EXERCISES 1

Please submit solutions by 3pm on Thursday 15th February to the pigeonholes in 4W (ground floor)

(W) = Warm-up; (H) = Homework; (A)=Additional.

1. (W) This exercise illustrates why cosets were introduced at the end of Algebra 1A, at least in the
special case where the group G is abelian. Let (G, +) be an abelian group and let H be a subgroup of G.
Define a relation on G by setting a ~ b < a—b € H for a,b € G. Show that:

(1) ~ is an equivalence relation, where the equivalence classes are precisely the subsets in G of the form
a+H={a+heG|heH} for a € G (these sets are the cosets of H in G);

(2) the sum of two cosets given by (a+H)+ (b+H) = (a+b)+ H is well-defined [Hint: for a,b,a’,t' € G
satisfying a ~ @' and b ~ V', show that a + b ~ a’ + V'], and hence show that the set of cosets of H
in G is an abelian group.

The set of cosets with the operation from (2) is an abelian group G/H called the quotient of G by H.
2. (W) Let R be a ring with 1. Show that if 0 is a unit, then the only element in R is 0.

3. (W) Let R be a ring. Show that the set M, (R) of all n X n matrices over R is a ring with respect to
the usual matrix addition and multiplication of matrices. If R is a ring with 1, is M,,(R) a ring with 17

4. (H) Let R be aring, and let R[[z]] denote the ring of formal power series with coefficients in R. Show
that if R is an integral domain, then so is R[[z]].

5. (H) Let (R,+,-) be a ring. Show that a nonempty subset S of R is a subring if and only if (S5, +, )
is a ring. [Hint: Lemma 1.5 does some of the work for you.] Deduce that the set of Gaussian integers

Zi):={a+ibeC|abe Z,i* = —1}
becomes a ring in which the operations are the usual addition and multiplication of complex numbers.

6. (A) Let S be a given set and let R = P(S) denote the power set of S, that is, the set containing all
subsets of S. For each A € Rlet A =S\ A. We define two binary operations on R as follows:

A+B=(ANB)U(BNA) and A-B=ANB.

Show that (R, +,-) is a Boolean ring in which the zero element is the emptyset and S is the multiplicative

identity. [Hint: It can be useful here to apply the De Morgan laws (AU B) = ANB and (AN B) = AUB.]
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SOLUTIONS 1

1. (1) Let a,b,c € G. Then a —a =0 € H means a ~ a, so ~ is reflexive. If a ~ b then a —b € H and
hence b—a = —(a—0b) € H by Lemma 1.5. This gives b ~ a, so ~ is symmetric. Finally if a ~ b and
b~ cthena—b,b—c e H. As H is closed under addition, it follows that (a—b)+(b—c¢) =a—c€ H
and hence a ~ c¢. This shows that ~ is transitive, so ~ is an equivalence relation.

To compute the equivalence classes, note that the equivalence class of a € G is

[a] = {beG|b~a}
= {beG|b—acH}
= {beG|3IheH such that b—a=h}
= {a+h|heH}
= a+H

as claimed.

(2) Let a,b,ad’,b’ € G and suppose that a ~ @’ and b ~ b'. Then a —a’,b —V € H. Since H is a
subgroup, we have
(a+b)—(d+b)=(a—d)+(b-V)eH,

so a+b~a + U as required.

We use this to check that addition is well-defined for cosets. For this, consider alternative repre-
sentatives of the cosets a+ H and b+ H, say o' € G satisfying a+ H = o'+ H and V/ € G satisfying
b+ H =10V + H. Then a ~ a’ and b ~ b and hence a + b ~ a’ + V' by above, so

d+H+V+H=(@+V)+H by definition
=(a+b)+H asa+b~a +
=a+H+b+H by definition,

as required. This shows that addition is a binary operation on the set of cosets G/H. To check
that (G/H,+) is an abelian group, we switch to equivalence class notation [a] = a + H (to save
space). Note that for a,b,c € G we have

([a] + []) + [c] = [a+ 0] + [ = [(a+b) +¢] = [a+ (b+ )] = a] + [b+ ¢] = [a] + ([b] + [¢]),

[a] + [b] = [a + b] = [b+ a] = [b] + [a].

Also, we have [a]+[0] = [a+0] = [a], so [0] is the zero element. Moreover, [a|+[—a] = [a+(—a)] = [0],
so [—a] is the additive identity of [a].

2. If 0 is a unit, then there exists 07! € R. Lemma 1.8(a) implies that 1 = 0-0~! = 0. Therefore, for
any a € R, we havea =a-1=a-0=0, ie., R is the zero ring {0}.

Note in passing that if 0 = 1, then R is the zero ring; to rule this out, we often assume 0 # 1.

3. The fact that (M, (R), +) is associative and commutative follows from the fact that (R, +) is an abelian
group. The matrix 05, in which every entry is 0 is clearly the additive identity. If A = (a;;) € M, (R)
then the matrix B = (b;;) satisfying b;; = —a;; is an additive inverse of A. Thus (M,,(R),+) is an abelian
group.



To see that multiplication is associative, let A = (a;;), B = (b;j) and C = (¢;;) be matrices in M, (R).
Let D = (di;) and E = (e;5) where D = AB and E = BC. The (i, j)th entry of (AB)C = DC'is then

> dincr; = Z (Z azlblk> = ay (Z blkckj> = auey;
k=1 =1 k=1 =1

k=1

which is the (7, j)th entry of AE = A(BC'); we applied here both the assocative law for the ring multi-
plication of R and the distributive law for R. This gives (AB)C = A(BC) as required.
For the distributive laws, the (7, j)th entry of A(B + C) is

n n n
Z aik(brj + crj) = § @ikbr; + E QikChj = Uij + Vij
k=1 = =

where u;j,v;; are the (i, j)th entries of AB and AC respectively; here we use the distributive law for R
as well as the fact that addition is commutative. Hence A(B + C') = AB + AC. Similarly one sees that
(B+ C)A=BA+ CA.

If R is a ring with 1, then let I, 0; ;) be the matrix with 1 on the diagonal and 0 elsewhere. Then

= (dij) b
for any A € M,,(R), we have A-I,, = A =1, - A, so [,, makes M,(R) into a ring with 1.

4. By inspecting the formula for multiplication of formal power series

k=0 \i+j=k

we see that the power series 1 = 1+02+022+0x3+- - - provides a multiplicative identity for R[[z]], making
R[[z]] a ring with 1. Also, looking at the same multiplication formula, notice that if R is commutative
then a;b; = bja;, and hence

(&) (80 Z ()= (5) ()

k=0 \i+j=k

so R[[z]] is commutative. Also, since 0 # 1 in R, the same holds in R[[z]]. Finally, if > 3%, axz® and
S22 o bk are two nonzero elements in R[[z]], then m € N be the smallest index for which a,, # 0 and
let n € N be the smallest index for which b, # 0. Then we claim that

(Z akxk> (Z brx ) = Ambn ™" + (amy1bn + ambn+1):ﬁm+"+1 + ... (0.1)
k=0

is nonzero. Indeed, since R is an integral domain and since a,, # 0 and b,, # 0, we have that a,,b, # 0,
so the coefficient of 2" in the expression (0.1) is nonzero. This proves the claim, and completes the
proof that R[[z]] is an integral domain.

5. Let S be a subring of R. Since S is nonempty and since the condition from the definition of subring
holds, the additive version of Lemma 1.5 shows that (S,+) is a group. This group is abelian, because
addition commutes in R. The second condition from the definition of subring implies that multiplication
is a binary operation on S. In the ring (R, +,-), we have that - is associative and that the distributive
laws hold, so the same is true in (S, +,-). This shows that (S,+,-) is a ring.

Conversely, if (S,+,-) is a ring then S is nonempty (as it contains 0), and it’s closed under both
subtraction and multiplication, so S is a subring.



We have 0 + i0 € Z[i], so Z][i] is nonempty. For any a + ib, c + ib € Z[i] we have
(a+ib) — (c+id)=(a—c)+i(b—d) € Zli] and (a+ib)(c+id) = (ac — bd) + i(ad + be) € Z]i

since a, b, ¢,d € Z implies that a — ¢,b — d, ac — bd, ad + bc € Z. Therefore Z[i] is a subring of C, so it’s a
ring in its own right.

6. We first need to check that all the axioms for rings are fullfilled. Addition commutes because
A+B=(ANB)U(BNA)=(BNA)U(ANB) =B+ A,
and () is the zero element because
A+0=0+A=ANHUWBNA) =(ANS)UD = A.

As for the additive inverse, we’ve been asked to show that R is a Boolean ring, so the additive inverse of
A must equal A itself, so we check this:

A+A=(ANnA)U(ANA) =0.

As is often the case, the hardest part in checking the group axioms is associativity. Here, notice that

(A+B)+C = (A+B)NnC)U(A+Bn0O)
= (ANB)U(ANB)NCYU((ANB)U(ANB)NC(C)
= (ANB)UANB)NCYU(ANB)N(ANB)NC)
= (ANB)U(ANB)NCU((AuB)N(AUB)NC)
= (ANBNC)U(ANBNC)U(ANBNC)U(ANBNO).

This last expression is completely symmetric in A, B, C, so it’s equal to (B+ C)+ A=A+ (B + C).

To check the mulitplicative properties, notice that intersection of sets is an associative operation, so
- is associative. Also, we have ANS =SNA = A, so S is the multiplicative identity. It remains to check
that R satisfies the distributive laws. We have

C-A+C-B = CNANCNBUCNBNCNA
= CNAN(CUB)UCNBN(CUA)
= CNANCUCNANBUCNBNCUCNBNA.

Now no element can be both in C' and in C and thus the last expression is equal to.
CNANBUCNBNA=CN(ANBUBNA)=C-(A+ B).
Hence C'- (A+ B) =C - A+ C - B. Intersection of sets is a commutative operation, so we also have
(A+B)-C=C-(A+B)=C-A+C-B=A-C+B-C

as required. This shows that R is a ring, and it’s Boolean because A- A= ANA = A.



