
Exercises 2

Please submit solutions by 3pm on Thursday 22nd February to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A)=Additional.

1. (W) Decide whether each of the following is a subring, an ideal, or neither; prove your assertions!

(1) {−1, 0, 1} ⊂ Z;

(2) {a0 + a2x
2 + a4x

4 + · · · | ai ∈ Q} ⊂ Q[[x]];

(3) {a2x2 + a3x
3 + a4x

4 + · · · | ai ∈ Q} ⊂ Q[[x]];

(4) {polynomials of degree ≤ 2} ⊆ Q[x];

(5) {p ∈ Q[x] | p(1) = 0} ⊂ Q[x].

2. (W) Let R be a ring, and let R[x] denote the ring of polynomials with coefficients in R. Show that
if R is an integral domain, then so is R[x].

3. (W) Let ∼ be a congruence relation on a ring R.

(1) Prove that [0], the congruence class of 0, is an ideal in R.

(2) For a, b ∈ R, show that a ∼ b ⇔ a− b ∈ [0].

(3) Show that the congruence classes of ∼ are the cosets of I, i.e., [a] = a + [0] for all a ∈ R.

4. (H) Let R be an integral domain, and let u ∈ R be a unit.

(1) Show that any element in R[[x]] of the form u + a1x + a2x
2 + · · · is a unit in R[[x]].

(2) Find the multiplicative inverse of −1 + 2x ∈ Z[[x]].

5. (H) Let R = Z2[x] be the polynomial ring with coefficients in the field Z2, and consider the ideal
I = R(x2 + x + 1) of R. Show that the quotient ring R/I has four elements [Hint: division algorithm!],
and write down the addition and multiplication table for R/I. Deduce that R/I is a field.

6. (A) Let S be any set and let R = P(S) be the ring from Exercise Sheet 1. Let I be the collection of
all the finite subsets of S. Show that I is an ideal of R.
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Solutions 2

1. (1) The subset {−1, 0, 1} ⊂ Z is not a subring and therefore not an ideal, because 1 + 1 6∈ {−1, 0, 1}.

(2) The subset {a0 + a2x
2 + a4x

4 + · · · | ai ∈ Q} ⊂ Q[[x]] is not an ideal, because it’s not closed under
multiplication by x ∈ Q[[x]]. However, it is a subring: it’s non-empty because it contains 0; and
given any two elements f =

∑
i a2ix

2i, g =
∑

i b2ix
2i in this set, we have that

f − g =
∑
i

(a2i − b2i)x
2i and f · g =

∑
i

( ∑
2j+2k=i

a2jb2k

)
xi ∈ E

The former evidently lies in the set, and the latter must also lie in the set precisely because each
index i satisfying i = 2j + 2k is even.

(3) The subset {a2x2 + a3x
3 + a4x

4 + · · · | ai ∈ Q} ⊂ Q[[x]] is an ideal. In fact, it’s the ideal in Q[[x]]
generated by x2, i.e., it’s the subset of all elements in Q[[x]] of the form f · x2 for some f ∈ Q[[x]].

(4) The subset of polynomials of degree at most 2 is not a subring, because x2 ·x2 does not have degree
at most 2.

(5) The subset {p ∈ Q[x] | p(1) = 0} ⊂ Q[x] is the ideal generated by (x − 1) ∈ Q[x]. Indeed, the
division algorithm tells us that 1 is a root of a polynomial if and only if (x− 1) is a factor.

2. You could prove this directly, but it’s simpler to use the exercise from Sheet 1 which shows that R[[x]]
is an integral domain when R is. The result follows from Lemma 1.20 in the notes, because in this case
the multiplicative identity of R[[x]] is the power series 1 + 0x + 0x2 + · · · which clearly lies in R[x].

3. (1) We first establish the given properties. Let a, b ∈ [0], that is, a ∼ 0 and b ∼ 0. Since ∼ is a
congruence, we have

−b = −b + 0 ∼ −b + b = 0.

Since ∼ is a congruence it follows that a− b = a + (−b) ∼ 0 + 0 = 0, so a− b ∈ [0]. For r ∈ R and
a ∈ [0], we have r · a ∼ r · 0 = 0 and a · r ∼ 0 · r = 0, so ra, ar ∈ [0] as required.

(2) Suppose that a, b ∈ R satisfy a ∼ b. Since ∼ is a congruence, we have

a− b = a + (−b) ∼ b + (−b) = 0,

and thus a− b ∈ [0]. Conversely if a− b ∈ [0] then a− b = a + (−b) ∼ 0 and hence

a = a + (−b + b) ∼ (a− b) + b ∼ 0 + b = b

which shows that a ∼ b.

(3) For a, b ∈ R, we have b ∈ [a] if and only if b ∼ a if and only if b− a ∈ [0] if and only if b ∈ a + [0].
Hence [a] = a + [0].

4. (1) Let p = u + a1x + a2x
2 + · · · ∈ R[[x]]. The goal is to find q = b0 + b1x + b2x

2 + · · · ∈ R[[x]] such
that

1 + 0x + 0x2 + 0x3 + · · · = p · q
= (u + a1x + a2x

2 + · · · ) · (b0 + b1x + b2x
2 + b3x

3 + · · · )

=
∑
i

(
ubi + a1bi−1 + a2bi−2 + · · ·+ aib0

)
xi.



This is a system of simultaneous equations

1 = ub0

0 = ub1 + a1b0

0 = ub2 + a1b1 + a2b0
...

0 = ubi + a1bi−1 + a2bi−2 + · · ·+ aib0
...

which has a solution: b0 = u−1, b1 = u−1(−a1b0), and in general once we have solved for
b0, b1, . . . , bi−1 we can define

bi = u−1 ·
(
− a1bi−1 − a2bi−2 − · · · − aib0

)
.

(2) In Z[[x]], the inverse q = b0 + b1x + b2x
2 + · · · ∈ Z[[x]] satisfies b0 = −1, b1 = −2, · · · , , bi = −2i, so

the inverse of −1 + 2x is
−1 + (−2)x + (−4)x2 + (−8)x3 + · · ·

5. Let f be an arbitrary polynomial in Z2[x] using division by x2 + x + 1 with remainder, we get

f = (x2 + x + 1)g + a1x + a0 with a0, a1 ∈ Z2.

It follows that f + I = a1x + a0 + I; equivalently, we have

[f ] = [a1x + a0].

This means that there are exactly 4 elements in R/I depending on the possible values of a0, a1 ∈ Z2,
namely [0], [1], [x] and [1 + x]. Before writing up the addition and multiplication tables, notice that.

[x]2 = [−x− 1] = [x + 1]

[x] · [x + 1] = [x2 + x] = [x + 1 + x] = [1]

[x + 1]2 = [x2 + 2x + 1] = [x + 1 + 1] = [x].

Thus the addition and multiplication tables are

+ [0] [1] [x] [1 + x]

[0] [0] [1] [x] [1 + x]
[1] [1] [0] [1 + x] [x]
[x] [x] [1 + x] [0] [1]

[1 + x] [1 + x] [x] [1] [0]

and

· [0] [1] [x] [1 + x]

[0] [0] [0] [0] [0]
[1] [0] [1] [x] [1 + x]
[x] [0] [x] [1 + x] [1]

[1 + x] [0] [1 + x] [1] [x]

From the multiplication table we see that R/I is a field because every nonzero element is a unit.

6. Firstly I is non-empty as ∅ ∈ I (!!). We then need to check the closure properties. Let A,B ∈ I and
let X be any subset of S. Then A + B = A ∩B ∪B ∩ A ⊆ A ∪B is a finite subset of S and thus lies in
I. Also A ·X = X · A = A ∩X ⊆ A is finite and thus A ·X ∈ I. Hence all the closure properties hold
and I is an ideal of R.


