
Exercises 1

Please submit solutions by 3pm on Thursday 15th February to the pigeonholes in 4W (ground floor)

(W) = Warm-up; (H) = Homework; (A)=Additional.

1. (W) This exercise illustrates why cosets were introduced at the end of Algebra 1A, at least in the
special case where the group G is abelian. Let (G,+) be an abelian group and let H be a subgroup of G.
Define a relation on G by setting a ∼ b ⇔ a− b ∈ H for a, b ∈ G. Show that:

(1) ∼ is an equivalence relation, where the equivalence classes are precisely the subsets in G of the form
a+H = {a+ h ∈ G | h ∈ H} for a ∈ G (these sets are the cosets of H in G);

(2) the sum of two cosets given by (a+H)+(b+H) = (a+b)+H is well-defined [Hint: for a, b, a′, b′ ∈ G
satisfying a ∼ a′ and b ∼ b′, show that a+ b ∼ a′ + b′], and hence show that the set of cosets of H
in G is an abelian group.

The set of cosets with the operation from (2) is an abelian group G/H called the quotient of G by H.

2. (W) Let R be a ring with 1. Show that if 0 is a unit, then the only element in R is 0.

3. (W) Let R be a ring. Show that the set Mn(R) of all n× n matrices over R is a ring with respect to
the usual matrix addition and multiplication of matrices. If R is a ring with 1, is Mn(R) a ring with 1?

4. (H) Let R be a ring, and let R[[x]] denote the ring of formal power series with coefficients in R. Show
that if R is an integral domain, then so is R[[x]].

5. (H) Let (R,+, ·) be a ring. Show that a nonempty subset S of R is a subring if and only if (S,+, ·)
is a ring. [Hint: Lemma 1.5 does some of the work for you.] Deduce that the set of Gaussian integers

Z[i] :=
{
a+ ib ∈ C | a, b ∈ Z, i2 = −1

}
becomes a ring in which the operations are the usual addition and multiplication of complex numbers.

6. (A) Let S be a given set and let R = P(S) denote the power set of S, that is, the set containing all
subsets of S. For each A ∈ R let A = S \A. We define two binary operations on R as follows:

A+B = (A ∩B) ∪ (B ∩A) and A ·B = A ∩B.

Show that (R,+, ·) is a Boolean ring in which the zero element is the emptyset and S is the multiplicative
identity. [Hint: It can be useful here to apply the De Morgan laws (A ∪B) = A∩B and (A ∩B) = A∪B.]
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Solutions 1

1. (1) Let a, b, c ∈ G. Then a− a = 0 ∈ H means a ∼ a, so ∼ is reflexive. If a ∼ b then a− b ∈ H and
hence b−a = −(a−b) ∈ H by Lemma 1.5. This gives b ∼ a, so ∼ is symmetric. Finally if a ∼ b and
b ∼ c then a−b, b−c ∈ H. As H is closed under addition, it follows that (a−b)+(b−c) = a−c ∈ H
and hence a ∼ c. This shows that ∼ is transitive, so ∼ is an equivalence relation.

To compute the equivalence classes, note that the equivalence class of a ∈ G is

[a] := {b ∈ G | b ∼ a}
= {b ∈ G | b− a ∈ H}
= {b ∈ G | ∃ h ∈ H such that b− a = h}
= {a+ h | h ∈ H}
= a+H

as claimed.

(2) Let a, b, a′, b′ ∈ G and suppose that a ∼ a′ and b ∼ b′. Then a − a′, b − b′ ∈ H. Since H is a
subgroup, we have

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ H,

so a+ b ∼ a′ + b′ as required.

We use this to check that addition is well-defined for cosets. For this, consider alternative repre-
sentatives of the cosets a+H and b+H, say a′ ∈ G satisfying a+H = a′+H and b′ ∈ G satisfying
b+H = b′ +H. Then a ∼ a′ and b ∼ b′ and hence a+ b ∼ a′ + b′ by above, so

a′ +H + b′ +H = (a′ + b′) +H by definition

= (a+ b) +H as a+ b ∼ a′ + b′

= a+H + b+H by definition,

as required. This shows that addition is a binary operation on the set of cosets G/H. To check
that (G/H,+) is an abelian group, we switch to equivalence class notation [a] = a + H (to save
space). Note that for a, b, c ∈ G we have

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c] = [a+ (b+ c)] = [a] + [b+ c] = [a] + ([b] + [c]),

[a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Also, we have [a]+[0] = [a+0] = [a], so [0] is the zero element. Moreover, [a]+[−a] = [a+(−a)] = [0],
so [−a] is the additive identity of [a].

2. If 0 is a unit, then there exists 0−1 ∈ R. Lemma 1.8(a) implies that 1 = 0 · 0−1 = 0. Therefore, for
any a ∈ R, we have a = a · 1 = a · 0 = 0, i.e., R is the zero ring {0}.

Note in passing that if 0 = 1, then R is the zero ring; to rule this out, we often assume 0 6= 1.

3. The fact that (Mn(R),+) is associative and commutative follows from the fact that (R,+) is an abelian
group. The matrix 0n×n in which every entry is 0 is clearly the additive identity. If A = (aij) ∈ Mn(R)
then the matrix B = (bij) satisfying bij = −aij is an additive inverse of A. Thus (Mn(R),+) is an abelian
group.



To see that multiplication is associative, let A = (aij), B = (bij) and C = (cij) be matrices in Mn(R).
Let D = (dij) and E = (eij) where D = AB and E = BC. The (i, j)th entry of (AB)C = DC is then

n∑
k=1

dikckj =

n∑
k=1

(
n∑

l=1

ailblk

)
ckj =

n∑
l=1

ail

(
n∑

k=1

blkckj

)
=

n∑
l=1

ailelj

which is the (i, j)th entry of AE = A(BC); we applied here both the assocative law for the ring multi-
plication of R and the distributive law for R. This gives (AB)C = A(BC) as required.

For the distributive laws, the (i, j)th entry of A(B + C) is

n∑
k=1

aik(bkj + ckj) =
n∑

k=1

aikbkj +
n∑

k=1

aikckj = uij + vij

where uij , vij are the (i, j)th entries of AB and AC respectively; here we use the distributive law for R
as well as the fact that addition is commutative. Hence A(B + C) = AB + AC. Similarly one sees that
(B + C)A = BA+ CA.

If R is a ring with 1, then let In := (δi,j) be the matrix with 1 on the diagonal and 0 elsewhere. Then
for any A ∈Mn(R), we have A · In = A = In ·A, so In makes Mn(R) into a ring with 1.

4. By inspecting the formula for multiplication of formal power series( ∞∑
k=0

akx
k

)
·

( ∞∑
k=0

bkx
k

)
=
∞∑
k=0

 ∑
i+j=k

aibj

xk.

we see that the power series 1 = 1+0x+0x2+0x3+· · · provides a multiplicative identity for R[[x]], making
R[[x]] a ring with 1. Also, looking at the same multiplication formula, notice that if R is commutative
then aibj = bjai, and hence( ∞∑

k=0

akx
k

)
·

( ∞∑
k=0

bkx
k

)
=
∞∑
k=0

 ∑
i+j=k

aibj

xk =

( ∞∑
k=0

bkx
k

)
·

( ∞∑
k=0

akx
k

)

so R[[x]] is commutative. Also, since 0 6= 1 in R, the same holds in R[[x]]. Finally, if
∑∞

k=0 akx
k and∑∞

k=0 bkx
k are two nonzero elements in R[[x]], then m ∈ N be the smallest index for which am 6= 0 and

let n ∈ N be the smallest index for which bn 6= 0. Then we claim that( ∞∑
k=0

akx
k

)
·

( ∞∑
k=0

bkx
k

)
= ambnx

m+n + (am+1bn + ambn+1)x
m+n+1 + . . . (0.1)

is nonzero. Indeed, since R is an integral domain and since am 6= 0 and bn 6= 0, we have that ambn 6= 0,
so the coefficient of xm+n in the expression (0.1) is nonzero. This proves the claim, and completes the
proof that R[[x]] is an integral domain.

5. Let S be a subring of R. Since S is nonempty and since the condition from the definition of subring
holds, the additive version of Lemma 1.5 shows that (S,+) is a group. This group is abelian, because
addition commutes in R. The second condition from the definition of subring implies that multiplication
is a binary operation on S. In the ring (R,+, ·), we have that · is associative and that the distributive
laws hold, so the same is true in (S,+, ·). This shows that (S,+, ·) is a ring.

Conversely, if (S,+, ·) is a ring then S is nonempty (as it contains 0), and it’s closed under both
subtraction and multiplication, so S is a subring.



We have 0 + i0 ∈ Z[i], so Z[i] is nonempty. For any a+ ib, c+ ib ∈ Z[i] we have

(a+ ib)− (c+ id) = (a− c) + i(b− d) ∈ Z[i] and (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc) ∈ Z[i]

since a, b, c, d ∈ Z implies that a− c, b− d, ac− bd, ad+ bc ∈ Z. Therefore Z[i] is a subring of C, so it’s a
ring in its own right.

6. We first need to check that all the axioms for rings are fullfilled. Addition commutes because

A+B = (A ∩B) ∪ (B ∩A) = (B ∩A) ∪ (A ∩B) = B +A,

and ∅ is the zero element because

A+ ∅ = ∅+A = (A ∩ ∅) ∪ (∅ ∩A) = (A ∩ S) ∪ ∅ = A.

As for the additive inverse, we’ve been asked to show that R is a Boolean ring, so the additive inverse of
A must equal A itself, so we check this:

A+A = (A ∩A) ∪ (A ∩A) = ∅.

As is often the case, the hardest part in checking the group axioms is associativity. Here, notice that

(A+B) + C = ((A+B) ∩ C) ∪ (A+B ∩ C)

= ((A ∩B) ∪ (A ∩B)) ∩ C) ∪ ((A ∩B) ∪ (A ∩B) ∩ C)

= ((A ∩B) ∪ (A ∩B)) ∩ C) ∪ ((A ∩B) ∩ (A ∩B) ∩ C)

= ((A ∩B) ∪ (A ∩B)) ∩ C ∪ ((A ∪B) ∩ (A ∪B) ∩ C)

= (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C).

This last expression is completely symmetric in A,B,C, so it’s equal to (B + C) +A = A+ (B + C).
To check the mulitplicative properties, notice that intersection of sets is an associative operation, so

· is associative. Also, we have A∩S = S ∩A = A, so S is the multiplicative identity. It remains to check
that R satisfies the distributive laws. We have

C ·A+ C ·B = C ∩A ∩ C ∩B ∪ C ∩B ∩ C ∩A
= C ∩A ∩ (C ∪B) ∪ C ∩B ∩ (C ∪A)

= C ∩A ∩ C ∪ C ∩A ∩B ∪ C ∩B ∩ C ∪ C ∩B ∩A.

Now no element can be both in C and in C and thus the last expression is equal to.

C ∩A ∩B ∪ C ∩B ∩A = C ∩ (A ∩B ∪B ∩A) = C · (A+B).

Hence C · (A+B) = C ·A+ C ·B. Intersection of sets is a commutative operation, so we also have

(A+B) · C = C · (A+B) = C ·A+ C ·B = A · C +B · C

as required. This shows that R is a ring, and it’s Boolean because A ·A = A ∩A = A.


