
Exercises 10

Please submit solutions by 3pm on Thursday 3rd May to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Let α, β : V → V be linear operators on an n-dimensional space V such that αβ = βα. Show
that both Ker β and Imβ are α-invariant.

2. (W) Write sketch proofs of Proposition 5.24 and Corollary 5.27.

3. (W) Let A ∈ Mn(R) be a matrix whose minimal polynomial is of the form (t− λ)k for some integer
k ≥ 1, and let N = A− λI. Show that

A` =

k−1∑
i=0

(
`

i

)
λ`−iN i,

for ` > 0, and compute A` for ` > 0 for the matrix

A =

 3 −2 0
2 −1 1
0 0 1

 .

4. (H) Let α : V → V be a linear operator satisfying α2 = α. Show that α is diagonalisable and that
V = Ker(α) ⊕ Im(α). [Hint: the assumption on α gives you an element in Ker(Φα) such that there are
only three options for mα; investigate each one.]

5. (H) Let α : C3 → C3 be the linear map given by left multiplication by the matrix

A :=

 5 −8 8
−1 8 −5
−5 10 −9

 .

Determine for α the characteristic polynomial, the minimal polynomial, the Jordan Normal Form J , the
algebraic and the geometric multiplicities, the generalised eigenspaces, a basis for C3 such that the matrix
for α with respect to this basis is J and, finally, a change of basis matrix P such that J = P−1AP .

6. (A) Let α and β be diagonalisable linear operators on an n-dimensional space V . Assume in addition
that αβ = βα.

(1) Let λ be an eigenvector of β. Show that Eβ(λ) is α-invariant. [Hint: consider a slight variant of
Exercise 10.1 above using β − λid.]

(2) Show that one can find a basis v1, . . . , vn for V such that each vi is an eigenvector of both α and β; in
this case we say that α and β are simultaneously diagonalisable. [Hint: consider the decomposition
V = Eβ(µ1)⊕ Eβ(µ2)⊕ · · · ⊕ Eβ(µs) that results from diagonalisability of β.]
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Solutions 10

1. If w ∈ Kerβ then
β(α(w)) = α(β(w)) = α(0) = 0.

hence α(w) ∈ Kerβ. This shows that Kerβ is α-invariant. To see that Imβ is α-invariant, notice that if
v = β(u) then α(v) = α(β(u)) = β(α(u)) ∈ Imβ.

2. No solution given.

3. (1) Using the binomial formula, we have

An = (λI +N)n =
n∑
i=0

=

(
n

i

)
λn−iI ·N i =

k−1∑
i=0

(
n

i

)
λn−iN i,

where in the last equation we have used the fact that Nk = 0.

(2) We have

∆A(t) =

∣∣∣∣∣∣
3− t −2 0

2 −1− t 1
0 0 1− t

∣∣∣∣∣∣ = [(t− 3)(t+ 1) + 4] · (1− t) = (t2 − 2t+ 1)(1− t) = −(t− 1)3.

As

(A− I)2 =

 2 −2 0
2 −2 1
0 0 0

 ·
 2 −2 0

2 −2 1
0 0 0

 =

 0 0 −2
0 0 −2
0 0 0


is not zero, we have mA(t) = (t− 1)3.

Let N = A− I. We have N3 = 0 and therefore

An = (I +N)n = I + nN +

(
n

2

)
N2 =

 1 + 2n −2n −2
(
n
2

)
2n 1− 2n n− 2

(
n
2

)
0 0 1

 .

4. Notice that t2 − t ∈ Ker(Φα), so the minimal polynomial of α is t, t − 1 or t2 − t = (t − 1)t. In
each case, the minimal polynomial is a product of distinct linear polynomials, so α is diagonalisable by
Corollary 5.27. There are three cases:

• If mα = t then α = 0 and V = Ker(α) wheras Im(α) = {0}. Thus V = V ⊕ {0} = Ker(α)⊕ Im(α).

• If mα = t−1 then α = id and Ker(α) = {0} whereas Im(α) = V , so V = {0}⊕V = Ker(α)⊕Im(α).

• Otherwise mα = t(t− 1). Let p1 = t and p2 = t− 1. Proposition 5.24 and its proof gives that

V = Ker(p1(α))⊕Ker(p2(α)) = Ker(p1(α))⊕ Im(p1(α)) = Ker(α)⊕ Im(α).

5. (1) The characteristic polynomial of A is χA(t) = (1 − t)2(2 − t). The minimal polynomial divides
∆A(t) and has the same roots, so mA(t) = (t− 1)s(t− 2) where 1 ≤ s ≤ 2. Notice first that

(A− I3)(A− 2I3) =

 −20 0 −16
15 0 12
25 0 20

 6= 0.

Thus the minimal polynomial is mA(t) = (t− 1)2(t− 2).



(2) As the multiplicity of t− 1 in mA(t) is two we must have a Jordan block of size two, i.e., a J(1, 2);
and as the multiplicity of t− 2 in mA(t) is only one we must have that the largest dimension of a
Jordan block with respect to the eigenalue 2 is one. Since A is a 3 × 3 matrix, there is only one
possible Jordan normal form, namely J(1, 2)⊕ J(2, 1) (or you can swap the order of these).

(3) The characteristic polynomial shows that the algebraic multiplicity of 1 equals two and 2 equals
one. There is one Jordan block for both eigenvalues, hence gm (1) = gm (2) = 1. (Notice that we’ve
calculated this without having to compute any eigenspaces!)

(4) For λ = 1, we first compute a basis for Ker(A− I3) = Eα(1). To solve (A− I3)v1 = 0, we perform
ERO’s on

A− I3 =

 4 −8 8
−1 7 −5
−5 10 −10

 to obtain

1 −2 2
0 5 −3
0 0 0

 ,

and we solve 5y − 3z = 0 and x − 2y + 2z = 0 to see that v1 = (−4, 3, 5)T is a basis for this
eigenspace. To compute generalised eigenspace Gα(1), one approach is to now solve 4 −8 8

−1 7 −5
−5 10 −10

 v2 =

−4
3
5

 .

The vector v2 = (−1, 1, 1)T will do, so Gα(1) has basis {(−4, 3, 5)T , (−1, 1, 1)T }. Notice that we list
the eigenvector v1 before v2, just as in Proposition 5.28.

For λ = 2, we determine Gα(2) = Eα(2) by performing ERO’s on the matrix

A− 2I3 =

 3 −8 8
−1 6 −5
−5 10 −11

 to obtain

1 −6 5
0 10 −7
0 0 0

 .

Thus, we solve 10y − 7z = 0 and x− 6y + 5z = 0. The space of solutions Gα(2) is spanned by the
eigenvector (−8, 7, 10)T .

(5) The matrix for α with respect to the basis(
(−4, 3, 5)T , (−1, 1, 1)T , (−8, 7, 10)T

)
is the matrix

JNF(A) = J(1, 2)⊕ J(2, 1) =

1 1 0
0 1 0
0 0 2

 .

(6) The matrix whose columns are these basis vectors

P =

−4 −1 −8
3 1 7
5 1 10

 .

gives the Jordan matrix of A via

P−1AP =

1 1 0
0 1 0
0 0 2

 = JNF(A).



6. (1) As β commutes with α we have that β − λid also commutes with α. Exercise 10.1 now shows
that Ker(β − λid) is α-invariant. We’re now done, because Eα(λ) = Ker(β − λid).

(2) Suppose that µ1, . . . , µs are the eigenvalues of β and that λ1, . . . , λr are the eigenvalues of α. As β
is diagonalisable we have that

V = Eβ(µ1)⊕ Eβ(µ2)⊕ · · · ⊕ Eβ(µs).

From (1) we know that Eβ(µi) is α-invariant. If we write αi for the restriction of α to Eβ(µi), then
α = α1 ⊕ · · · ⊕ αs. As mα(αi) = 0, we have that the minimal polynomial of αi divides mα and is
thus a product of distinct linear factors. Thus αi is diagonalisable and we can find a basis Vi for
Eβ(µi) consisting of eigenvectors for αi (and thus α). Notice that β(v) = µiv for all v ∈ Vi and thus
Vi consists of vectors that are eigenvectors for both β and α. It follows that V = V1 ∪ V2 ∪ · · · ∪ Vs
is a basis for V that consists of vectors that are eigenvectors for both α and β.


