a c \in R$ and $b+d, b d \in S$ - this follows from the fact that addition and multiplication are binary operations on R and S.

To show that $R \times S$ is an abelian group, let $a, c, e \in R$ and $b, d, f \in S$. We have that

$$
\begin{aligned}
((a, b)+(c, d))+(e, f) & =(a+c, b+d)+(e, f) \\
& =((a+c)+e,(b+d)+f) \\
& =(a+(c+e), b+(d+f)) \quad \text { by associativity of }+ \text { in } R \text { and } S \\
& =(a, b)+((c+e, d+f)) \\
& =(a, b)+((c, d)+(e, f)),
\end{aligned}
$$

so addition in $R \times S$ is associative. Also, since addition is commutative in both R and S, we have

$$
(a, b)+(c, d)=(a+c, b+d)=(c+a, d+b)=(c, d)+(a, b)
$$

so addition is commutative in $R \times S$. Also, if $0_{R} \in R$ and $0_{S} \in S$ denote the zero elements, then

$$
(a, b)+\left(0_{R}, 0_{S}\right)=\left(a+0_{R}, b+0_{S}\right)=(a, b),
$$

so (using commutativity of addition) we have that $\left(0_{R}, 0_{S}\right)$ is the zero element in $R \times S$. Given an element $(a, b) \in R \times S$, the additive inverses $-a \in R$ and $-b \in S$ satisfy

$$
(a, b)+(-a,-b)=(a+(-a), b+(-b))=\left(0_{R}, 0_{S}\right),
$$

so (again using commutativity of addition) we have that $(-a,-b)$ is the additive inverse of (a, b).
Checking associativity of multiplication is more-or-less identical to associativity of addition:

$$
\begin{array}{rlr}
((a, b) \cdot(c, d)) \cdot(e, f) & =(a c, b d) \cdot(e, f) & \\
& =((a c) e,(b d) f) & \\
& =(a(c e), b(d f)) & \\
& =(a, b) \cdot((c e, d f)) & \\
& =(a, b) \cdot((c, d) \cdot(e, f)) &
\end{array}
$$

as required.

Finally to check the distributivity identities, note that

$$
\begin{array}{rlr}
(a, b) \cdot((c, d)+(e, f))+(e, f) & =(a, b) \cdot(c+e, d+f) \\
& =(a(c+e), b(d+f)) \\
& =(a c+a e, b d+b f)) \quad \text { by distributivity in both } R \text { and } S \\
& =(a c, b d)+(a e, b f) \\
& =(a, b) \cdot(c, d)+(a, b) \cdot(e, f),
\end{array}
$$

and similarly for the other distributivity axiom.
[This final part is not necessary, but if you really like your rings to have a unit, note that $(a, b) \in R \times S$ is a unit iff there exists $(c, d) \in R \times S$ such that

$$
\left(1_{R}, 1_{S}\right)=(a, b) \cdot(c, d)=(a c, b d)
$$

This is equivalent to saying that $1_{R}=a c$ and $1_{S}=b d$, which in turn is equivalent to a being a unit in R and b being a unit in S. Therefore, $R \times S$ has a unit iff both R and S have units.]
3. (1) We claim that $\operatorname{Ker}(\phi)=\mathbb{R}[x]\left(x^{2}+1\right)$ is the ideal generated by the element $x^{2}+1 \in \mathbb{R}[x]$. To prove this we establish that the right hand side is contained in the left hand side and vice versa. First, if $f=g\left(x^{2}+1\right) \in \mathbb{R}[x]\left(x^{2}+1\right)$, then $\phi(f)=g(i) \cdot\left(i^{2}+1\right)=0$, so $f \in \operatorname{Ker}(\phi)$. Conversely, if $f \in \operatorname{Ker}(\phi)$, then applying division by $x^{2}+1$ yields quotient $q \in \mathbb{R}[x]$ and remainder $r=b x+a \in \mathbb{R}[x]$ such that

$$
f=\left(x^{2}+1\right) q+b x+a .
$$

Our assumption gives $0=f(i)=0 \cdot q(i)+b i+a$, i.e., that $a+b i=0 \in \mathbb{C}$ which forces $a=b=0$. Therefore $f=\left(x^{2}+1\right) q \in \mathbb{R}[x]\left(x^{2}+1\right)$ as required. This shows that $\operatorname{Ker}(\phi)=\mathbb{R}[x]\left(x^{2}+1\right)$.
(2) The map ϕ is surjective, because for $a+b i \in \mathbb{C}$, we have $\phi(a+b x)=a+b i$. The first isomorphism theorem tells us that the induced map

$$
\bar{\phi}: \frac{\mathbb{R}[x]}{\mathbb{R}[x]\left(x^{2}+1\right)} \longrightarrow \mathbb{C}
$$

is an isomorphism. We'll see later in the course that a standard method to construct fields is to consider quotients of a polynomial ring $\mathbb{k}[x]$ by an ideal.

In this case, perhaps the result comes as no surprise because multiplying and adding in \mathbb{C} is just like working with polynomial expressions in i and then identifying i^{2} with -1 , that is, identifying $i^{2}+1$ with 0 .
4. (1) Since R is finite, the subring $\mathbb{Z} 1_{R}$ must be finite, and Lemma 2.19 implies that $\mathbb{Z} 1_{R} \cong \mathbb{Z}_{n}$ where $n=\operatorname{char}(R)>0$. It follows that $\left|\mathbb{Z} 1_{R}\right|=n=\operatorname{char}(R)$. Since $\mathbb{Z} 1_{R}$ is a subring of R, it is in particular a subgroup under addition, and Lagrange's theorem implies that $|R|$ is divisible by $\operatorname{char}(R)=\left|\mathbb{Z} 1_{R}\right|$.
(2) We have $|R| \geq 2$, so $\mathbb{Z} 1_{R}$ has at least two elements: $0_{R}, 1_{R}$. Thus $\left|\mathbb{Z} 1_{R}\right|=\operatorname{char}(R)$ is at least 2 , and it divides the prime number $|R|$ by part (1), so $\left|\mathbb{Z} 1_{R}\right|=|R|$. This forces $R=\mathbb{Z} 1_{R}$, and the result follows from Lemma 2.19(2).
(3) Let R be a finite integral domain. Let $0 \neq a \in R$ and consider the map $f: R \rightarrow R$ sending $u \mapsto u a$. To see that this map is injective, suppose $u, v \in R$ satisfy $u a=v a$. The cancellation property of R implies that $u=v$ because $0 \neq a$. Moreover, since R is finite, it follows that f is bijective $(|R a|=|R|$ and $R a \subseteq R$ implies that $R a=R)$. In partiular there exist $u \in R$ such that $u a=1$ and u is then a multiplicative inverse of a. We have thus shown that every $0 \neq a \in R$ has a multiplicative inverse. Hence R is a field.
5. (1) To see that $I+J$ is an ideal in R, note that $0=0+0 \in I+J$, so $I+J \neq \emptyset$. Let $a_{1}+b_{1}, a_{2}+b_{2} \in I+J$ for elements $a_{1}, a_{2} \in I, b_{1}, b_{2} \in J$. Consider also $r \in R$. Since I, J are ideals, we have that $a_{1}-a_{2}, r a_{1}, a_{1} r \in I$ and $b_{1}-b_{2}, r b_{1}, b_{1} r \in J$, we have that

$$
\left(a_{1}+b_{1}\right)-\left(a_{2}+b_{2}\right)=\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) \in I+J
$$

and that $r\left(a_{1}+b_{1}\right)=r a_{1}+r b_{1} \in I+J$ and $\left(a_{1}+b_{1}\right) r=a_{1} r+b_{1} r \in I+J$. This shows that $I+J$ is an ideal of R.
To see that J is an ideal in $I+J$, we know $0 \in J$, so $J \in I+J$ is a non-empty subset. Since J is an ideal, we already know that $a, b \in J \Rightarrow a-b \in J$. Similarly, we already know that $a \in J$ and $r \in R$ implies that $a \cdot r, r \cdot a \in J$, so the same is true if we restrict attention only to those elements $r \in I+J$. Therefore J is an ideal in the ring $I+J$.
(2) To see that $I \cap J$ is an ideal in R, we have $0 \in I \cap J$, so $I \cap J \neq \emptyset$. Let $a, b \in I \cap J$ and let $r \in R$. As I, J are ideals of R, it follows that $a-b$, ra, ar lie in both I and J, so $a-b, r a, a r \in I \cap J$. This shows $I \cap J$ is an ideal of R. The proof that $I \cap J$ is an ideal in the ring I is identical to that of part (1) above.
(3) Consider the map $\phi: I \rightarrow(I+J) / J$ given by $\phi(a)=a+J$.

For $a, b \in I$, we have that

$$
\phi(a+b)=(a+b)+J=a+J+b+J=\phi(a)+\phi(b)
$$

and that

$$
\phi(a \cdot b)=a \cdot b+J=a+J+b+J=\phi(a) \cdot \phi(b)
$$

so ϕ is a ring homomorphism.
Let $a \in \operatorname{Ker}(\phi) \subseteq I$. Then $\phi(a)=0$ gives $a+J=J$, or equivalently, $a \in J$, so in fact $a \in I \cap J$. We have $I \cap J \subseteq \operatorname{Ker}(\phi)$, so $\operatorname{Ker}(\phi)=I \cap J$. The first isomorphism theorem now implies that

$$
\frac{I}{I \cap J} \cong \operatorname{Image}(\phi)
$$

so it remains to show that ϕ is surjective. For $a \in I$ and $b \in J$, consider $(a+b)+J \in(I+J) / J$. Then for $a \in I$, we have that

$$
\phi(a)=a+J=a+b+J
$$

because $b \in J$, so ϕ is surjective as required.

[^0]: ${ }^{1}$ This may be thought of as follows. We can't take the quotient of I by J, because J needn't be a subset of I. However, there are two operations that are pretty close:
 (a) one is to replace J by a smaller ideal that fits inside I and then take the quotient, i..e, consider $I /(I \cap J)$;
 (b) the other is to replace I by a larger ideal that contains J and then take the quotient, i.e., consider $(I+J) / J$.

