EXERCISES 3

Please submit solutions by 3pm on Thursday 1st March to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A)=Additional.
1. (W) Let R,S and T be rings and let ¢ : R — S and ¢ : S — T be ring homomorphisms. Show that
the composition ¥ o p: R — T is a ring homomorphism.

2. (W) Let ¢: R — S be a ring homomorphism. Show that ¢ is a ring isomorphism if and only if ¢ is
bijective as a map of sets. [Hint: one direction is immediate.]

3. (H) This exercises illustrates that isomorphic rings share the same ring-theoretic properties, i.e., as
rings they are indistinguishable. Let R, S be rings and let ¢: R — S be an isomorphism. Show that

(1) Ris aring with 1 if and only if S is a ring with 1;
(2) R is a commutative ring if and only if S is a commutative ring;
(3) R is an integral domain if and only if S is an integral domain.

4. (H) Let V be a finite dimensional vector space over a field k. An endomorphism on V is a linear map
a: V — V, and let End (V') denote the set of all endomorphisms on V. For «, 5 € End (V'), define maps
(a+pP):V—=Vand (a-8): V—V as follows: for v € V, define

(@+B)(v) :==a(v)+Bv) eV and (a-p)(v) = a(f(v)) € V.

(1) Show that both (a+ ) and (« - 3) are endomorphisms of V' (i.e., show that both are linear maps),
and prove that these two operations make (End (V'),+,-) into a ring with 1.

(2) Let n denote the dimension of V' as a k-vector space. Show that End (V') is isomorphic to the ring
M, (k) of n x n matrices with entries in k.

5. (A) Let V be a two dimensional vector space over a field k with basis (u,v). Let ¢ € End(V') be the
linear map satisfying ¢(u) = v and ¢(v) = —u.

(1) Show that the subset F' = {aid + b¢ | a,b € k} is a subring of End(V). [Hint: first compute ¢?(u)
and ¢%(v).]

(2) Show that F is a field if and only if 2% + 1 has no root in k.

(3) In the case when k = R, the field F' is an old friend. Which one?
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SOLUTIONS 3

1. As both ¢ and v are homomorphisms, we have

Y(d(a+b)) =v(d(a) + ¢(b) = ¥(d(a) + 1 (4(D))
and
Y(d(ab)) =P (d(a)d(b) = ¥(¢(a)) v (d(D)).

Hence v o ¢ is a homomorphism.

2. If ¢ is a ring isomorphism, then we saw in class (see Remark 2.11(1)) that ¢ is bijective as a map of
sets. For the converse, suppose that ¢ is bijective as a map of sets. Let u,v € S. As ¢ is bijective there
exist a,b € R such that ¢(a) = u and ¢(b) = v and thus ¢~!(u) = a and ¢~ (v) = b. It follows that

¢ H(u+tv) =9 (¢(a) +6(b) =9 (pla+b) =a+b=9¢ '(u)+ ¢ ' (v)
and
¢~ H(uv) = ¢~ (B(a)p(b)) = ¢~ (p(ab)) = ab= ¢~ (u)p ™' (v).

This shows that ¢! is an isomorphism.

3. (1) Let R be a ring with 1. We claim that the element ¢(1) € S is the multiplicative identity in S,
making S into a ring with 1. For this, let s € S. Then for r = ¢~!(s) € R, we have that

s-9(1) = (¢~ () - ¢(1) = ¢(r) - (1) = ¢(r - 1) = ¢(r) = s,
and similarly,

$(1) -5 = (1) - 9071 (s) = ¢(1) - ¢(r) = ¢(1 - 1) = $(r) = 5.
This shows that ¢(1) is the multiplicative identity in S, so S is a ring with 1.

To prove the other direction, rather than rewrite all of the above in the other direction, notice that
since ¢~': S — R is a ring isomorphism, the above argument applied to ¢! shows that if S is a
ring with 1 then ¢~1(1) makes R into a ring with 1.

(2) Let R be commutative, and let s,s’ € S. Then for r = ¢~ !(s) and ' = ¢~!(s’), we have

5.8 =(r) ¢(r') = ¢(r-1) = p(r' 1) = $(r') - $(r) = 5 - s,

so S is commutative. As in part (1), if we assume that S is commutative, then the argument we’ve
just given applied to the isomorphism ¢~!: S — R shows that R is commutative.

(3) Let R be an integral domain. By parts (1) and (2), we know that S is a commutative ring with 1.

We claim that Og # 1g in S. Indeed, suppose for a contradiction that 0g = 1g. Then ¢~!(0g) =
#~(1g) in R, but this is a contradiction because ¢~1(0g) is the zero element in R (by applying
Lemma 2.4(3) to the ring homomorphism ¢~') and ¢~'(1g) is the multiplicative identity 1z in R
by applying part (1) above to ¢~!; and of course we know Or # 1 as R is an integral domain.

Finally, let s,t € S satisfy st = 0. Then by applying Lemma 2.4(3) again, we know that

Or = ¢ '(0g) = ¢ (st) = ¢~ (s) - &~ (1).

Since R is an integral domain, we deduce that ¢~1(s) = 0 or (t) = 0. NOW apply ¢ to each
equation (and use Lemma 2.4(3) again) to see that either s = ( Ls))=0ort=g¢(p"t(t)) =0
as required, so S is indeed an integral domain.



4.

(1) The map « + f is linear, because for v,w € V and A € k we have

(a4 B) (A +w) =a(l+w)+ B(Av + w) by definition
= Aa(v) + a(w) + A\B(v) + B(w) as «a, [ are linear
= )\(a(v) + ﬁ(v)) + (a(w) + ﬁ(w))
= Mo+ 5)(v) + (o + §)(w).

This means that (a+ ) € End (V). Also, the composition of two linear maps is linear, so (a - 3) €
End (V).

To check that we have a ring, let «, 3,7 € End(V). As the addition in V is commutative and
associative, we have a(v) + f(v) = B(v) + a(v) and (a(v) 4+ B(v)) +v(v) = a(v) + (B(v) +v(v)), so
atf=pf+a and (a+p)+y=a+(+7)

Let O € End(V) be the linear map that takes each element in V to 0 € V. Clearly a4+0 = O+a = «
and also id - @ = a - id = a. Thus O is the additive identity and id is the multiplicative identity.
As composition of maps is an associative operation by definition, we have that - is associative. Let
—a be the linear map that takes v to —a(v). Then [a + (—a)](v) = a(v) + (—a(v)) = 0 and thus
a + (—a) = O. This shows that every element in End(V') has an additive inverse. It now only
remains to show that the distributive laws hold. But as « is a linear map, we have

[a(B+7)](v) = a(B(v) +7(v) = a(B(v)) + a(v(v)) = [aB + ] (v)
and

[(B+7)a](v) = [B+9](a(v) = Bla(v)) + v(a(v) = [Ba + va](v).
This shows that (8 +v) = af + ay and (8 + v)a = Ba + B7.

To write down a map from M, (k) to End (V), choose a basis (v1,...,v,) of V and consider the
invertible linear map
a1
a: k" =V | e avr + - apoy.
an

This map is the bridge between n X n matrices with entries in k and linear maps V' — V: on one
hand, left multiplication by a square matrix A € M, (k) defines a linear map A: k™ — k"; and on

the other hand, the composition
a by
a~ ! . left mult by A . o
aivy + -+ apty — | — | — bvg + -+ by,

an br,
defines the linear map fa: V — V given by fa(v) = aAa~!(v). We claim that the map
¢: My(k) — End (V) : A fa
is a ring isomorphism. To prove the claim, notice that
p(A+ B)=a(A+ B)a ' =ada" ' +aBa™t = fa+ fg = ¢(A) + ¢(B)

and

$(AB) = aABa"" = (ada"")(aBa™") = fao fp = ¢(A)$(B),
S0 ¢ is a ring homomorphism. Finally, it’s bijective as a map of sets with inverse given by the
matrix ¢~1(f) corresponding to the map o~ ! fa: k™ — k™. Explicitly, ¢~!(f) is the n x n matrix
whose ith column is (a~!fa)(e;), where e; denotes the basis vector of k™ with 1 in the ith entry
and 0 elsewhere. It follows from Question 2 above that ¢ is an isomorphism.



5.

(3)

(1) First compute ¢?(u) = ¢(v) = —u and ¢>(v) = ¢(—u) = —¢(u) = —v. Hence ¢?> = —id. To
verify that F is a subring of End (V'), consider aid + b¢, cid 4+ d¢ € F' and notice that

(aid + b)) — (cid + d¢) = (a — ¢)id + (b — d)¢
lies in F', as does
(aid + bg)(cid + d¢) = acid + bd¢? + (ac + bd)$ = (ac — bd)id + (ac + bd)¢.
This shows that F' is a subring of End (V).

Suppose first that a? + 1 = 0 for some a € k. Then (aid + ¢) - (aid — ¢) = (a® + 1)id = 0, whereas
neither of the factors aid + ¢ nor aid — ¢ is zero. This can’t happen in a field (why?). Conversely
suppose that there is no a € k such that a? 4+ 1 = 0. Take any non-zero element aid + b¢ in F, i.e.,
at least one of a, b is nonzero. If a® + b% # 0 then

) a b a®+ b%, .
(aid + bo) <a2+b2 id — a2+b2¢> = mld:ld,

so aid + b¢ has a multiplicative inverse. It therefore remains to show that a® + b> # 0. We know
that one of a and b is non-zero, say b # 0. Then

a2+ b2 = b’ ((%)2 + 1)

and if this was zero then dividing by b? would give (%)2—1—1 = 0, thereby contradicting our assumption
that 22 + 1 has no root in k.

Notice that FF = Rid + R¢ =2 R + Ri = C.



