Please submit solutions by 3pm on Thursday 1st March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A)=Additional.

1. (W) Let R, S and T be rings and let $\phi : R \to S$ and $\psi : S \to T$ be ring homomorphisms. Show that the composition $\psi \circ \phi : R \to T$ is a ring homomorphism.

2. (W) Let $\phi: R \to S$ be a ring homomorphism. Show that ϕ is a ring isomorphism if and only if ϕ is bijective as a map of *sets*. [Hint: one direction is immediate.]

3. (H) This exercises illustrates that isomorphic rings share the same ring-theoretic properties, i.e., as rings they are indistinguishable. Let R, S be rings and let $\phi: R \to S$ be an isomorphism. Show that

- (1) R is a ring with 1 if and only if S is a ring with 1;
- (2) R is a commutative ring if and only if S is a commutative ring;
- (3) R is an integral domain if and only if S is an integral domain.

4. (H) Let V be a finite dimensional vector space over a field k. An *endomorphism on* V is a linear map $\alpha: V \to V$, and let End (V) denote the set of all endomorphisms on V. For $\alpha, \beta \in \text{End}(V)$, define maps $(\alpha + \beta): V \to V$ and $(\alpha \cdot \beta): V \to V$ as follows: for $v \in V$, define

$$(\alpha + \beta)(v) := \alpha(v) + \beta(v) \in V$$
 and $(\alpha \cdot \beta)(v) := \alpha(\beta(v)) \in V.$

- (1) Show that both $(\alpha + \beta)$ and $(\alpha \cdot \beta)$ are endomorphisms of V (i.e., show that both are linear maps), and prove that these two operations make $(\text{End}(V), +, \cdot)$ into a ring with 1.
- (2) Let *n* denote the dimension of *V* as a k-vector space. Show that End (*V*) is isomorphic to the ring $M_n(\mathbb{k})$ of $n \times n$ matrices with entries in k.

5. (A) Let V be a two dimensional vector space over a field k with basis (u, v). Let $\phi \in \text{End}(V)$ be the linear map satisfying $\phi(u) = v$ and $\phi(v) = -u$.

- (1) Show that the subset $F = \{a \operatorname{id} + b\phi \mid a, b \in \Bbbk\}$ is a subring of $\operatorname{End}(V)$. [Hint: first compute $\phi^2(u)$ and $\phi^2(v)$.]
- (2) Show that F is a field if and only if $x^2 + 1$ has no root in k.
- (3) In the case when $\mathbb{k} = \mathbb{R}$, the field F is an old friend. Which one?

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Algebra 2B, 2018

Solutions 3

1. As both ϕ and ψ are homomorphisms, we have

$$\psi(\phi(a+b)) = \psi(\phi(a) + \phi(b)) = \psi(\phi(a)) + \psi(\phi(b))$$

and

$$\psi(\phi(ab)) = \psi(\phi(a)\phi(b)) = \psi(\phi(a))\psi(\phi(b)).$$

Hence $\psi \circ \phi$ is a homomorphism.

2. If ϕ is a ring isomorphism, then we saw in class (see Remark 2.11(1)) that ϕ is bijective as a map of sets. For the converse, suppose that ϕ is bijective as a map of sets. Let $u, v \in S$. As ϕ is bijective there exist $a, b \in R$ such that $\phi(a) = u$ and $\phi(b) = v$ and thus $\phi^{-1}(u) = a$ and $\phi^{-1}(v) = b$. It follows that

$$\phi^{-1}(u+v) = \phi^{-1}(\phi(a) + \phi(b)) = \phi^{-1}(\phi(a+b)) = a + b = \phi^{-1}(u) + \phi^{-1}(v)$$

and

$$\phi^{-1}(uv) = \phi^{-1}(\phi(a)\phi(b)) = \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(u)\phi^{-1}(v)$$

This shows that ϕ^{-1} is an isomorphism.

3. (1) Let R be a ring with 1. We claim that the element $\phi(1) \in S$ is the multiplicative identity in S, making S into a ring with 1. For this, let $s \in S$. Then for $r = \phi^{-1}(s) \in R$, we have that

$$s \cdot \phi(1) = \phi(\phi^{-1}(s)) \cdot \phi(1) = \phi(r) \cdot \phi(1) = \phi(r \cdot 1) = \phi(r) = s,$$

and similarly,

$$\phi(1) \cdot s = \phi(1) \cdot \phi(\phi^{-1}(s)) = \phi(1) \cdot \phi(r) = \phi(1 \cdot r) = \phi(r) = s$$

This shows that $\phi(1)$ is the multiplicative identity in S, so S is a ring with 1.

To prove the other direction, rather than rewrite all of the above in the other direction, notice that since $\phi^{-1}: S \to R$ is a ring isomorphism, the above argument applied to ϕ^{-1} shows that if S is a ring with 1 then $\phi^{-1}(1)$ makes R into a ring with 1.

(2) Let R be commutative, and let $s, s' \in S$. Then for $r = \phi^{-1}(s)$ and $r' = \phi^{-1}(s')$, we have

$$s \cdot s' = \phi(r) \cdot \phi(r') = \phi(r \cdot r') = \phi(r' \cdot r) = \phi(r') \cdot \phi(r) = s' \cdot s,$$

so S is commutative. As in part (1), if we assume that S is commutative, then the argument we've just given applied to the isomorphism $\phi^{-1} \colon S \to R$ shows that R is commutative.

(3) Let R be an integral domain. By parts (1) and (2), we know that S is a commutative ring with 1. We claim that $0_S \neq 1_S$ in S. Indeed, suppose for a contradiction that $0_S = 1_S$. Then $\phi^{-1}(0_S) = \phi^{-1}(1_S)$ in R, but this is a contradiction because $\phi^{-1}(0_S)$ is the zero element in R (by applying Lemma 2.4(3) to the ring homomorphism ϕ^{-1}) and $\phi^{-1}(1_S)$ is the multiplicative identity 1_R in R by applying part (1) above to ϕ^{-1} ; and of course we know $0_R \neq 1_R$ as R is an integral domain.

Finally, let $s, t \in S$ satisfy st = 0. Then by applying Lemma 2.4(3) again, we know that

$$0_R = \phi^{-1}(0_S) = \phi^{-1}(st) = \phi^{-1}(s) \cdot \phi^{-1}(t)$$

Since R is an integral domain, we deduce that $\phi^{-1}(s) = 0$ or $\phi^{-1}(t) = 0$. Now apply ϕ to each equation (and use Lemma 2.4(3) again) to see that either $s = \phi(\phi^{-1}(s)) = 0$ or $t = \phi(\phi^{-1}(t)) = 0$ as required, so S is indeed an integral domain.

4. (1) The map $\alpha + \beta$ is linear, because for $v, w \in V$ and $\lambda \in \mathbb{k}$ we have

$$(\alpha + \beta)(\lambda v + w) = \alpha(\lambda v + w) + \beta(\lambda v + w)$$
 by definition
$$= \lambda \alpha(v) + \alpha(w) + \lambda \beta(v) + \beta(w)$$
 as α, β are linear
$$= \lambda(\alpha(v) + \beta(v)) + (\alpha(w) + \beta(w))$$

$$= \lambda(\alpha + \beta)(v) + (\alpha + \beta)(w).$$

This means that $(\alpha + \beta) \in \text{End}(V)$. Also, the composition of two linear maps is linear, so $(\alpha \cdot \beta) \in \text{End}(V)$.

To check that we have a ring, let $\alpha, \beta, \gamma \in \text{End}(V)$. As the addition in V is commutative and associative, we have $\alpha(v) + \beta(v) = \beta(v) + \alpha(v)$ and $(\alpha(v) + \beta(v)) + \gamma(v) = \alpha(v) + (\beta(v) + \gamma(v))$, so

$$\alpha + \beta = \beta + \alpha$$
 and $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

Let $O \in \operatorname{End}(V)$ be the linear map that takes each element in V to $0 \in V$. Clearly $\alpha + O = O + \alpha = \alpha$ and also $\operatorname{id} \cdot \alpha = \alpha \cdot \operatorname{id} = \alpha$. Thus O is the additive identity and id is the multiplicative identity. As composition of maps is an associative operation by definition, we have that \cdot is associative. Let $-\alpha$ be the linear map that takes v to $-\alpha(v)$. Then $[\alpha + (-\alpha)](v) = \alpha(v) + (-\alpha(v)) = 0$ and thus $\alpha + (-\alpha) = O$. This shows that every element in $\operatorname{End}(V)$ has an additive inverse. It now only remains to show that the distributive laws hold. But as α is a linear map, we have

$$[\alpha(\beta+\gamma)](v) = \alpha(\beta(v)+\gamma(v)) = \alpha(\beta(v)) + \alpha(\gamma(v)) = [\alpha\beta+\alpha\gamma](v)$$

and

$$[(\beta + \gamma)\alpha](v) = [\beta + \gamma](\alpha(v)) = \beta(\alpha(v)) + \gamma(\alpha(v)) = [\beta\alpha + \gamma\alpha](v).$$

This shows that $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ and $(\beta + \gamma)\alpha = \beta\alpha + \beta\gamma$.

(2) To write down a map from $M_n(\mathbb{k})$ to End (V), choose a basis (v_1, \ldots, v_n) of V and consider the invertible linear map

$$\alpha \colon \mathbb{k}^n \to V : \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \mapsto a_1 v_1 + \dots + a_n v_n.$$

This map is the bridge between $n \times n$ matrices with entries in \Bbbk and linear maps $V \to V$: on one hand, left multiplication by a square matrix $A \in M_n(\Bbbk)$ defines a linear map $A \colon \Bbbk^n \to \Bbbk^n$; and on the other hand, the composition

$$a_1v_1 + \dots + a_nv_n \xrightarrow{\alpha^{-1}} \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \stackrel{\text{left mult by } A}{\longrightarrow} \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} \xrightarrow{\alpha} b_1v_1 + \dots + b_nv_n,$$

defines the linear map $f_A \colon V \to V$ given by $f_A(v) = \alpha A \alpha^{-1}(v)$. We claim that the map

$$\phi \colon M_n(\Bbbk) \longrightarrow \operatorname{End}(V) : A \mapsto f_A$$

is a ring isomorphism. To prove the claim, notice that

$$\phi(A+B) = \alpha(A+B)\alpha^{-1} = \alpha A\alpha^{-1} + \alpha B\alpha^{-1} = f_A + f_B = \phi(A) + \phi(B)$$

and

$$\phi(AB) = \alpha AB\alpha^{-1} = (\alpha A\alpha^{-1})(\alpha B\alpha^{-1}) = f_A \circ f_B = \phi(A)\phi(B),$$

so ϕ is a ring homomorphism. Finally, it's bijective as a map of sets with inverse given by the matrix $\phi^{-1}(f)$ corresponding to the map $\alpha^{-1}f\alpha \colon \mathbb{k}^n \to \mathbb{k}^n$. Explicitly, $\phi^{-1}(f)$ is the $n \times n$ matrix whose *i*th column is $(\alpha^{-1}f\alpha)(e_i)$, where e_i denotes the basis vector of \mathbb{k}^n with 1 in the *i*th entry and 0 elsewhere. It follows from Question 2 above that ϕ is an isomorphism.

5. (1) First compute $\phi^2(u) = \phi(v) = -u$ and $\phi^2(v) = \phi(-u) = -\phi(u) = -v$. Hence $\phi^2 = -id$. To verify that F is a subring of End (V), consider $a \, id + b\phi$, $c \, id + d\phi \in F$ and notice that

$$(a \operatorname{id} + b\phi) - (c \operatorname{id} + d\phi) = (a - c) \operatorname{id} + (b - d)\phi$$

lies in F, as does

$$(a \operatorname{id} + b\phi)(c \operatorname{id} + d\phi) = ac \operatorname{id} + bd\phi^2 + (ac + bd)\phi = (ac - bd)\operatorname{id} + (ac + bd)\phi.$$

This shows that F is a subring of End (V).

(2) Suppose first that $a^2 + 1 = 0$ for some $a \in \mathbb{k}$. Then $(a \operatorname{id} + \phi) \cdot (a \operatorname{id} - \phi) = (a^2 + 1) \operatorname{id} = 0$, whereas neither of the factors $a \operatorname{id} + \phi$ nor $a \operatorname{id} - \phi$ is zero. This can't happen in a field (why?). Conversely suppose that there is no $a \in \mathbb{k}$ such that $a^2 + 1 = 0$. Take any non-zero element $a \operatorname{id} + b\phi$ in F, i.e., at least one of a, b is nonzero. If $a^2 + b^2 \neq 0$ then

$$(a \operatorname{id} + b\phi)\left(\frac{a}{a^2 + b^2}\operatorname{id} - \frac{b}{a^2 + b^2}\phi\right) = \frac{a^2 + b^2}{a^2 + b^2}\operatorname{id} = \operatorname{id},$$

so $a \operatorname{id} + b\phi$ has a multiplicative inverse. It therefore remains to show that $a^2 + b^2 \neq 0$. We know that one of a and b is non-zero, say $b \neq 0$. Then

$$a^2+b^2=b^2\left((\frac{a}{b})^2+1\right)$$

and if this was zero then dividing by b^2 would give $(\frac{a}{b})^2 + 1 = 0$, thereby contradicting our assumption that $x^2 + 1$ has no root in k.

(3) Notice that $F = \mathbb{R}id + \mathbb{R}\phi \cong \mathbb{R} + \mathbb{R}i \cong \mathbb{C}$.