Please submit solutions by 3pm on Thursday 3rd May to the pigeonholes in 4W (ground floor).

(W) = Warm-up; (H) = Homework; (A) = Additional.

1. (W) Let $\alpha, \beta: V \to V$ be linear operators on an *n*-dimensional space V such that $\alpha\beta = \beta\alpha$. Show that both Ker β and Im β are α -invariant.

2. (W) Write sketch proofs of Proposition 5.24 and Corollary 5.27.

3. (W) Let $A \in M_n(\mathbb{R})$ be a matrix whose minimal polynomial is of the form $(t - \lambda)^k$ for some integer $k \ge 1$, and let $N = A - \lambda I$. Show that

$$A^{\ell} = \sum_{i=0}^{k-1} \binom{\ell}{i} \lambda^{\ell-i} N^{i},$$

for $\ell > 0$, and compute A^{ℓ} for $\ell > 0$ for the matrix

$$A = \left(\begin{array}{rrrr} 3 & -2 & 0\\ 2 & -1 & 1\\ 0 & 0 & 1 \end{array}\right).$$

4. (H) Let $\alpha: V \to V$ be a linear operator satisfying $\alpha^2 = \alpha$. Show that α is diagonalisable and that $V = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$. [Hint: the assumption on α gives you an element in $\text{Ker}(\Phi_{\alpha})$ such that there are only three options for m_{α} ; investigate each one.]

5. (H) Let $\alpha \colon \mathbb{C}^3 \to \mathbb{C}^3$ be the linear map given by left multiplication by the matrix

$$A := \begin{pmatrix} 5 & -8 & 8\\ -1 & 8 & -5\\ -5 & 10 & -9 \end{pmatrix}.$$

Determine for α the characteristic polynomial, the minimal polynomial, the Jordan Normal Form J, the algebraic and the geometric multiplicities, the generalised eigenspaces, a basis for \mathbb{C}^3 such that the matrix for α with respect to this basis is J and, finally, a change of basis matrix P such that $J = P^{-1}AP$.

6. (A) Let α and β be diagonalisable linear operators on an *n*-dimensional space V. Assume in addition that $\alpha\beta = \beta\alpha$.

- (1) Let λ be an eigenvector of β . Show that $E_{\beta}(\lambda)$ is α -invariant. [Hint: consider a slight variant of Exercise 10.1 above using $\beta \lambda id$.]
- (2) Show that one can find a basis v_1, \ldots, v_n for V such that each v_i is an eigenvector of both α and β ; in this case we say that α and β are simultaneously diagonalisable. [Hint: consider the decomposition $V = E_{\beta}(\mu_1) \oplus E_{\beta}(\mu_2) \oplus \cdots \oplus E_{\beta}(\mu_s)$ that results from diagonalisability of β .]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Solutions 10

1. If $w \in \operatorname{Ker} \beta$ then

$$\beta(\alpha(w)) = \alpha(\beta(w)) = \alpha(0) = 0$$

hence $\alpha(w) \in \text{Ker }\beta$. This shows that $\text{Ker }\beta$ is α -invariant. To see that $\text{Im }\beta$ is α -invariant, notice that if $v = \beta(u)$ then $\alpha(v) = \alpha(\beta(u)) = \beta(\alpha(u)) \in \text{Im }\beta$.

- 2. No solution given.
- **3.** (1) Using the binomial formula, we have

$$A^{n} = (\lambda I + N)^{n} = \sum_{i=0}^{n} {\binom{n}{i}} \lambda^{n-i} I \cdot N^{i} = \sum_{i=0}^{k-1} {\binom{n}{i}} \lambda^{n-i} N^{i},$$

where in the last equation we have used the fact that $N^k = 0$.

(2) We have

$$\Delta_A(t) = \begin{vmatrix} 3-t & -2 & 0\\ 2 & -1-t & 1\\ 0 & 0 & 1-t \end{vmatrix} = [(t-3)(t+1)+4] \cdot (1-t) = (t^2 - 2t + 1)(1-t) = -(t-1)^3.$$

As

$$(A-I)^{2} = \begin{pmatrix} 2 & -2 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -2 & 0 \\ 2 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -2 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

is not zero, we have $m_A(t) = (t-1)^3$.

Let N = A - I. We have $N^3 = 0$ and therefore

$$A^{n} = (I+N)^{n} = I + nN + \binom{n}{2}N^{2} = \begin{pmatrix} 1+2n & -2n & -2\binom{n}{2} \\ 2n & 1-2n & n-2\binom{n}{2} \\ 0 & 0 & 1 \end{pmatrix}.$$

4. Notice that $t^2 - t \in \text{Ker}(\Phi_{\alpha})$, so the minimal polynomial of α is t, t - 1 or $t^2 - t = (t - 1)t$. In each case, the minimal polynomial is a product of distinct linear polynomials, so α is diagonalisable by Corollary 5.27. There are three cases:

• If $m_{\alpha} = t$ then $\alpha = 0$ and $V = \text{Ker}(\alpha)$ wheras $\text{Im}(\alpha) = \{0\}$. Thus $V = V \oplus \{0\} = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$.

- If $m_{\alpha} = t 1$ then $\alpha = \text{id}$ and $\text{Ker}(\alpha) = \{0\}$ whereas $\text{Im}(\alpha) = V$, so $V = \{0\} \oplus V = \text{Ker}(\alpha) \oplus \text{Im}(\alpha)$.
- Otherwise $m_{\alpha} = t(t-1)$. Let $p_1 = t$ and $p_2 = t-1$. Proposition 5.24 and its proof gives that

$$V = \operatorname{Ker}(p_1(\alpha)) \oplus \operatorname{Ker}(p_2(\alpha)) = \operatorname{Ker}(p_1(\alpha)) \oplus \operatorname{Im}(p_1(\alpha)) = \operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha).$$

5. (1) The characteristic polynomial of A is $\chi_A(t) = (1-t)^2(2-t)$. The minimal polynomial divides $\Delta_A(t)$ and has the same roots, so $m_A(t) = (t-1)^s(t-2)$ where $1 \le s \le 2$. Notice first that

$$(A - \mathbb{I}_3)(A - 2\mathbb{I}_3) = \begin{pmatrix} -20 & 0 & -16\\ 15 & 0 & 12\\ 25 & 0 & 20 \end{pmatrix} \neq 0.$$

Thus the minimal polynomial is $m_A(t) = (t-1)^2(t-2)$.

- (2) As the multiplicity of t-1 in $m_A(t)$ is two we must have a Jordan block of size two, i.e., a J(1,2); and as the multiplicity of t-2 in $m_A(t)$ is only one we must have that the largest dimension of a Jordan block with respect to the eigenalue 2 is one. Since A is a 3×3 matrix, there is only one possible Jordan normal form, namely $J(1,2) \oplus J(2,1)$ (or you can swap the order of these).
- (3) The characteristic polynomial shows that the algebraic multiplicity of 1 equals two and 2 equals one. There is one Jordan block for both eigenvalues, hence gm(1) = gm(2) = 1. (Notice that we've calculated this without having to compute any eigenspaces!)
- (4) For $\lambda = 1$, we first compute a basis for $\operatorname{Ker}(A \mathbb{I}_3) = E_{\alpha}(1)$. To solve $(A \mathbb{I}_3)v_1 = 0$, we perform ERO's on

$$A - \mathbb{I}_3 = \begin{pmatrix} 4 & -8 & 8 \\ -1 & 7 & -5 \\ -5 & 10 & -10 \end{pmatrix} \text{ to obtain } \begin{pmatrix} 1 & -2 & 2 \\ 0 & 5 & -3 \\ 0 & 0 & 0 \end{pmatrix},$$

and we solve 5y - 3z = 0 and x - 2y + 2z = 0 to see that $v_1 = (-4, 3, 5)^T$ is a basis for this eigenspace. To compute generalised eigenspace $G_{\alpha}(1)$, one approach is to now solve

$$\begin{pmatrix} 4 & -8 & 8\\ -1 & 7 & -5\\ -5 & 10 & -10 \end{pmatrix} v_2 = \begin{pmatrix} -4\\ 3\\ 5 \end{pmatrix}.$$

The vector $v_2 = (-1, 1, 1)^T$ will do, so $G_{\alpha}(1)$ has basis $\{(-4, 3, 5)^T, (-1, 1, 1)^T\}$. Notice that we list the eigenvector v_1 before v_2 , just as in Proposition 5.28.

For $\lambda = 2$, we determine $G_{\alpha}(2) = E_{\alpha}(2)$ by performing ERO's on the matrix

$$A - 2\mathbb{I}_3 = \begin{pmatrix} 3 & -8 & 8\\ -1 & 6 & -5\\ -5 & 10 & -11 \end{pmatrix} \text{ to obtain } \begin{pmatrix} 1 & -6 & 5\\ 0 & 10 & -7\\ 0 & 0 & 0 \end{pmatrix}.$$

Thus, we solve 10y - 7z = 0 and x - 6y + 5z = 0. The space of solutions $G_{\alpha}(2)$ is spanned by the eigenvector $(-8, 7, 10)^T$.

(5) The matrix for α with respect to the basis

$$((-4,3,5)^T, (-1,1,1)^T, (-8,7,10)^T)$$

is the matrix

$$\operatorname{JNF}(A) = J(1,2) \oplus J(2,1) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

(6) The matrix whose columns are these basis vectors

$$P = \begin{pmatrix} -4 & -1 & -8\\ 3 & 1 & 7\\ 5 & 1 & 10 \end{pmatrix}.$$

gives the Jordan matrix of A via

$$P^{-1}AP = \begin{pmatrix} 1 & 1 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix} = \text{JNF}(A).$$

- 6. (1) As β commutes with α we have that $\beta \lambda id$ also commutes with α . Exercise 10.1 now shows that $\operatorname{Ker}(\beta \lambda id)$ is α -invariant. We're now done, because $E_{\alpha}(\lambda) = \operatorname{Ker}(\beta \lambda id)$.
 - (2) Suppose that μ_1, \ldots, μ_s are the eigenvalues of β and that $\lambda_1, \ldots, \lambda_r$ are the eigenvalues of α . As β is diagonalisable we have that

$$V = E_{\beta}(\mu_1) \oplus E_{\beta}(\mu_2) \oplus \cdots \oplus E_{\beta}(\mu_s).$$

From (1) we know that $E_{\beta}(\mu_i)$ is α -invariant. If we write α_i for the restriction of α to $E_{\beta}(\mu_i)$, then $\alpha = \alpha_1 \oplus \cdots \oplus \alpha_s$. As $m_{\alpha}(\alpha_i) = 0$, we have that the minimal polynomial of α_i divides m_{α} and is thus a product of distinct linear factors. Thus α_i is diagonalisable and we can find a basis \mathcal{V}_i for $E_{\beta}(\mu_i)$ consisting of eigenvectors for α_i (and thus α). Notice that $\beta(v) = \mu_i v$ for all $v \in \mathcal{V}_i$ and thus \mathcal{V}_i consists of vectors that are eigenvectors for both β and α . It follows that $\mathcal{V} = \mathcal{V}_1 \cup \mathcal{V}_2 \cup \cdots \cup \mathcal{V}_s$ is a basis for V that consists of vectors that are eigenvectors for both α and β .