Exercises 3

Please submit solutions by 3pm on Thursday 1st March to the pigeonholes in 4W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Let R, S and T be rings and let $\phi: R \rightarrow S$ and $\psi: S \rightarrow T$ be ring homomorphisms. Show that the composition $\psi \circ \phi: R \rightarrow T$ is a ring homomorphism.
2. (W) Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that ϕ is a ring isomorphism if and only if ϕ is bijective as a map of sets. [Hint: one direction is immediate.]
3. (H) This exercises illustrates that isomorphic rings share the same ring-theoretic properties, i.e., as rings they are indistinguishable. Let R, S be rings and let $\phi: R \rightarrow S$ be an isomorphism. Show that
(1) R is a ring with 1 if and only if S is a ring with 1 ;
(2) R is a commutative ring if and only if S is a commutative ring;
(3) R is an integral domain if and only if S is an integral domain.
4. (H) Let V be a finite dimensional vector space over a field \mathbb{k}. An endomorphism on V is a linear map $\alpha: V \rightarrow V$, and let $\operatorname{End}(V)$ denote the set of all endomorphisms on V. For $\alpha, \beta \in \operatorname{End}(V)$, define maps $(\alpha+\beta): V \rightarrow V$ and $(\alpha \cdot \beta): V \rightarrow V$ as follows: for $v \in V$, define

$$
(\alpha+\beta)(v):=\alpha(v)+\beta(v) \in V \quad \text { and } \quad(\alpha \cdot \beta)(v):=\alpha(\beta(v)) \in V .
$$

(1) Show that both $(\alpha+\beta)$ and $(\alpha \cdot \beta)$ are endomorphisms of V (i.e., show that both are linear maps), and prove that these two operations make (End $(V),+, \cdot)$ into a ring with 1.
(2) Let n denote the dimension of V as a \mathbb{k}-vector space. Show that $\operatorname{End}(V)$ is isomorphic to the ring $M_{n}(\mathbb{k})$ of $n \times n$ matrices with entries in \mathbb{k}.
5. (A) Let V be a two dimensional vector space over a field \mathbb{k} with basis (u, v). Let $\phi \in \operatorname{End}(V)$ be the linear map satisfying $\phi(u)=v$ and $\phi(v)=-u$.
(1) Show that the subset $F=\{a \mathrm{id}+b \phi \mid a, b \in \mathbb{k}\}$ is a subring of $\operatorname{End}(V)$. [Hint: first compute $\phi^{2}(u)$ and $\phi^{2}(v)$.]
(2) Show that F is a field if and only if $x^{2}+1$ has no root in \mathbb{k}.
(3) In the case when $\mathbb{k}=\mathbb{R}$, the field F is an old friend. Which one?

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Solutions 3

1. As both ϕ and ψ are homomorphisms, we have

$$
\psi(\phi(a+b))=\psi(\phi(a)+\phi(b))=\psi(\phi(a))+\psi(\phi(b))
$$

and

$$
\psi(\phi(a b))=\psi(\phi(a) \phi(b))=\psi(\phi(a)) \psi(\phi(b))
$$

Hence $\psi \circ \phi$ is a homomorphism.
2. If ϕ is a ring isomorphism, then we saw in class (see Remark 2.11(1)) that ϕ is bijective as a map of sets. For the converse, suppose that ϕ is bijective as a map of sets. Let $u, v \in S$. As ϕ is bijective there exist $a, b \in R$ such that $\phi(a)=u$ and $\phi(b)=v$ and thus $\phi^{-1}(u)=a$ and $\phi^{-1}(v)=b$. It follows that

$$
\phi^{-1}(u+v)=\phi^{-1}(\phi(a)+\phi(b))=\phi^{-1}(\phi(a+b))=a+b=\phi^{-1}(u)+\phi^{-1}(v)
$$

and

$$
\phi^{-1}(u v)=\phi^{-1}(\phi(a) \phi(b))=\phi^{-1}(\phi(a b))=a b=\phi^{-1}(u) \phi^{-1}(v)
$$

This shows that ϕ^{-1} is an isomorphism.
3. (1) Let R be a ring with 1 . We claim that the element $\phi(1) \in S$ is the multiplicative identity in S, making S into a ring with 1 . For this, let $s \in S$. Then for $r=\phi^{-1}(s) \in R$, we have that

$$
s \cdot \phi(1)=\phi\left(\phi^{-1}(s)\right) \cdot \phi(1)=\phi(r) \cdot \phi(1)=\phi(r \cdot 1)=\phi(r)=s
$$

and similarly,

$$
\phi(1) \cdot s=\phi(1) \cdot \phi\left(\phi^{-1}(s)\right)=\phi(1) \cdot \phi(r)=\phi(1 \cdot r)=\phi(r)=s
$$

This shows that $\phi(1)$ is the multiplicative identity in S, so S is a ring with 1.
To prove the other direction, rather than rewrite all of the above in the other direction, notice that since $\phi^{-1}: S \rightarrow R$ is a ring isomorphism, the above argument applied to ϕ^{-1} shows that if S is a ring with 1 then $\phi^{-1}(1)$ makes R into a ring with 1.
(2) Let R be commutative, and let $s, s^{\prime} \in S$. Then for $r=\phi^{-1}(s)$ and $r^{\prime}=\phi^{-1}\left(s^{\prime}\right)$, we have

$$
s \cdot s^{\prime}=\phi(r) \cdot \phi\left(r^{\prime}\right)=\phi\left(r \cdot r^{\prime}\right)=\phi\left(r^{\prime} \cdot r\right)=\phi\left(r^{\prime}\right) \cdot \phi(r)=s^{\prime} \cdot s
$$

so S is commutative. As in part (1), if we assume that S is commutative, then the argument we've just given applied to the isomorphism $\phi^{-1}: S \rightarrow R$ shows that R is commutative.
(3) Let R be an integral domain. By parts (1) and (2), we know that S is a commutative ring with 1. We claim that $0_{S} \neq 1_{S}$ in S. Indeed, suppose for a contradiction that $0_{S}=1_{S}$. Then $\phi^{-1}\left(0_{S}\right)=$ $\phi^{-1}\left(1_{S}\right)$ in R, but this is a contradiction because $\phi^{-1}\left(0_{S}\right)$ is the zero element in R (by applying Lemma $2.4(3)$ to the ring homomorphism ϕ^{-1}) and $\phi^{-1}\left(1_{S}\right)$ is the multiplicative identity 1_{R} in R by applying part (1) above to ϕ^{-1}; and of course we know $0_{R} \neq 1_{R}$ as R is an integral domain.
Finally, let $s, t \in S$ satisfy $s t=0$. Then by applying Lemma 2.4(3) again, we know that

$$
0_{R}=\phi^{-1}\left(0_{S}\right)=\phi^{-1}(s t)=\phi^{-1}(s) \cdot \phi^{-1}(t)
$$

Since R is an integral domain, we deduce that $\phi^{-1}(s)=0$ or $\phi^{-1}(t)=0$. Now apply ϕ to each equation (and use Lemma 2.4(3) again) to see that either $s=\phi\left(\phi^{-1}(s)\right)=0$ or $t=\phi\left(\phi^{-1}(t)\right)=0$ as required, so S is indeed an integral domain.
4. (1) The map $\alpha+\beta$ is linear, because for $v, w \in V$ and $\lambda \in \mathbb{k}$ we have

$$
\begin{aligned}
(\alpha+\beta)(\lambda v+w) & =\alpha(\lambda v+w)+\beta(\lambda v+w) \\
& =\lambda \alpha(v)+\alpha(w)+\lambda \beta(v)+\beta(w) \\
& =\lambda(\alpha(v)+\beta(v))+(\alpha(w)+\beta(w)) \\
& =\lambda(\alpha+\beta)(v)+(\alpha+\beta)(w) .
\end{aligned}
$$

by definition
as α, β are linear

This means that $(\alpha+\beta) \in \operatorname{End}(V)$. Also, the composition of two linear maps is linear, so $(\alpha \cdot \beta) \in$ End (V).
To check that we have a ring, let $\alpha, \beta, \gamma \in \operatorname{End}(V)$. As the addition in V is commutative and associative, we have $\alpha(v)+\beta(v)=\beta(v)+\alpha(v)$ and $(\alpha(v)+\beta(v))+\gamma(v)=\alpha(v)+(\beta(v)+\gamma(v))$, so

$$
\alpha+\beta=\beta+\alpha \text { and }(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) .
$$

Let $O \in \operatorname{End}(V)$ be the linear map that takes each element in V to $0 \in V$. Clearly $\alpha+O=O+\alpha=\alpha$ and also id $\cdot \alpha=\alpha \cdot \mathrm{id}=\alpha$. Thus O is the additive identity and id is the multiplicative identity. As composition of maps is an associative operation by definition, we have that \cdot is associative. Let $-\alpha$ be the linear map that takes v to $-\alpha(v)$. Then $[\alpha+(-\alpha)](v)=\alpha(v)+(-\alpha(v))=0$ and thus $\alpha+(-\alpha)=O$. This shows that every element in $\operatorname{End}(V)$ has an additive inverse. It now only remains to show that the distributive laws hold. But as α is a linear map, we have

$$
[\alpha(\beta+\gamma)](v)=\alpha(\beta(v)+\gamma(v))=\alpha(\beta(v))+\alpha(\gamma(v))=[\alpha \beta+\alpha \gamma](v)
$$

and

$$
[(\beta+\gamma) \alpha](v)=[\beta+\gamma](\alpha(v))=\beta(\alpha(v))+\gamma(\alpha(v))=[\beta \alpha+\gamma \alpha](v)
$$

This shows that $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$ and $(\beta+\gamma) \alpha=\beta \alpha+\beta \gamma$.
(2) To write down a map from $M_{n}(\mathbb{k})$ to End (V), choose a basis $\left(v_{1}, \ldots, v_{n}\right)$ of V and consider the invertible linear map

$$
\alpha: \mathbb{k}^{n} \rightarrow V:\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \mapsto a_{1} v_{1}+\cdots+a_{n} v_{n} .
$$

This map is the bridge between $n \times n$ matrices with entries in \mathbb{k} and linear maps $V \rightarrow V$: on one hand, left multiplication by a square matrix $A \in M_{n}(\mathbb{k})$ defines a linear map $A: \mathbb{k}^{n} \rightarrow \mathbb{k}^{n}$; and on the other hand, the composition

$$
a_{1} v_{1}+\cdots+a_{n} v_{n} \xrightarrow{\alpha^{-1}}\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right) \xrightarrow{\text { left mult by } A}\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right) \xrightarrow{\alpha} b_{1} v_{1}+\cdots+b_{n} v_{n},
$$

defines the linear map $f_{A}: V \rightarrow V$ given by $f_{A}(v)=\alpha A \alpha^{-1}(v)$. We claim that the map

$$
\phi: M_{n}(\mathbb{k}) \longrightarrow \operatorname{End}(V): A \mapsto f_{A}
$$

is a ring isomorphism. To prove the claim, notice that

$$
\phi(A+B)=\alpha(A+B) \alpha^{-1}=\alpha A \alpha^{-1}+\alpha B \alpha^{-1}=f_{A}+f_{B}=\phi(A)+\phi(B)
$$

and

$$
\phi(A B)=\alpha A B \alpha^{-1}=\left(\alpha A \alpha^{-1}\right)\left(\alpha B \alpha^{-1}\right)=f_{A} \circ f_{B}=\phi(A) \phi(B),
$$

so ϕ is a ring homomorphism. Finally, it's bijective as a map of sets with inverse given by the matrix $\phi^{-1}(f)$ corresponding to the map $\alpha^{-1} f \alpha: \mathbb{K}^{n} \rightarrow \mathbb{k}^{n}$. Explicitly, $\phi^{-1}(f)$ is the $n \times n$ matrix whose i th column is $\left(\alpha^{-1} f \alpha\right)\left(e_{i}\right)$, where e_{i} denotes the basis vector of \mathbb{k}^{n} with 1 in the i th entry and 0 elsewhere. It follows from Question 2 above that ϕ is an isomorphism.
5. (1) First compute $\phi^{2}(u)=\phi(v)=-u$ and $\phi^{2}(v)=\phi(-u)=-\phi(u)=-v$. Hence $\phi^{2}=-\mathrm{id}$. To verify that F is a subring of $\operatorname{End}(V)$, consider $a \mathrm{id}+b \phi, c \mathrm{id}+d \phi \in F$ and notice that

$$
(a \mathrm{id}+b \phi)-(c \mathrm{id}+d \phi)=(a-c) \operatorname{id}+(b-d) \phi
$$

lies in F, as does

$$
(a \mathrm{id}+b \phi)(c \mathrm{id}+d \phi)=a c \mathrm{id}+b d \phi^{2}+(a c+b d) \phi=(a c-b d) \mathrm{id}+(a c+b d) \phi .
$$

This shows that F is a subring of $\operatorname{End}(V)$.
(2) Suppose first that $a^{2}+1=0$ for some $a \in \mathbb{k}$. Then $(a \mathrm{id}+\phi) \cdot(a \mathrm{id}-\phi)=\left(a^{2}+1\right) \mathrm{id}=0$, whereas neither of the factors $a \mathrm{id}+\phi$ nor $a \mathrm{id}-\phi$ is zero. This can't happen in a field (why?). Conversely suppose that there is no $a \in \mathbb{k}$ such that $a^{2}+1=0$. Take any non-zero element $a \operatorname{id}+b \phi$ in F, i.e., at least one of a, b is nonzero. If $a^{2}+b^{2} \neq 0$ then

$$
(a \mathrm{id}+b \phi)\left(\frac{a}{a^{2}+b^{2}} \mathrm{id}-\frac{b}{a^{2}+b^{2}} \phi\right)=\frac{a^{2}+b^{2}}{a^{2}+b^{2}} \mathrm{id}=\mathrm{id},
$$

so a id $+b \phi$ has a multiplicative inverse. It therefore remains to show that $a^{2}+b^{2} \neq 0$. We know that one of a and b is non-zero, say $b \neq 0$. Then

$$
a^{2}+b^{2}=b^{2}\left(\left(\frac{a}{b}\right)^{2}+1\right)
$$

and if this was zero then dividing by b^{2} would give $\left(\frac{a}{b}\right)^{2}+1=0$, thereby contradicting our assumption that $x^{2}+1$ has no root in \mathbb{k}.
(3) Notice that $F=\mathbb{R i d}+\mathbb{R} \phi \cong \mathbb{R}+\mathbb{R} i \cong \mathbb{C}$.

