Please submit solutions by 3 pm on Thursday 3 rd May to the pigeonholes in 4 W (ground floor).
$(\mathbf{W})=$ Warm-up; $(\mathbf{H})=$ Homework; $(\mathbf{A})=$ Additional.

1. (W) Let $\alpha, \beta: V \rightarrow V$ be linear operators on an n-dimensional space V such that $\alpha \beta=\beta \alpha$. Show that both Ker β and $\operatorname{Im} \beta$ are α-invariant.
2. (W) Write sketch proofs of Proposition 5.24 and Corollary 5.27.
3. (W) Let $A \in M_{n}(\mathbb{R})$ be a matrix whose minimal polynomial is of the form $(t-\lambda)^{k}$ for some integer $k \geq 1$, and let $N=A-\lambda I$. Show that

$$
A^{\ell}=\sum_{i=0}^{k-1}\binom{\ell}{i} \lambda^{\ell-i} N^{i}
$$

for $\ell>0$, and compute A^{ℓ} for $\ell>0$ for the matrix

$$
A=\left(\begin{array}{rrr}
3 & -2 & 0 \\
2 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

4. (H) Let $\alpha: V \rightarrow V$ be a linear operator satisfying $\alpha^{2}=\alpha$. Show that α is diagonalisable and that $V=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)$. [Hint: the assumption on α gives you an element in $\operatorname{Ker}\left(\Phi_{\alpha}\right)$ such that there are only three options for m_{α}; investigate each one.]
5. (H) Let $\alpha: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ be the linear map given by left multiplication by the matrix

$$
A:=\left(\begin{array}{ccc}
5 & -8 & 8 \\
-1 & 8 & -5 \\
-5 & 10 & -9
\end{array}\right)
$$

Determine for α the characteristic polynomial, the minimal polynomial, the Jordan Normal Form J, the algebraic and the geometric multiplicities, the generalised eigenspaces, a basis for \mathbb{C}^{3} such that the matrix for α with respect to this basis is J and, finally, a change of basis matrix P such that $J=P^{-1} A P$.
6. (A) Let α and β be diagonalisable linear operators on an n-dimensional space V. Assume in addition that $\alpha \beta=\beta \alpha$.
(1) Let λ be an eigenvector of β. Show that $E_{\beta}(\lambda)$ is α-invariant. [Hint: consider a slight variant of Exercise 10.1 above using $\beta-\lambda i d$.]
(2) Show that one can find a basis v_{1}, \ldots, v_{n} for V such that each v_{i} is an eigenvector of both α and β; in this case we say that α and β are simultaneously diagonalisable. [Hint: consider the decomposition $V=E_{\beta}\left(\mu_{1}\right) \oplus E_{\beta}\left(\mu_{2}\right) \oplus \cdots \oplus E_{\beta}\left(\mu_{s}\right)$ that results from diagonalisability of β.]

The course website is: http://people.bath.ac.uk/dmjc20/Alg2B/

Solutions 10

1. If $w \in \operatorname{Ker} \beta$ then

$$
\beta(\alpha(w))=\alpha(\beta(w))=\alpha(0)=0 .
$$

hence $\alpha(w) \in \operatorname{Ker} \beta$. This shows that $\operatorname{Ker} \beta$ is α-invariant. To see that $\operatorname{Im} \beta$ is α-invariant, notice that if $v=\beta(u)$ then $\alpha(v)=\alpha(\beta(u))=\beta(\alpha(u)) \in \operatorname{Im} \beta$.
2. No solution given.
3. (1) Using the binomial formula, we have

$$
A^{n}=(\lambda I+N)^{n}=\sum_{i=0}^{n}=\binom{n}{i} \lambda^{n-i} I \cdot N^{i}=\sum_{i=0}^{k-1}\binom{n}{i} \lambda^{n-i} N^{i}
$$

where in the last equation we have used the fact that $N^{k}=0$.
(2) We have

$$
\Delta_{A}(t)=\left|\begin{array}{ccc}
3-t & -2 & 0 \\
2 & -1-t & 1 \\
0 & 0 & 1-t
\end{array}\right|=[(t-3)(t+1)+4] \cdot(1-t)=\left(t^{2}-2 t+1\right)(1-t)=-(t-1)^{3} .
$$

As

$$
(A-I)^{2}=\left(\begin{array}{rrr}
2 & -2 & 0 \\
2 & -2 & 1 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{rrr}
2 & -2 & 0 \\
2 & -2 & 1 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & 0 & -2 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

is not zero, we have $m_{A}(t)=(t-1)^{3}$.

Let $N=A-I$. We have $N^{3}=0$ and therefore

$$
A^{n}=(I+N)^{n}=I+n N+\binom{n}{2} N^{2}=\left(\begin{array}{ccc}
1+2 n & -2 n & -2\binom{n}{2} \\
2 n & 1-2 n & n-2\binom{n}{2} \\
0 & 0 & 1
\end{array}\right) .
$$

4. Notice that $t^{2}-t \in \operatorname{Ker}\left(\Phi_{\alpha}\right)$, so the minimal polynomial of α is $t, t-1$ or $t^{2}-t=(t-1) t$. In each case, the minimal polynomial is a product of distinct linear polynomials, so α is diagonalisable by Corollary 5.27. There are three cases:

- If $m_{\alpha}=t$ then $\alpha=0$ and $V=\operatorname{Ker}(\alpha)$ wheras $\operatorname{Im}(\alpha)=\{0\}$. Thus $V=V \oplus\{0\}=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)$.
- If $m_{\alpha}=t-1$ then $\alpha=$ id and $\operatorname{Ker}(\alpha)=\{0\}$ whereas $\operatorname{Im}(\alpha)=V$, so $V=\{0\} \oplus V=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)$.
- Otherwise $m_{\alpha}=t(t-1)$. Let $p_{1}=t$ and $p_{2}=t-1$. Proposition 5.24 and its proof gives that

$$
V=\operatorname{Ker}\left(p_{1}(\alpha)\right) \oplus \operatorname{Ker}\left(p_{2}(\alpha)\right)=\operatorname{Ker}\left(p_{1}(\alpha)\right) \oplus \operatorname{Im}\left(p_{1}(\alpha)\right)=\operatorname{Ker}(\alpha) \oplus \operatorname{Im}(\alpha)
$$

5. (1) The characteristic polynomial of A is $\chi_{A}(t)=(1-t)^{2}(2-t)$. The minimal polynomial divides $\Delta_{A}(t)$ and has the same roots, so $m_{A}(t)=(t-1)^{s}(t-2)$ where $1 \leq s \leq 2$. Notice first that

$$
\left(A-\mathbb{I}_{3}\right)\left(A-2 \mathbb{I}_{3}\right)=\left(\begin{array}{ccc}
-20 & 0 & -16 \\
15 & 0 & 12 \\
25 & 0 & 20
\end{array}\right) \neq 0
$$

Thus the minimal polynomial is $m_{A}(t)=(t-1)^{2}(t-2)$.
(2) As the multiplicity of $t-1$ in $m_{A}(t)$ is two we must have a Jordan block of size two, i.e., a $J(1,2)$; and as the multiplicity of $t-2$ in $m_{A}(t)$ is only one we must have that the largest dimension of a Jordan block with respect to the eigenalue 2 is one. Since A is a 3×3 matrix, there is only one possible Jordan normal form, namely $J(1,2) \oplus J(2,1)$ (or you can swap the order of these).
(3) The characteristic polynomial shows that the algebraic multiplicity of 1 equals two and 2 equals one. There is one Jordan block for both eigenvalues, hence $\operatorname{gm}(1)=\operatorname{gm}(2)=1$. (Notice that we've calculated this without having to compute any eigenspaces!)
(4) For $\lambda=1$, we first compute a basis for $\operatorname{Ker}\left(A-\mathbb{I}_{3}\right)=E_{\alpha}(1)$. To solve $\left(A-\mathbb{I}_{3}\right) v_{1}=0$, we perform ERO's on

$$
A-\mathbb{I}_{3}=\left(\begin{array}{ccc}
4 & -8 & 8 \\
-1 & 7 & -5 \\
-5 & 10 & -10
\end{array}\right) \text { to obtain }\left(\begin{array}{ccc}
1 & -2 & 2 \\
0 & 5 & -3 \\
0 & 0 & 0
\end{array}\right)
$$

and we solve $5 y-3 z=0$ and $x-2 y+2 z=0$ to see that $v_{1}=(-4,3,5)^{T}$ is a basis for this eigenspace. To compute generalised eigenspace $G_{\alpha}(1)$, one approach is to now solve

$$
\left(\begin{array}{ccc}
4 & -8 & 8 \\
-1 & 7 & -5 \\
-5 & 10 & -10
\end{array}\right) v_{2}=\left(\begin{array}{c}
-4 \\
3 \\
5
\end{array}\right)
$$

The vector $v_{2}=(-1,1,1)^{T}$ will do, so $G_{\alpha}(1)$ has basis $\left\{(-4,3,5)^{T},(-1,1,1)^{T}\right\}$. Notice that we list the eigenvector v_{1} before v_{2}, just as in Proposition 5.28.

For $\lambda=2$, we determine $G_{\alpha}(2)=E_{\alpha}(2)$ by performing ERO's on the matrix

$$
A-2 \mathbb{I}_{3}=\left(\begin{array}{ccc}
3 & -8 & 8 \\
-1 & 6 & -5 \\
-5 & 10 & -11
\end{array}\right) \text { to obtain }\left(\begin{array}{ccc}
1 & -6 & 5 \\
0 & 10 & -7 \\
0 & 0 & 0
\end{array}\right)
$$

Thus, we solve $10 y-7 z=0$ and $x-6 y+5 z=0$. The space of solutions $G_{\alpha}(2)$ is spanned by the eigenvector $(-8,7,10)^{T}$.
(5) The matrix for α with respect to the basis

$$
\left((-4,3,5)^{T},(-1,1,1)^{T},(-8,7,10)^{T}\right)
$$

is the matrix

$$
\mathrm{JNF}(A)=J(1,2) \oplus J(2,1)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(6) The matrix whose columns are these basis vectors

$$
P=\left(\begin{array}{ccc}
-4 & -1 & -8 \\
3 & 1 & 7 \\
5 & 1 & 10
\end{array}\right)
$$

gives the Jordan matrix of A via

$$
P^{-1} A P=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)=\operatorname{JNF}(A)
$$

6. (1) As β commutes with α we have that $\beta-\lambda$ id also commutes with α. Exercise 10.1 now shows that $\operatorname{Ker}(\beta-\lambda \mathrm{id})$ is α-invariant. We're now done, because $E_{\alpha}(\lambda)=\operatorname{Ker}(\beta-\lambda \mathrm{id})$.
(2) Suppose that μ_{1}, \ldots, μ_{s} are the eigenvalues of β and that $\lambda_{1}, \ldots, \lambda_{r}$ are the eigenvalues of α. As β is diagonalisable we have that

$$
V=E_{\beta}\left(\mu_{1}\right) \oplus E_{\beta}\left(\mu_{2}\right) \oplus \cdots \oplus E_{\beta}\left(\mu_{s}\right) .
$$

From (1) we know that $E_{\beta}\left(\mu_{i}\right)$ is α-invariant. If we write α_{i} for the restriction of α to $E_{\beta}\left(\mu_{i}\right)$, then $\alpha=\alpha_{1} \oplus \cdots \oplus \alpha_{s}$. As $m_{\alpha}\left(\alpha_{i}\right)=0$, we have that the minimal polynomial of α_{i} divides m_{α} and is thus a product of distinct linear factors. Thus α_{i} is diagonalisable and we can find a basis \mathcal{V}_{i} for $E_{\beta}\left(\mu_{i}\right)$ consisting of eigenvectors for α_{i} (and thus α). Notice that $\beta(v)=\mu_{i} v$ for all $v \in \mathcal{V}_{i}$ and thus \mathcal{V}_{i} consists of vectors that are eigenvectors for both β and α. It follows that $\mathcal{V}=\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \cdots \cup \mathcal{V}_{s}$ is a basis for V that consists of vectors that are eigenvectors for both α and β.

