Please submit solutions by 3pm on Thursday 22nd February to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A)=Additional.

- 1. (W) Decide whether each of the following is a subring, an ideal, or neither; prove your assertions!
 - (1) $\{-1, 0, 1\} \subset \mathbb{Z};$
 - (2) $\{a_0 + a_2 x^2 + a_4 x^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[[x]];$
 - (3) $\{a_2x^2 + a_3x^3 + a_4x^4 + \dots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[[x]];$
 - (4) {polynomials of degree ≤ 2 } $\subseteq \mathbb{Q}[x]$;
 - (5) $\{p \in \mathbb{Q}[x] \mid p(1) = 0\} \subset \mathbb{Q}[x].$

2. (W) Let R be a ring, and let R[x] denote the ring of polynomials with coefficients in R. Show that if R is an integral domain, then so is R[x].

3. (W) Let \sim be a congruence relation on a ring *R*.

- (1) Prove that [0], the congruence class of 0, is an ideal in R.
- (2) For $a, b \in R$, show that $a \sim b \Leftrightarrow a b \in [0]$.
- (3) Show that the congruence classes of ~ are the cosets of I, i.e., [a] = a + [0] for all $a \in R$.

4. (H) Let R be an integral domain, and let $u \in R$ be a unit.

- (1) Show that any element in R[[x]] of the form $u + a_1x + a_2x^2 + \cdots$ is a unit in R[[x]].
- (2) Find the multiplicative inverse of $-1 + 2x \in \mathbb{Z}[[x]]$.

5. (H) Let $R = \mathbb{Z}_2[x]$ be the polynomial ring with coefficients in the field \mathbb{Z}_2 , and consider the ideal $I = R(x^2 + x + 1)$ of R. Show that the quotient ring R/I has four elements [Hint: division algorithm!], and write down the addition and multiplication table for R/I. Deduce that R/I is a field.

6. (A) Let S be any set and let $R = \mathcal{P}(S)$ be the ring from Exercise Sheet 1. Let I be the collection of all the finite subsets of S. Show that I is an ideal of R.

The course website is: http://people.bath.ac.uk/ac886/teaching/algebra2B/

Algebra 2B, 2018

Solutions 2

- 1. (1) The subset $\{-1, 0, 1\} \subset \mathbb{Z}$ is not a subring and therefore not an ideal, because $1+1 \notin \{-1, 0, 1\}$.
 - (2) The subset $\{a_0 + a_2x^2 + a_4x^4 + \cdots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[[x]]$ is not an ideal, because it's not closed under multiplication by $x \in \mathbb{Q}[[x]]$. However, it is a subring: it's non-empty because it contains 0; and given any two elements $f = \sum_i a_{2i}x^{2i}$, $g = \sum_i b_{2i}x^{2i}$ in this set, we have that

$$f - g = \sum_{i} (a_{2i} - b_{2i}) x^{2i}$$
 and $f \cdot g = \sum_{i} \Big(\sum_{2j+2k=i} a_{2j} b_{2k} \Big) x^i \in E$

The former evidently lies in the set, and the latter must also lie in the set precisely because each index i satisfying i = 2j + 2k is even.

- (3) The subset $\{a_2x^2 + a_3x^3 + a_4x^4 + \cdots \mid a_i \in \mathbb{Q}\} \subset \mathbb{Q}[[x]]$ is an ideal. In fact, it's the ideal in $\mathbb{Q}[[x]]$ generated by x^2 , i.e., it's the subset of all elements in $\mathbb{Q}[[x]]$ of the form $f \cdot x^2$ for some $f \in \mathbb{Q}[[x]]$.
- (4) The subset of polynomials of degree at most 2 is not a subring, because $x^2 \cdot x^2$ does not have degree at most 2.
- (5) The subset $\{p \in \mathbb{Q}[x] \mid p(1) = 0\} \subset \mathbb{Q}[x]$ is the ideal generated by $(x 1) \in \mathbb{Q}[x]$. Indeed, the division algorithm tells us that 1 is a root of a polynomial if and only if (x 1) is a factor.

2. You could prove this directly, but it's simpler to use the exercise from Sheet 1 which shows that R[[x]] is an integral domain when R is. The result follows from Lemma 1.20 in the notes, because in this case the multiplicative identity of R[[x]] is the power series $1 + 0x + 0x^2 + \cdots$ which clearly lies in R[x].

3. (1) We first establish the given properties. Let $a, b \in [0]$, that is, $a \sim 0$ and $b \sim 0$. Since \sim is a congruence, we have

$$-b = -b + 0 \sim -b + b = 0$$

Since \sim is a congruence it follows that $a - b = a + (-b) \sim 0 + 0 = 0$, so $a - b \in [0]$. For $r \in R$ and $a \in [0]$, we have $r \cdot a \sim r \cdot 0 = 0$ and $a \cdot r \sim 0 \cdot r = 0$, so $ra, ar \in [0]$ as required.

(2) Suppose that $a, b \in R$ satisfy $a \sim b$. Since \sim is a congruence, we have

$$a - b = a + (-b) \sim b + (-b) = 0,$$

and thus $a - b \in [0]$. Conversely if $a - b \in [0]$ then $a - b = a + (-b) \sim 0$ and hence

 $a = a + (-b + b) \sim (a - b) + b \sim 0 + b = b$

which shows that $a \sim b$.

- (3) For $a, b \in R$, we have $b \in [a]$ if and only if $b \sim a$ if and only if $b a \in [0]$ if and only if $b \in a + [0]$. Hence [a] = a + [0].
- 4. (1) Let $p = u + a_1 x + a_2 x^2 + \dots \in R[[x]]$. The goal is to find $q = b_0 + b_1 x + b_2 x^2 + \dots \in R[[x]]$ such that

$$1 + 0x + 0x^{2} + 0x^{3} + \dots = p \cdot q$$

= $(u + a_{1}x + a_{2}x^{2} + \dots) \cdot (b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} + \dots)$
= $\sum_{i} (ub_{i} + a_{1}b_{i-1} + a_{2}b_{i-2} + \dots + a_{i}b_{0})x^{i}.$

This is a system of simultaneous equations

$$1 = ub_{0}$$

$$0 = ub_{1} + a_{1}b_{0}$$

$$0 = ub_{2} + a_{1}b_{1} + a_{2}b_{0}$$

$$\vdots$$

$$0 = ub_{i} + a_{1}b_{i-1} + a_{2}b_{i-2} + \dots + a_{i}b_{0}$$

$$\vdots$$

which has a solution: $b_0 = u^{-1}$, $b_1 = u^{-1}(-a_1b_0)$, and in general once we have solved for $b_0, b_1, \ldots, b_{i-1}$ we can define

$$b_i = u^{-1} \cdot (-a_1 b_{i-1} - a_2 b_{i-2} - \dots - a_i b_0).$$

(2) In $\mathbb{Z}[[x]]$, the inverse $q = b_0 + b_1 x + b_2 x^2 + \dots \in \mathbb{Z}[[x]]$ satisfies $b_0 = -1, b_1 = -2, \dots, b_i = -2^i$, so the inverse of -1 + 2x is $-1 + (-2)x + (-4)x^2 + (-8)x^3 + \dots$

5. Let f be an arbitrary polynomial in
$$\mathbb{Z}_2[x]$$
 using division by $x^2 + x + 1$ with remainder, we get

 $f = (x^2 + x + 1)g + a_1x + a_0$ with $a_0, a_1 \in \mathbb{Z}_2$.

It follows that $f + I = a_1 x + a_0 + I$; equivalently, we have

$$[f] = [a_1x + a_0].$$

This means that there are exactly 4 elements in R/I depending on the possible values of $a_0, a_1 \in \mathbb{Z}_2$, namely [0], [1], [x] and [1 + x]. Before writing up the addition and multiplication tables, notice that.

$$[x]^2 = [-x-1] = [x+1]$$

[x] \cdot [x+1] = [x^2+x] = [x+1+x] = [1]
[x+1]^2 = [x^2+2x+1] = [x+1+1] = [x].

Thus the addition and multiplication tables are

+	[0]	[1]	[x]	[1+x]		•	[0]	[1]	[x]	[1+x]
[0]	[0]	[1]	[x]	[1+x]		[0]	[0]	[0]	[0]	[0]
[1]	[1]	[0]	[1+x]	[x]	and	[1]	[0]	[1]	[x]	[1+x]
[x]	[x]	[1+x]	[0]	[1]		[x]	[0]	[x]	[1+x]	[1]
[1+x]	[1+x]	[x]	[1]	[0]		[1+x]	[0]	[1+x]	[1]	[x]

From the multiplication table we see that R/I is a field because every nonzero element is a unit.

6. Firstly *I* is non-empty as $\emptyset \in I$ (!!). We then need to check the closure properties. Let $A, B \in I$ and let *X* be any subset of *S*. Then $A + B = A \cap \overline{B} \cup B \cap \overline{A} \subseteq A \cup B$ is a finite subset of *S* and thus lies in *I*. Also $A \cdot X = X \cdot A = A \cap X \subseteq A$ is finite and thus $A \cdot X \in I$. Hence all the closure properties hold and *I* is an ideal of *R*.