
Exercises 4

Please submit solutions by 3pm on Thursday 8th March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Let R be a commutative ring, and let a ∈ R. Show that the equation x2 = a has at most two
solutions when R is an integral domain. Can you find a commutative ring R and a nonzero a ∈ R such
that x2 = a has more than two solutions? [Hint: experiment with rings of the form Zn.]

2. (W) Let R and S be rings. Show that R× S =
{

(r, s) | r ∈ R, s ∈ S
}

becomes a ring if we define

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac, bd)

for a, c ∈ R and b, d ∈ S; this ring is the direct product of R with S. [Hint: you require only the definition
of a ring from week one to solve this problem.]

3. (H) Consider the evaluation homomorphism φ : R[x] → C defined by setting φ(f) = f(i); this is
simply Example 2.6 in the special case R = C, S = R and the element r = i =

√
−1 ∈ C.

(1) Identify Ker(φ) and prove carefully your assertion [Hint: the division algorithm!].

(2) What can we conclude from the First Isomorphism Theorem?

4. (H) Let R be a ring with 1 such that the number |R| of elements in R is finite. Show that:

(1) the number of elements of R is divisible by char(R) [Hint: use Lemma 2.19 and apply Lagrange’s
theorem from Algebra 1A];

(2) if |R| = p is a prime number, then R ∼= Zp.

(3) if R is an integral domain, then it is a field. [Hint: for 0 6= a ∈ R, show that multiplication by a is
a bijection from R to R.]

5. (A) Let I, J be ideals in a ring R.

(1) Prove that the set I+J := {a+b ∈ R | a ∈ I, b ∈ J} is an ideal in R (so it’s a subring and therefore
a ring in its own right), and that J is an ideal in the ring I + J .

(2) Prove that I ∩ J := {a ∈ R | a ∈ I, a ∈ J} is an ideal in the ring I (where again we use the fact
that since I is an ideal, it’s a subring and therefore a ring in its own right).

(3) Prove the second isomorphism theorem1, namely, that the quotient ring I/(I ∩ J) is isomorphic to
the quotient ring (I + J)/J .
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1This may be thought of as follows. We can’t take the quotient of I by J , because J needn’t be a subset of I. However,
there are two operations that are pretty close:

(a) one is to replace J by a smaller ideal that fits inside I and then take the quotient, i..e, consider I/(I ∩ J);

(b) the other is to replace I by a larger ideal that contains J and then take the quotient, i.e., consider (I + J)/J .

The conclusion of the second isomorphism theorem tells us that these two options give the same answer!



Solutions 4

1. (1) If x2 = a has no solution there is nothing to prove. Otherwise, suppose that b ∈ R provides one
solution. If c ∈ R is any solution we have

(c− b) · (c+ b) = c2 − b2 = a− a = 0.

Since R is an integral domain. we have either c = b or c = −b, so there can be at most two solutions.

(2) Consider the ring Z8. Then [1]2 = [3]2 = [−3]2 = [−1]2 = [1] and so x2 = [1] has four solutions,
namely [1], [3], [5], [7].

2. The idea is to show that each defining property of a ring holds for R × S using the corresponding
property of R and S.

Both R and S are non-empty, so the corresponding pair of elements defines an element of R× S and
hence R × S is nonempty. The operations of addition and multiplication defined in the question give
binary operations on R × S, because a + c, ac ∈ R and b + d, bd ∈ S - this follows from the fact that
addition and multiplication are binary operations on R and S.

To show that R× S is an abelian group, let a, c, e ∈ R and b, d, f ∈ S. We have that(
(a, b) + (c, d)

)
+ (e, f) = (a+ c, b+ d) + (e, f)

=
(
(a+ c) + e, (b+ d) + f

)
=

(
a+ (c+ e), b+ (d+ f)

)
by associativity of + in R and S

= (a, b) +
(
(c+ e, d+ f)

)
= (a, b) +

(
(c, d) + (e, f)

)
,

so addition in R× S is associative. Also, since addition is commutative in both R and S, we have

(a, b) + (c, d) = (a+ c, b+ d) = (c+ a, d+ b) = (c, d) + (a, b)

so addition is commutative in R× S. Also, if 0R ∈ R and 0S ∈ S denote the zero elements, then

(a, b) + (0R, 0S) = (a+ 0R, b+ 0S) = (a, b),

so (using commutativity of addition) we have that (0R, 0S) is the zero element in R×S. Given an element
(a, b) ∈ R× S, the additive inverses −a ∈ R and −b ∈ S satisfy

(a, b) + (−a,−b) = (a+ (−a), b+ (−b)) = (0R, 0S),

so (again using commutativity of addition) we have that (−a,−b) is the additive inverse of (a, b).
Checking associativity of multiplication is more-or-less identical to associativity of addition:(

(a, b) · (c, d)
)
· (e, f) = (ac, bd) · (e, f)

=
(
(ac)e, (bd)f

)
=

(
a(ce), b(df)

)
by associativity of · in R and S

= (a, b) ·
(
(ce, df)

)
= (a, b) ·

(
(c, d) · (e, f)

)
as required.



Finally to check the distributivity identities, note that

(a, b) ·
(
(c, d) + (e, f)

)
+ (e, f) = (a, b) · (c+ e, d+ f)

=
(
a(c+ e), b(d+ f)

)
=

(
ac+ ae, bd+ bf)

)
by distributivity in both R and S

= (ac, bd) + (ae, bf)

= (a, b) · (c, d) + (a, b) · (e, f),

and similarly for the other distributivity axiom.
[This final part is not necessary, but if you really like your rings to have a unit, note that (a, b) ∈ R×S

is a unit iff there exists (c, d) ∈ R× S such that

(1R, 1S) = (a, b) · (c, d) = (ac, bd).

This is equivalent to saying that 1R = ac and 1S = bd, which in turn is equivalent to a being a unit in R
and b being a unit in S. Therefore, R× S has a unit iff both R and S have units.]

3. (1) We claim that Ker(φ) = R[x](x2+1) is the ideal generated by the element x2+1 ∈ R[x]. To prove
this we establish that the right hand side is contained in the left hand side and vice versa. First, if
f = g(x2+1) ∈ R[x](x2+1), then φ(f) = g(i)·(i2+1) = 0, so f ∈ Ker(φ). Conversely, if f ∈ Ker(φ),
then applying division by x2 +1 yields quotient q ∈ R[x] and remainder r = bx+a ∈ R[x] such that

f = (x2 + 1)q + bx+ a.

Our assumption gives 0 = f(i) = 0 · q(i) + bi+ a, i.e., that a+ bi = 0 ∈ C which forces a = b = 0.
Therefore f = (x2 + 1)q ∈ R[x](x2 + 1) as required. This shows that Ker(φ) = R[x](x2 + 1).

(2) The map φ is surjective, because for a+ bi ∈ C, we have φ(a+ bx) = a+ bi. The first isomorphism
theorem tells us that the induced map

φ :
R[x]

R[x](x2 + 1)
−→ C

is an isomorphism. We’ll see later in the course that a standard method to construct fields is to
consider quotients of a polynomial ring k[x] by an ideal.

In this case, perhaps the result comes as no surprise because multiplying and adding in C is just
like working with polynomial expressions in i and then identifying i2 with −1, that is, identifying
i2 + 1 with 0.

4. (1) Since R is finite, the subring Z1R must be finite, and Lemma 2.19 implies that Z1R ∼= Zn

where n = char(R) > 0. It follows that |Z1R| = n = char(R). Since Z1R is a subring of R, it is
in particular a subgroup under addition, and Lagrange’s theorem implies that |R| is divisible by
char(R) = |Z1R|.

(2) We have |R| ≥ 2, so Z1R has at least two elements: 0R, 1R. Thus |Z1R| = char (R) is at least 2,
and it divides the prime number |R| by part (1), so |Z1R| = |R|. This forces R = Z1R, and the
result follows from Lemma 2.19(2).

(3) Let R be a finite integral domain. Let 0 6= a ∈ R and consider the map f : R→ R sending u 7→ ua.
To see that this map is injective, suppose u, v ∈ R satisfy ua = va. The cancellation property
of R implies that u = v because 0 6= a. Moreover, since R is finite, it follows that f is bijective
(|Ra| = |R| and Ra ⊆ R implies that Ra = R). In partiular there exist u ∈ R such that ua = 1
and u is then a multiplicative inverse of a. We have thus shown that every 0 6= a ∈ R has a
multiplicative inverse. Hence R is a field.



5. (1) To see that I+J is an ideal in R, note that 0 = 0+0 ∈ I+J , so I+J 6= ∅. Let a1+b1, a2+b2 ∈ I+J
for elements a1, a2 ∈ I, b1, b2 ∈ J . Consider also r ∈ R. Since I, J are ideals, we have that
a1 − a2, ra1, a1r ∈ I and b1 − b2, rb1, b1r ∈ J , we have that

(a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2) ∈ I + J,

and that r(a1 + b1) = ra1 + rb1 ∈ I + J and (a1 + b1)r = a1r+ b1r ∈ I + J . This shows that I + J
is an ideal of R.

To see that J is an ideal in I + J , we know 0 ∈ J , so J ∈ I + J is a non-empty subset. Since J is
an ideal, we already know that a, b ∈ J ⇒ a − b ∈ J . Similarly, we already know that a ∈ J and
r ∈ R implies that a · r, r · a ∈ J , so the same is true if we restrict attention only to those elements
r ∈ I + J . Therefore J is an ideal in the ring I + J .

(2) To see that I ∩ J is an ideal in R, we have 0 ∈ I ∩ J , so I ∩ J 6= ∅. Let a, b ∈ I ∩ J and let r ∈ R.
As I, J are ideals of R, it follows that a− b, ra, ar lie in both I and J , so a− b, ra, ar ∈ I ∩ J . This
shows I ∩ J is an ideal of R. The proof that I ∩ J is an ideal in the ring I is identical to that of
part (1) above.

(3) Consider the map φ : I → (I + J)/J given by φ(a) = a+ J .

For a, b ∈ I, we have that

φ(a+ b) = (a+ b) + J = a+ J + b+ J = φ(a) + φ(b),

and that
φ(a · b) = a · b+ J = a+ J + b+ J = φ(a) · φ(b),

so φ is a ring homomorphism.

Let a ∈ Ker(φ) ⊆ I. Then φ(a) = 0 gives a + J = J , or equivalently, a ∈ J , so in fact a ∈ I ∩ J .
We have I ∩ J ⊆ Ker(φ), so Ker(φ) = I ∩ J . The first isomorphism theorem now implies that

I

I ∩ J
∼= Image(φ),

so it remains to show that φ is surjective. For a ∈ I and b ∈ J , consider (a + b) + J ∈ (I + J)/J .
Then for a ∈ I, we have that

φ(a) = a+ J = a+ b+ J

because b ∈ J , so φ is surjective as required.


