
Exercises 3

Please submit solutions by 3pm on Thursday 1st March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A)=Additional.

1. (W) Let R,S and T be rings and let φ : R→ S and ψ : S → T be ring homomorphisms. Show that
the composition ψ ◦ φ : R→ T is a ring homomorphism.

2. (W) Let φ : R → S be a ring homomorphism. Show that φ is a ring isomorphism if and only if φ is
bijective as a map of sets. [Hint: one direction is immediate.]

3. (H)This exercises illustrates that isomorphic rings share the same ring-theoretic properties, i.e., as
rings they are indistinguishable. Let R,S be rings and let φ : R→ S be an isomorphism. Show that

(1) R is a ring with 1 if and only if S is a ring with 1;

(2) R is a commutative ring if and only if S is a commutative ring;

(3) R is an integral domain if and only if S is an integral domain.

4. (H) Let V be a finite dimensional vector space over a field k. An endomorphism on V is a linear map
α : V → V , and let End (V ) denote the set of all endomorphisms on V . For α, β ∈ End (V ), define maps
(α+ β) : V → V and (α · β) : V → V as follows: for v ∈ V , define

(α+ β)(v) := α(v) + β(v) ∈ V and (α · β)(v) := α(β(v)) ∈ V.

(1) Show that both (α+ β) and (α · β) are endomorphisms of V (i.e., show that both are linear maps),
and prove that these two operations make (End (V ),+, ·) into a ring with 1.

(2) Let n denote the dimension of V as a k-vector space. Show that End (V ) is isomorphic to the ring
Mn(k) of n× n matrices with entries in k.

5. (A) Let V be a two dimensional vector space over a field k with basis (u, v). Let φ ∈ End(V ) be the
linear map satisfying φ(u) = v and φ(v) = −u.

(1) Show that the subset F = {a id + bφ | a, b ∈ k} is a subring of End(V ). [Hint: first compute φ2(u)
and φ2(v).]

(2) Show that F is a field if and only if x2 + 1 has no root in k.

(3) In the case when k = R, the field F is an old friend. Which one?
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Solutions 3

1. As both φ and ψ are homomorphisms, we have

ψ(φ(a+ b)) = ψ(φ(a) + φ(b)) = ψ(φ(a)) + ψ(φ(b))

and
ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)).

Hence ψ ◦ φ is a homomorphism.

2. If φ is a ring isomorphism, then we saw in class (see Remark 2.11(1)) that φ is bijective as a map of
sets. For the converse, suppose that φ is bijective as a map of sets. Let u, v ∈ S. As φ is bijective there
exist a, b ∈ R such that φ(a) = u and φ(b) = v and thus φ−1(u) = a and φ−1(v) = b. It follows that

φ−1(u+ v) = φ−1(φ(a) + φ(b)) = φ−1(φ(a+ b)) = a+ b = φ−1(u) + φ−1(v)

and
φ−1(uv) = φ−1(φ(a)φ(b)) = φ−1(φ(ab)) = ab = φ−1(u)φ−1(v).

This shows that φ−1 is an isomorphism.

3. (1) Let R be a ring with 1. We claim that the element φ(1) ∈ S is the multiplicative identity in S,
making S into a ring with 1. For this, let s ∈ S. Then for r = φ−1(s) ∈ R, we have that

s · φ(1) = φ(φ−1(s)) · φ(1) = φ(r) · φ(1) = φ(r · 1) = φ(r) = s,

and similarly,
φ(1) · s = φ(1) · φ(φ−1(s)) = φ(1) · φ(r) = φ(1 · r) = φ(r) = s.

This shows that φ(1) is the multiplicative identity in S, so S is a ring with 1.

To prove the other direction, rather than rewrite all of the above in the other direction, notice that
since φ−1 : S → R is a ring isomorphism, the above argument applied to φ−1 shows that if S is a
ring with 1 then φ−1(1) makes R into a ring with 1.

(2) Let R be commutative, and let s, s′ ∈ S. Then for r = φ−1(s) and r′ = φ−1(s′), we have

s · s′ = φ(r) · φ(r′) = φ(r · r′) = φ(r′ · r) = φ(r′) · φ(r) = s′ · s,

so S is commutative. As in part (1), if we assume that S is commutative, then the argument we’ve
just given applied to the isomorphism φ−1 : S → R shows that R is commutative.

(3) Let R be an integral domain. By parts (1) and (2), we know that S is a commutative ring with 1.

We claim that 0S 6= 1S in S. Indeed, suppose for a contradiction that 0S = 1S . Then φ−1(0S) =
φ−1(1S) in R, but this is a contradiction because φ−1(0S) is the zero element in R (by applying
Lemma 2.4(3) to the ring homomorphism φ−1) and φ−1(1S) is the multiplicative identity 1R in R
by applying part (1) above to φ−1; and of course we know 0R 6= 1R as R is an integral domain.

Finally, let s, t ∈ S satisfy st = 0. Then by applying Lemma 2.4(3) again, we know that

0R = φ−1(0S) = φ−1(st) = φ−1(s) · φ−1(t).

Since R is an integral domain, we deduce that φ−1(s) = 0 or φ−1(t) = 0. Now apply φ to each
equation (and use Lemma 2.4(3) again) to see that either s = φ(φ−1(s)) = 0 or t = φ(φ−1(t)) = 0
as required, so S is indeed an integral domain.



4. (1) The map α+ β is linear, because for v, w ∈ V and λ ∈ k we have

(α+ β)(λv + w) = α(λv + w) + β(λv + w) by definition

= λα(v) + α(w) + λβ(v) + β(w) as α, β are linear

= λ
(
α(v) + β(v)

)
+
(
α(w) + β(w)

)
= λ(α+ β)(v) + (α+ β)(w).

This means that (α+ β) ∈ End (V ). Also, the composition of two linear maps is linear, so (α · β) ∈
End (V ).

To check that we have a ring, let α, β, γ ∈ End(V ). As the addition in V is commutative and
associative, we have α(v) + β(v) = β(v) +α(v) and (α(v) + β(v)) + γ(v) = α(v) + (β(v) + γ(v)), so

α+ β = β + α and (α+ β) + γ = α+ (β + γ).

Let O ∈ End(V ) be the linear map that takes each element in V to 0 ∈ V . Clearly α+O = O+α = α
and also id · α = α · id = α. Thus O is the additive identity and id is the multiplicative identity.
As composition of maps is an associative operation by definition, we have that · is associative. Let
−α be the linear map that takes v to −α(v). Then [α + (−α)](v) = α(v) + (−α(v)) = 0 and thus
α + (−α) = O. This shows that every element in End(V ) has an additive inverse. It now only
remains to show that the distributive laws hold. But as α is a linear map, we have

[α(β + γ)](v) = α(β(v) + γ(v)) = α(β(v)) + α(γ(v)) = [αβ + αγ](v)

and
[(β + γ)α](v) = [β + γ](α(v)) = β(α(v)) + γ(α(v)) = [βα+ γα](v).

This shows that α(β + γ) = αβ + αγ and (β + γ)α = βα+ βγ.

(2) To write down a map from Mn(k) to End (V ), choose a basis (v1, . . . , vn) of V and consider the
invertible linear map

α : kn → V :

a1...
an

 7→ a1v1 + · · ·+ anvn.

This map is the bridge between n × n matrices with entries in k and linear maps V → V : on one
hand, left multiplication by a square matrix A ∈ Mn(k) defines a linear map A : kn → kn; and on
the other hand, the composition

a1v1 + · · ·+ anvn
α−1

−→

a1...
an

 left mult by A−→

b1...
bn

 α−→ b1v1 + · · ·+ bnvn,

defines the linear map fA : V → V given by fA(v) = αAα−1(v). We claim that the map

φ : Mn(k) −→ End (V ) : A 7→ fA

is a ring isomorphism. To prove the claim, notice that

φ(A+B) = α(A+B)α−1 = αAα−1 + αBα−1 = fA + fB = φ(A) + φ(B)

and
φ(AB) = αABα−1 = (αAα−1)(αBα−1) = fA ◦ fB = φ(A)φ(B),

so φ is a ring homomorphism. Finally, it’s bijective as a map of sets with inverse given by the
matrix φ−1(f) corresponding to the map α−1fα : kn → kn. Explicitly, φ−1(f) is the n× n matrix
whose ith column is (α−1fα)(ei), where ei denotes the basis vector of kn with 1 in the ith entry
and 0 elsewhere. It follows from Question 2 above that φ is an isomorphism.



5. (1) First compute φ2(u) = φ(v) = −u and φ2(v) = φ(−u) = −φ(u) = −v. Hence φ2 = −id . To
verify that F is a subring of End (V ), consider a id + bφ, c id + dφ ∈ F and notice that

(a id + bφ)− (c id + dφ) = (a− c) id + (b− d)φ

lies in F , as does

(a id + bφ)(c id + dφ) = ac id + bdφ2 + (ac+ bd)φ = (ac− bd) id + (ac+ bd)φ.

This shows that F is a subring of End (V ).

(2) Suppose first that a2 + 1 = 0 for some a ∈ k. Then (a id + φ) · (a id− φ) = (a2 + 1) id = 0, whereas
neither of the factors a id + φ nor a id− φ is zero. This can’t happen in a field (why?). Conversely
suppose that there is no a ∈ k such that a2 + 1 = 0. Take any non-zero element a id + bφ in F , i.e.,
at least one of a, b is nonzero. If a2 + b2 6= 0 then

(a id + bφ)

(
a

a2 + b2
id− b

a2 + b2
φ

)
=
a2 + b2

a2 + b2
id = id,

so a id + bφ has a multiplicative inverse. It therefore remains to show that a2 + b2 6= 0. We know
that one of a and b is non-zero, say b 6= 0. Then

a2 + b2 = b2
(

(
a

b
)2 + 1

)
and if this was zero then dividing by b2 would give (ab )2+1 = 0, thereby contradicting our assumption
that x2 + 1 has no root in k.

(3) Notice that F = Rid + Rφ ∼= R + Ri ∼= C.


