Exercises 1

Please submit solutions by 3 pm on Thursday 15th February to the pigeonholes in 4 W (ground floor)

$$
(\mathbf{W})=\text { Warm-up; }(\mathbf{H})=\text { Homework; }(\mathbf{A})=\text { Additional. }
$$

1. (W) This exercise illustrates why cosets were introduced at the end of Algebra 1A, at least in the special case where the group G is abelian. Let $(G,+)$ be an abelian group and let H be a subgroup of G. Define a relation on G by setting $a \sim b \Leftrightarrow a-b \in H$ for $a, b \in G$. Show that:
(1) \sim is an equivalence relation, where the equivalence classes are precisely the subsets in G of the form $a+H=\{a+h \in G \mid h \in H\}$ for $a \in G$ (these sets are the cosets of H in G);
(2) the sum of two cosets given by $(a+H)+(b+H)=(a+b)+H$ is well-defined [Hint: for $a, b, a^{\prime}, b^{\prime} \in G$ satisfying $a \sim a^{\prime}$ and $b \sim b^{\prime}$, show that $\left.a+b \sim a^{\prime}+b^{\prime}\right]$, and hence show that the set of cosets of H in G is an abelian group.

The set of cosets with the operation from (2) is an abelian group G / H called the quotient of G by H.
2. (W) Let R be a ring with 1 . Show that if 0 is a unit, then the only element in R is 0 .
3. (W) Let R be a ring. Show that the set $M_{n}(R)$ of all $n \times n$ matrices over R is a ring with respect to the usual matrix addition and multiplication of matrices. If R is a ring with 1 , is $M_{n}(R)$ a ring with 1 ?
4. (H) Let R be a ring, and let $R[[x]]$ denote the ring of formal power series with coefficients in R. Show that if R is an integral domain, then so is $R[[x]]$.
5. (H) Let $(R,+, \cdot)$ be a ring. Show that a nonempty subset S of R is a subring if and only if $(S,+, \cdot)$ is a ring. [Hint: Lemma 1.5 does some of the work for you.] Deduce that the set of Gaussian integers

$$
\mathbb{Z}[i]:=\left\{a+i b \in \mathbb{C} \mid a, b \in \mathbb{Z}, i^{2}=-1\right\}
$$

becomes a ring in which the operations are the usual addition and multiplication of complex numbers.
6. (A) Let S be a given set and let $R=\mathcal{P}(S)$ denote the power set of S, that is, the set containing all subsets of S. For each $A \in R$ let $\bar{A}=S \backslash A$. We define two binary operations on R as follows:

$$
A+B=(A \cap \bar{B}) \cup(B \cap \bar{A}) \text { and } A \cdot B=A \cap B
$$

Show that $(R,+, \cdot)$ is a Boolean ring in which the zero element is the emptyset and S is the multiplicative identity. [Hint: It can be useful here to apply the De Morgan laws $\overline{(A \cup B)}=\bar{A} \cap \bar{B}$ and $\overline{(A \cap B)}=\bar{A} \cup \bar{B}$.]

The course website is: http://people.bath.ac.uk/ac886/teaching/algebra2B/

Solutions 1

1. (1) Let $a, b, c \in G$. Then $a-a=0 \in H$ means $a \sim a$, so \sim is reflexive. If $a \sim b$ then $a-b \in H$ and hence $b-a=-(a-b) \in H$ by Lemma 1.5. This gives $b \sim a$, so \sim is symmetric. Finally if $a \sim b$ and $b \sim c$ then $a-b, b-c \in H$. As H is closed under addition, it follows that $(a-b)+(b-c)=a-c \in H$ and hence $a \sim c$. This shows that \sim is transitive, so \sim is an equivalence relation.
To compute the equivalence classes, note that the equivalence class of $a \in G$ is

$$
\begin{aligned}
{[a] } & :=\{b \in G \mid b \sim a\} \\
& =\{b \in G \mid b-a \in H\} \\
& =\{b \in G \mid \exists h \in H \text { such that } b-a=h\} \\
& =\{a+h \mid h \in H\} \\
& =a+H
\end{aligned}
$$

as claimed.
(2) Let $a, b, a^{\prime}, b^{\prime} \in G$ and suppose that $a \sim a^{\prime}$ and $b \sim b^{\prime}$. Then $a-a^{\prime}, b-b^{\prime} \in H$. Since H is a subgroup, we have

$$
(a+b)-\left(a^{\prime}+b^{\prime}\right)=\left(a-a^{\prime}\right)+\left(b-b^{\prime}\right) \in H,
$$

so $a+b \sim a^{\prime}+b^{\prime}$ as required.
We use this to check that addition is well-defined for cosets. For this, consider alternative representatives of the cosets $a+H$ and $b+H$, say $a^{\prime} \in G$ satisfying $a+H=a^{\prime}+H$ and $b^{\prime} \in G$ satisfying $b+H=b^{\prime}+H$. Then $a \sim a^{\prime}$ and $b \sim b^{\prime}$ and hence $a+b \sim a^{\prime}+b^{\prime}$ by above, so

$$
\begin{aligned}
a^{\prime}+H+b^{\prime}+H & =\left(a^{\prime}+b^{\prime}\right)+H \\
& =(a+b)+H \\
& =a+H+b+H
\end{aligned}
$$

by definition as $a+b \sim a^{\prime}+b^{\prime}$
by definition,
as required. This shows that addition is a binary operation on the set of cosets G / H. To check that $(G / H,+)$ is an abelian group, we switch to equivalence class notation $[a]=a+H$ (to save space). Note that for $a, b, c \in G$ we have

$$
\begin{aligned}
([a]+[b])+[c]=[a+b]+[c]=[(a+b)+c] & =[a+(b+c)]=[a]+[b+c]=[a]+([b]+[c]), \\
{[a]+[b]=[a+b] } & =[b+a]=[b]+[a] .
\end{aligned}
$$

Also, we have $[a]+[0]=[a+0]=[a]$, so $[0]$ is the zero element. Moreover, $[a]+[-a]=[a+(-a)]=[0]$, so $[-a]$ is the additive identity of $[a]$.
2. If 0 is a unit, then there exists $0^{-1} \in R$. Lemma 1.8(a) implies that $1=0 \cdot 0^{-1}=0$. Therefore, for any $a \in R$, we have $a=a \cdot 1=a \cdot 0=0$, i.e., R is the zero ring $\{0\}$.

Note in passing that if $0=1$, then R is the zero ring; to rule this out, we often assume $0 \neq 1$.
3. The fact that $\left(M_{n}(R),+\right)$ is associative and commutative follows from the fact that $(R,+)$ is an abelian group. The matrix $0_{n \times n}$ in which every entry is 0 is clearly the additive identity. If $A=\left(a_{i j}\right) \in M_{n}(R)$ then the matrix $B=\left(b_{i j}\right)$ satisfying $b_{i j}=-a_{i j}$ is an additive inverse of A. Thus $\left(M_{n}(R),+\right)$ is an abelian group.

To see that multiplication is associative, let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$ be matrices in $M_{n}(R)$. Let $D=\left(d_{i j}\right)$ and $E=\left(e_{i j}\right)$ where $D=A B$ and $E=B C$. The (i, j) th entry of $(A B) C=D C$ is then

$$
\sum_{k=1}^{n} d_{i k} c_{k j}=\sum_{k=1}^{n}\left(\sum_{l=1}^{n} a_{i l} b_{l k}\right) c_{k j}=\sum_{l=1}^{n} a_{i l}\left(\sum_{k=1}^{n} b_{l k} c_{k j}\right)=\sum_{l=1}^{n} a_{i l} e_{l j}
$$

which is the (i, j) th entry of $A E=A(B C)$; we applied here both the assocative law for the ring multiplication of R and the distributive law for R. This gives $(A B) C=A(B C)$ as required.

For the distributive laws, the (i, j) th entry of $A(B+C)$ is

$$
\sum_{k=1}^{n} a_{i k}\left(b_{k j}+c_{k j}\right)=\sum_{k=1}^{n} a_{i k} b_{k j}+\sum_{k=1}^{n} a_{i k} c_{k j}=u_{i j}+v_{i j}
$$

where $u_{i j}, v_{i j}$ are the (i, j) th entries of $A B$ and $A C$ respectively; here we use the distributive law for R as well as the fact that addition is commutative. Hence $A(B+C)=A B+A C$. Similarly one sees that $(B+C) A=B A+C A$.

If R is a ring with 1 , then let $\mathbb{I}_{n}:=\left(\delta_{i, j}\right)$ be the matrix with 1 on the diagonal and 0 elsewhere. Then for any $A \in M_{n}(R)$, we have $A \cdot \mathbb{I}_{n}=A=\mathbb{I}_{n} \cdot A$, so \mathbb{I}_{n} makes $M_{n}(R)$ into a ring with 1 .
4. By inspecting the formula for multiplication of formal power series

$$
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right) \cdot\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k} .
$$

we see that the power series $1=1+0 x+0 x^{2}+0 x^{3}+\cdots$ provides a multiplicative identity for $R[[x]]$, making $R[[x]]$ a ring with 1 . Also, looking at the same multiplication formula, notice that if R is commutative then $a_{i} b_{j}=b_{j} a_{i}$, and hence

$$
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right) \cdot\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} a_{i} b_{j}\right) x^{k}=\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right) \cdot\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)
$$

so $R[[x]]$ is commutative. Also, since $0 \neq 1$ in R, the same holds in $R[[x]]$. Finally, if $\sum_{k=0}^{\infty} a_{k} x^{k}$ and $\sum_{k=0}^{\infty} b_{k} x^{k}$ are two nonzero elements in $R[[x]]$, then $m \in \mathbb{N}$ be the smallest index for which $a_{m} \neq 0$ and let $n \in \mathbb{N}$ be the smallest index for which $b_{n} \neq 0$. Then we claim that

$$
\begin{equation*}
\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right) \cdot\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=a_{m} b_{n} x^{m+n}+\left(a_{m+1} b_{n}+a_{m} b_{n+1}\right) x^{m+n+1}+\ldots \tag{0.1}
\end{equation*}
$$

is nonzero. Indeed, since R is an integral domain and since $a_{m} \neq 0$ and $b_{n} \neq 0$, we have that $a_{m} b_{n} \neq 0$, so the coefficient of x^{m+n} in the expression (0.1) is nonzero. This proves the claim, and completes the proof that $R[[x]]$ is an integral domain.
5. Let S be a subring of R. Since S is nonempty and since the condition from the definition of subring holds, the additive version of Lemma 1.5 shows that $(S,+)$ is a group. This group is abelian, because addition commutes in R. The second condition from the definition of subring implies that multiplication is a binary operation on S. In the ring $(R,+, \cdot)$, we have that \cdot is associative and that the distributive laws hold, so the same is true in $(S,+, \cdot)$. This shows that $(S,+, \cdot)$ is a ring.

Conversely, if $(S,+, \cdot)$ is a ring then S is nonempty (as it contains 0), and it's closed under both subtraction and multiplication, so S is a subring.

We have $0+i 0 \in \mathbb{Z}[i]$, so $\mathbb{Z}[i]$ is nonempty. For any $a+i b, c+i b \in \mathbb{Z}[i]$ we have

$$
(a+i b)-(c+i d)=(a-c)+i(b-d) \in \mathbb{Z}[i] \quad \text { and } \quad(a+i b)(c+i d)=(a c-b d)+i(a d+b c) \in \mathbb{Z}[i]
$$

since $a, b, c, d \in \mathbb{Z}$ implies that $a-c, b-d, a c-b d, a d+b c \in \mathbb{Z}$. Therefore $\mathbb{Z}[i]$ is a subring of \mathbb{C}, so it's a ring in its own right.
6. We first need to check that all the axioms for rings are fullfilled. Addition commutes because

$$
A+B=(A \cap \bar{B}) \cup(B \cap \bar{A})=(B \cap \bar{A}) \cup(A \cap \bar{B})=B+A,
$$

and \emptyset is the zero element because

$$
A+\emptyset=\emptyset+A=(A \cap \bar{\emptyset}) \cup(\emptyset \cap \bar{A})=(A \cap S) \cup \emptyset=A .
$$

As for the additive inverse, we've been asked to show that R is a Boolean ring, so the additive inverse of A must equal A itself, so we check this:

$$
A+A=(A \cap \bar{A}) \cup(A \cap \bar{A})=\emptyset .
$$

As is often the case, the hardest part in checking the group axioms is associativity. Here, notice that

$$
\begin{aligned}
(A+B)+C & =((A+B) \cap \bar{C}) \cup(\overline{A+B} \cap C) \\
& =((A \cap \bar{B}) \cup(\bar{A} \cap B)) \cap \bar{C}) \cup((\overline{A \cap \bar{B}) \cup(\bar{A} \cap B) \cap C)} \\
& =((A \cap \bar{B}) \cup(\bar{A} \cap B)) \cap \bar{C}) \cup((\overline{A \cap \bar{B}) \cap(\bar{A} \cap B) \cap C)} \\
& =((A \cap \bar{B}) \cup(\bar{A} \cap B)) \cap \bar{C} \cup((\bar{A} \cup B) \cap(A \cup \bar{B}) \cap C) \\
& =(A \cap \bar{B} \cap \bar{C}) \cup(\bar{A} \cap B \cap \bar{C}) \cup(\bar{A} \cap \bar{B} \cap C) \cup(A \cap B \cap C) .
\end{aligned}
$$

This last expression is completely symmetric in A, B, C, so it's equal to $(B+C)+A=A+(B+C)$.
To check the mulitplicative properties, notice that intersection of sets is an associative operation, so - is associative. Also, we have $A \cap S=S \cap A=A$, so S is the multiplicative identity. It remains to check that R satisfies the distributive laws. We have

$$
\begin{aligned}
C \cdot A+C \cdot B & =C \cap A \cap \overline{C \cap B} \cup C \cap B \cap \overline{C \cap A} \\
& =C \cap A \cap(\bar{C} \cup \bar{B}) \cup C \cap B \cap(\bar{C} \cup \bar{A}) \\
& =C \cap A \cap \bar{C} \cup C \cap A \cap \bar{B} \cup C \cap B \cap \bar{C} \cup C \cap B \cap \bar{A} .
\end{aligned}
$$

Now no element can be both in C and in \bar{C} and thus the last expression is equal to.

$$
C \cap A \cap \bar{B} \cup C \cap B \cap \bar{A}=C \cap(A \cap \bar{B} \cup B \cap \bar{A})=C \cdot(A+B) .
$$

Hence $C \cdot(A+B)=C \cdot A+C \cdot B$. Intersection of sets is a commutative operation, so we also have

$$
(A+B) \cdot C=C \cdot(A+B)=C \cdot A+C \cdot B=A \cdot C+B \cdot C
$$

as required. This shows that R is a ring, and it's Boolean because $A \cdot A=A \cap A=A$.

