
LECTURE NOTES FOR MA20217 (ALGEBRA 2B)

Abstract. This course introduces abstract ring theory in order to establish in full the

structure theorem for linear operators on a finite dimensional vector space.
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What’s Algebra 2B about?

An n×n matrix A with coefficients in C defines a linear map fA : Cn → Cn by sending

each column vector v ∈ Cn to the column vector Av ∈ Cn obtained by multiplying

the matrices together. Matrices arise throughout mathematics, but they do so precisely

because they act on vectors, and this action is what the linear map describes.

Given an invertible n× n matrix P , the n× n matrix

B := P−1AP

represents the same linear map as A, but expresses it in a different choice of basis on Cn.

It can be helpful to think in terms of a commutative diagram of linear maps as shown:

(0.1) Cn
fB //

fP

��

Cn

Cn
fA // Cn

fP−1

OO

Therefore we may replace the matrix A by any such matrix B because we only care

about how matrices act on vectors; that is, we care only about the linear map fA. This

expresses the key conclusion of Algebra 1B for a square matrix A. We now ask:

Question: How best to choose the matrix P to give an especially simple matrix B? And

if this can be done, is the resulting matrix unique?

Ideally, we would choose B to be diagonal, but this isn’t always possible. For the

general case we take inspiration from the following:

Theorem (Fundamental Theorem of Arithmetic) Every integer n ≥ 2 can be ex-

pressed as the product of finitely many prime numbers, and this expression is unique up

to a change of order of the prime factors.

To state the analogous result for matrices, a Jordan block matrix is an m×m matrix

J(λ,m) =


λ 1

λ 1
. . . . . .

λ 1

λ


where λ ∈ C are the entries in the diagonal, 1’s lie immediately above the diagonal, and

there are zeroes everywhere else. Given an m×m matrix A and an n× n matrix B, the

(m+ n)× (m+ n) block matrix A⊕B is the matrix with A in the top-left m×m block,

with B in the bottom-right n× n block, and zeroes everywhere else.

The goal of Algebra 2B is to prove the following result:
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Theorem (Jordan Normal Form) Every n × n matrix A is similar to a matrix B

(this means there exists invertible P such that B = P−1AP ) which can be expressed as

the direct sum of finitely many Jordan block matrices, and this expression is unique up

to a change of order of the Jordan blocks.

The idea that ties these theorems together is the existence of a ‘unique decomposition’,

more typically called unique factorisation. The Jordan Normal Form theorem provides

the answer to the question that we asked above; it tells us that we can get pretty close

to diagonalising any square matrix with entries in C.

Our proof of the Jordan Normal Form theorem uses many fundamental properties of

the polynomial ring C[t], and for this reason, we begin with an introduction to rings.

We’ll also spend some time investigating a class of rings that exhibit nice unique factori-

sation properties, called Unique Factorisation Domains (UFDs). We also present several

applications to various branches of algebra.

1. Rings

1.1. A reminder on groups. Informally, a ring is simply a set equipped with ‘sensible’

notions of addition and multiplication that are compatible. We would like the definition

to be broad enough to include examples like the integers, the set of n×n complex-valued

matrices under the usual matrix addition and multiplication, and the set of complex-

valued polynomials under the usual polynomial addition and multiplication. At the same

time, we don’t want the definition to be so broad that we’re unable to prove any interesting

theorems.

Before introducing the formal definition of a ring (and recalling that of a group), recall

that a binary operation on a set S is a function

f : S × S → S.

The binary operations that crop up here are typically addition, denoted +, or multipli-

cation, denoted ·. We write a+ b rather than +(a, b), and a · b rather than ·(a, b).

Definition 1.1 (Group). A group is a pair (G, ∗), where G is a set, ∗ is a binary

operation on G and the following axioms hold:

• (The associative law)

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

• (Existence of an identity) There exists an element e ∈ G with the property that

e ∗ a = a and a ∗ e = a for all a ∈ G.

• (The existence of an inverse) For each a ∈ G there exists b ∈ G such that

a ∗ b = b ∗ a = e.

If it is clear from the context what the group operation ∗ is, one often simply refers to

the group G rather than to the pair (G, ∗).
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Remarks 1.2. Both the identity element and the inverse of a given element are unique:

(1) if e, f ∈ G are two elements satisfying the identity property from (b) above, then

f = e ∗ f = e,

where the first identity follows from the fact that e satisfies the property and the

latter from the fact that f satisfies the property.

(2) Given a ∈ G, if b, c ∈ G are both elements satisfying (c) above, then

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c.

This unique element b is called the inverse of a. It is often denoted a−1.

Definition 1.3 (Abelian group). A group (G, ∗) is abelian if a∗b = b∗a for all a, b ∈ G.

The binary operation in an abelian group is often written as +, in which case the

identity element is denoted 0, and the inverse of an element a ∈ G is denoted −a ∈ G.

Definition 1.4 (Subgroup). A nonempty subset H of a group G is a subgroup of G iff

(1.1) ∀ a, b ∈ H, we have a ∗ b−1 ∈ H.

This version of the definition is great when you want to show that a subset is a subgroup,

because there’s so little to check. Despite this, we have (see Algebra 1A):

Lemma 1.5. A nonempty subset H of a group (G, ∗) is a subgroup if and only if (H, ∗)
is a group.

Proof. Let H be a subgroup of (G, ∗). Since H is nonempty, there exists a ∈ H and hence

e = a ∗ a−1 ∈ H by equation (1.1). For a ∈ H, apply condition (1.1) to the elements

e, a ∈ H to see that a−1 = e∗a−1 ∈ H. Also, for a, b ∈ H, we’ve just shown that b−1 ∈ H,

so applying condition (1.1) to the elements a, b−1 ∈ H gives a ∗ b = a ∗ (b−1)−1 ∈ H. In

particular, ∗ is a binary operation on H, and since (G, ∗) is a group, the operation ∗ on H

is associative. For the converse, let H be a subset of G such that (H, ∗) is a group. Then

the identity element e ∈ H, so H is nonempty. Let a, b ∈ H. Then b−1 lies in H since H

is a group, and since ∗ is a binary operation on H we have a ∗ b−1 ∈ H as required. �

1.2. Definitions and basic properties of rings. We now move on to rings.

Definition 1.6 (Ring). A ring is a triple (R,+, ·), whereR is a set with binary operations

+: R×R→ R (a, b) 7→ a+ b and · : R×R→ R (a, b) 7→ a · b

such that the following axioms hold:
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• (R,+) is an abelian group. Write 0 for the (unique) additive identity, and −a for

the (unique) additive inverse of a ∈ R, so

(a+ b) + c = a+ (b+ c) for all a, b, c ∈ R;

a+ 0 = a for all a ∈ R;

a+ b = b+ a for all a, b ∈ R;

a+ (−a) = 0 for all a ∈ R.

• (The associative law under multiplication)

(a · b) · c = a · (b · c) for all a, b, c ∈ R;

• (The distributive laws hold)

a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R;

(b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R.

Notation 1.7. We often omit · and write ab instead of a · b. For simplicity we often avoid

brackets when there is no ambiguity. Here the same conventions hold as for real numbers,

i.e., that · has priority over +. For example ab + ac stands for (a · b) + (a · c) and not

(a · (b+ a)) · c. One also writes a2 for a · a and 2a for a+ a and so on.

Lemma 1.8. In any ring (R,+, ·), we have

(1) a · 0 = 0 and 0 = 0 · a for all a ∈ R; and

(2) a · (−b) = −(a · b) and −(a · b) = (−a) · b for all a, b ∈ R.

Proof. For (1), let a ∈ R. Since 0 is an additive identity, one of the distributive laws gives

a · 0 = a · (0 + 0) = a · 0 + a · 0.

Adding −(a · 0) on the left on both sides gives

−(a · 0) + a · 0 = −(a · 0) + a · 0 + a · 0.

The left hand side is zero, and the associativity law gives that the right hand side is

(−(a · 0) + a · 0) + a · 0 = 0 + a · 0 = a · 0

as required. The second identity is similar. To prove (2), note that

a · b+ a · (−b) = a · (b+ (−b)) = a · 0 = 0.

This means that a · (−b) is the additive inverse of ab, that is, a · (−b) = −(a · b). The

second identity is similar. �

Definition 1.9 (Units in a ring with 1). A ring (R,+, ·) is called a ring with 1 (also

called a unital ring) if there is a multiplicative identity, i.e., an element 1 ∈ R satisfying

a · 1 = 1 · a = a for all a ∈ R.

An element a ∈ R in a ring with 1 is a unit if it has a multiplicative inverse, i.e., if there

exists b ∈ R such that a · b = b · a = 1.
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Remarks 1.10. Let R be a ring with 1. Then:

(1) the multiplicative identity is unique. The same argument as before works, i.e., if

1, 1̄ are both multiplicative identity elements, then 1̄ = 1̄ · 1 = 1.

(2) The multiplicative inverse of a unit is unique, see Remark 1.2(2) for the argument.

We denote the multiplicative inverse by a−1.

Definition 1.11 (Other common types of ring). Let (R,+, ·) be a ring. Then:

(1) R is a commutative ring if a · b = b · a for all a, b ∈ R.

(2) R is an integral domain if it is a commutative ring with 1 in which 0 6= 1, such

that if a, b ∈ R satisfy ab = 0, then a = 0 or b = 0.

(3) R a division ring if it is a ring with 1 in which 0 6= 1, such that every non-zero

element is a unit, i.e.,

for all a ∈ R \ {0}, there exists b ∈ R such that ab = 1 = ba.

(4) R is a field if it is a commutative division ring.

Remark 1.12. Every field k is an integral domain. Indeed, if a, b ∈ k satisfy ab = 0 and

if a 6= 0, then b = 1 · b = a−1ab = a−1 · 0 = 0.

1.3. Examples of rings. We’ll start with a few familiar examples.

Examples 1.13. (1) Every field is a commutative ring and hence so are Q,R,C with

respect to the usual addition and multiplication.

(2) Division rings need not be commutative, so division rings need not be fields. We’ll

see an example of a noncommutative division ring (hence not a field) in section 4.

(3) The ring Z is an integral domain, but it’s not a division ring, so it’s not a field.

(4) The commutative ring Z4 = {[0], [1], [2], [3]} satisfies [2] · [2] = [4] = [0] and yet

[2] 6= [0], so Z4 is not an integral domain.

Example 1.14 (The ring of n × n matrices over R). For any ring R, let Mn(R)

denote the set of all n×n matrices with coefficients in the ring R. Then Mn(R) is a ring

with respect to usual addition and multiplication of square matrices. If R is a ring with

1 then so is Mn(R), but this ring is not commutative in general even if R is commutative

(ask yourself: what goes wrong?).

Example 1.15 (The ring of formal power series with coefficients in R). Let R

be a ring and let x be a variable. A formal power series f over R is a formal expression

f =
∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + a3x
3 + · · ·

with ak ∈ R for k ≥ 0 (we don’t worry about convergence: R is any ring, so we have no

notion of ‘distance’ between two elements). Let

R[[x]] :=

{
∞∑
k=0

akx
k | ak ∈ R for all k ≥ 0

}
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be the set of all formal power series over R, where addition and multiplication on R[[x]]

are defined as follows:
∞∑
k=0

akx
k +

∞∑
k=0

bkx
k :=

∞∑
k=0

(ak + bk)x
k

(
∞∑
k=0

akx
k

)
·

(
∞∑
k=0

bkx
k

)
:= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x

2 + · · ·

=
∞∑
k=0

(∑
i+j=k

aibj

)
xk.

As R is an abelian group with respect to the ring addition it follows readily that (R[[x]],+)

is an abelian group in which the power series 0 = 0 + 0x+ 0x2 + · · · is the zero element.

To see that (R[[x]],+, ·) is a ring, it remains to see that the multiplication is associative

and that the distributive laws hold. For this, let

f =
∞∑
k=0

akx
k, g =

∞∑
k=0

bkx
k, h =

∞∑
k=0

ckx
k

be formal power series. The coefficent of xn in the product (fg)h is∑
i+j+k=n

(aibj)ck

which (as multiplication in R is associative) is the same as∑
i+j+k=n

ai(bjck),

the coefficient of xn in f(gh). It follows that (fg)h = f(gh), so multiplication in R[[x]]

is associative. Finally we check the distributive laws. The coefficent of xn in f(g + h) is∑
i+j=n

ai(bj + cj) =
∑
i+j=n

aibj +
∑
i+j=n

aicj

which equals the coefficient of xn in fg+ fh, so f(g+h) = fg+ fh. Similary one proves

that (g + h)f = gf + hf . This completes the proof that (R[[x]],+, ·) is a ring.

Remarks 1.16. (1) Two formal power series
∑∞

k=0 akx
k and

∑∞
k=0 bkx

k coincide if and

only if (ak) = (bk), i.e., the variable x is superfluous.

(2) Many properties of the ring R carry over to R[[x]]; see Exercise sheet 1.

1.4. Subrings. We now introduce subrings of a ring.

Definition 1.17 (Subring). A nonempty subset S of a ring R is a subring iff

∀ a, b ∈ S, we have a− b ∈ S.
∀ a, b ∈ S, we have a · b ∈ S.

The sets of the form r + S = {r + s | s ∈ S} for r ∈ R are the cosets of S in R.
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Lemma 1.18. Let S be a subset of a ring (R,+, ·). Then S is a subring of R if and only

if (S,+, ·) is a ring.

Proof. This is an exercise. �

Examples 1.19. (1) For any ring R, both {0} and R are subrings of R.

(2) The ring Z is a subring of Q which is a subring of R which is a subring of C under

the usual operations of addition and multiplication.

(3) The even integers Z2 are a subring of Z, and hence they form a ring in their own

right by Lemma 1.17. This ring is not a ‘ring with 1’. In particular, a subring of

a ‘ring with 1’ need not be a ‘ring with 1’ (!).

(4) The Gaussian integers Z[i] := {a + bi ∈ C | a, b ∈ Z} form a subring of the field

C, so Z[i] is a ring. The next result implies that Z[i] is an integral domain.

Lemma 1.20. If a subring S of an integral domain R contains the element 1, then S is

an integral domain.

Proof. The only property of an integral domain R that is not necessarily inherited by

every subring is the existence of 1, but this follows from the assumptions. �

Example 1.21 (The ring of polynomials with coefficients in R). Let R be a

ring and let
∑∞

k=0 akx
k ∈ R[[x]] be a formal power series. If only finitely many of the

coefficients ak are nonzero, we say that
∑∞

k=0 akx
k is a polynomial and we write

R[x] :=

{
∞∑
k=0

akx
k ∈ R[[x]] | ak 6= 0 for only finitely many k ≥ 0

}
for the subset of polynomials. In particular, by ignoring the terms with coefficient equal

to zero, any polynomial can be written as a0 + a1x + · · · + anx
n for some n ≥ 0. The

degree of a nonzero polynomial is the largest n such that an 6= 0.

We claim that R[x] is a subring of R[[x]]. Indeed, if f =
∑∞

k=0 akx
k, g =

∑∞
k=0 bkx

k are

polynomials of degree m and n respectively, then

f − g =
∞∑
k=0

akx
k −

∞∑
k=0

bkx
k =

∞∑
k=0

(ak − bk)xk

is a polynomial of degree at most max(m,n), and

∞∑
k=0

akx
k ·

∞∑
k=0

bkx
k =

∞∑
k=0

(∑
i+j=k

aibj

)
xk.

is a polynomial of degree at most m+ n. In particular, R[x] is a ring by Lemma 1.17.

End of Week 1
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1.5. Quotient rings. For the moment, let R be any set. Recall that a relation ∼ on R

is a subset S ⊂ R×R, in which case we write

a ∼ b ⇐⇒ (a, b) ∈ S.

An equivalence relation on R is a relation ∼ that is reflexive, symmetric and transitive,

and the equivalence class of an element a ∈ R is the (nonempty) set

[a] := {b ∈ R | b ∼ a}

of elements that are equivalent to a. Every element lies in a unique equivalence class, and

any two distinct equivalences classes are disjoint subsets of R; we say that the equivalence

classes partition the set R (see Algebra 1A).

The key point for us is that an equivalence relation on a set R produces a new set,

namely the set of equivalence classes

R/∼ :=
{

[a] | a ∈ R
}
.

Question 1.22. If R is a ring (not just a set), do we require extra conditions on an

equivalence relation ∼ to ensure that the set R/∼ of equivalence classes is a ring?

You’ve already seen examples of this in Algebra 1A:

Example 1.23 (The ring Zn of integers mod n). For any n ∈ Z, consider the subset

Zn := {mn ∈ Z | m ∈ Z} of integers that are divisible by n (notice that Zn = Z(−n), so

we may as well assume n ≥ 0). There is an equivalence relation ∼ on Z defined by

a ∼ b ⇐⇒ n|(b− a) ⇐⇒ b− a ∈ Zn.

Any integer m can be written in the form m = qn + r for a unique 0 ≤ r < n, in which

case [m] = [r]. Therefore the set of equivalence (or congruence) classes is simply

Zn := Z/∼ =
{

[a] | a ∈ Z
}

=
{

[0], [1], . . . , [n− 1]
}
.

The crucial point for us is that Zn is more than a set: addition and multiplication can

be defined as follows:

[a] + [b] := [a+ b] and [a] · [b] := [a · b].

This says simply that we add and multiply the representatives a and b in Z, and then

take the equivalence class of the result using the fact that [n] = [0]. To be explicit, Z/Z3

has three elements [0], [1] and [2], and the addition and multiplication tables are

+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

· [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

In this case, notice that both [1] and [2] have a multiplicative inverse. This shouldn’t be

a surprise: you know that Zn is a field if and only if n is a prime.
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Definition 1.24 (Congruence relation). Let R be a ring and let ∼ be an equivalence

relation on R. We say that ∼ is a congruence iff for all a, b, a′, b′ ∈ R, we have

(1.2) a ∼ a′ and b ∼ b′ =⇒ a+ b ∼ a′ + b′ and a · b ∼ a′ · b′.

The equivalence classes of a congruence ∼ are called congruence classes.

Remark 1.25. This says simply that one can add or multiply any two equivalence classes

[a], [b] ∈ R/∼ by first adding or multiplying any representative of the equivalence classes

in the ring R, and then taking the congruence class of the result.

Addition and multiplication in Zn is possible precisely because the equivalence relation

∼ on Z defined in Example 1.23 is a congruence. More generally, we have the following:

Theorem 1.26 (Quotient rings). Let ∼ be a congruence on a ring R. Define addition

and multiplication on the set R/∼ of equivalence classes as follows: for a, b ∈ R, define

[a] + [b] := [a+ b] and [a] · [b] := [a · b].

Then (R/∼,+, ·) is a ring with zero element [0]. Moreover:

(1) if R is a ring with 1, then the element [1] makes R/∼ into a ring with 1; and

(2) if R is commutative then so is R/∼.

Proof. We first check that addition and multiplication are well-defined for equivalence

classes. For this, consider alternative representatives of the equivalence classes [a] and

[b], say a′ ∈ R satisfying [a] = [a′] and b′ ∈ R satisfying [b] = [b′]. Then

[a′] + [b′] = [a′ + b′] by definition

= [a+ b] by the congruence property

= [a] + [b] by definition,

and similarly

[a′] · [b′] = [a′ · b′] by definition

= [a · b] by the congruence property

= [a] · [b] by definition

as required. This means that addition and multiplication define binary operations on the

set R/∼ of equivalence classes. We now check that all the ring axioms hold:

(1) To check that (R/∼,+) is an abelian group, (look at Exercise 1.1 or) note that

for a, b, c ∈ R we have

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c] = [a+ (b+ c)] = [a] + [b+ c] = [a] + ([b] + [c]),

[a] + [b] = [a+ b] = [b+ a] = [b] + [a].

Also, we have [a] + [0] = [a + 0] = [a], so [0] is the zero element. Moreover,

[a] + [−a] = [a+ (−a)] = [0], so [−a] is the additive identity of [a].
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(2) To check that (R/∼, ·) is associative, note that for a, b, c ∈ R we have

([a] · [b]) · [c] = [ab] · [c] = [(ab)c] = [a(bc)] = [a] · [bc] = [a] · ([b] · [c]).

(3) To check that R/∼ satisfies the distributive laws, note that for a, b, c ∈ R we have

[c] · ([a] + [b]) = [c] · [a+ b] = [c(a+ b)]

= [ca+ cb]

= [ca] + [cb]

= [c] · [a] + [c] · [b].

One proves that ([a] + [b]) · [c] = [a] · [c] + [b] · [c] similarly.

This completes the proof that (R/∼,+, ·) is a ring with zero element [0]. To finish off,

note first that if R is a ring with 1, then [1] ∈ R/∼ is a multiplcative identity because

[a] · [1] = [a · 1] = [a] = [1 · a] = [1] · [a],

hence R/∼ is a ring with 1. Finally, if R is commutative then

[a] · [b] = [a · b] = [b · a] = [b] · [a],

so R/∼ is commutative. �

In order to produce many examples of congruences, we first establish a link between

congrences and a very special class of subrings.

Definition 1.27 (Ideal). A nonempty subset I of a ring R is an ideal in R if and only if

∀ a, b ∈ I, we have a− b ∈ I
∀ a ∈ I, r ∈ R, we have r · a, a · r ∈ I.

Remark 1.28. This simply means that an ideal is an additive subgroup that is closed

under multiplication by all elements of the ring. Notice that every ideal I in R is a

subring of R. In particular, Lemma 1.17 implies that every ideal contains 0R.

Example 1.29 (Principal ideal). Let R be a commutative ring and let a ∈ R. The set

Ra := {r · a ∈ R | r ∈ R}

(sometimes denoted 〈a〉 if the ring R is clear from the context) is an ideal in R; this is

called the ideal generated by a, and every ideal of this form is called a principal ideal.

Lemma 1.30. Let ∼ be a congruence relation on a ring R, and let I := [0] denote the

congruence class of 0. Then I is an ideal in the ring R. Moreover:

(1) for a, b ∈ R, we have a ∼ b ⇐⇒ a− b ∈ [0]; and

(2) the congruence classes of ∼ are the cosets of I, i.e., [a] = a+ [0] for all a ∈ R.

Proof. See Exercise Sheet 2. �
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Proposition 1.31. Let I be an ideal in R, and define ∼ on R by setting

a ∼ b if and only if a− b ∈ I.

Then ∼ is a congruence relation in which the equivalence classes are the cosets of I in

R, i.e., we have [a] = a+ I for all a ∈ R. In particular, [0] = I.

Proof. We first show that ∼ is an equivalence relation. Let a, b, c ∈ R. Then a−a = 0 ∈ I
means a ∼ a, so ∼ is reflexive. If a ∼ b then a − b ∈ I and hence b − a = −(a − b) ∈ I
by Lemma 1.17. This gives b ∼ a, so ∼ is symmetric. Finally if a ∼ b and b ∼ c then

a− b, b− c ∈ I. As I is closed under addition, it follows that (a− b) + (b− c) = a− c ∈ I
and hence a ∼ c. This shows that ∼ is transitive, so ∼ is an equivalence relation.

To prove that ∼ is a congruence, let a, b, a′, b′ ∈ R and suppose that a ∼ a′ and b ∼ b′.

Then a− a′, b− b′ ∈ I. Since I is an ideal, we have

(a+ b)− (a′ + b′) = (a− a′) + (b− b′) ∈ I

by the first defining property of an ideal, so a+b ∼ a′+b′. Finally, by adding 0 = −ab′+ab′
below, we get

ab− a′b′ = ab+
[
− ab′ + ab′

]
− a′b′ = a(b− b′) + (a− a′)b′ ∈ I

by the second defining property of an ideal, so ab ∼ a′b′ as required.

For a ∈ R, the equivalence class of a is

[a] := {b ∈ R | b ∼ a} = {b ∈ R | b− a ∈ I}
= {b ∈ R | ∃ i ∈ I such that b− a = i}
= {a+ i | i ∈ I}
= a+ I

as claimed. �

Proposition 1.31 says that ideals determine congruence relations, and it provides the

converse to Lemma 1.30. These results together establish a one-to-one correspondence

between congruences on a ring and ideals in that ring. We may therefore change our

point-of-view when considering quotient rings: then next definition simply rewrites the

definition of the quotient ring R/∼ constructed in Theorem 1.26 directly in terms of the

ideal I associated to the congruence class ∼.

Definition 1.32 (Quotient rings from ideals). Let I be an ideal in a ring R. The

quotient ring R/I is the set

R/I = {a+ I : a ∈ R}

of cosets of I in R, where we define addition and multiplication in the ring R/I by

(a+ I) + (b+ I) = (a+ b) + I

(a+ I) · (b+ I) = (a · b) + I.
12



Remark 1.33. Remember that these addition and multiplication formulas simply mean

that we add and multiply the representatives a and b of each coset as if we’re adding and

multiplying in R, and then we take the coset of the resulting element of R.

Example 1.34. In Example 1.23, the subset Zn of Z is an ideal, so Zn := Z/Zn is a

ring. It’s a commutative ring with 1 because Z is too (recall that we may assume n ≥ 1).

Example 1.35. For a ring R, consider the polynomial ring R[x]. Let

〈x2〉 :=
{
f · x2 ∈ R[x] | f ∈ R[x]

}
denote the ideal in R[x] generated by x2. This ideal determines the congruence relation

∼ on R[x], where for f, g ∈ R[x]

f ∼ g ⇐⇒ f − g ∈ 〈x2〉 ⇐⇒ x2|f − g.

Any polynomial f can be written in the form f = gx2 + ax + b for unique a, b ∈ R, so

[f ] = [ax+ b] for some a, b ∈ R. Therefore

R[x]/〈x2〉 =
{

[ax+ b] | a, b ∈ R
}
,

where addition and multiplication are given by

[ax+ b] + [cx+ d] = [(a+ c)x+ (b+ d)]

and

[ax+ b] · [cx+ d] = [acx2 + (ad+ bc)x+ bd] = [(ad+ bc)x+ bd]

respectively. Notice that we add and multiply as if we’re working with polynomials and

then we modify the result using the fact that [x2] = [0].

End of Week 2.

2. Ring homomorphisms

2.1. Definitions and examples. We now introduce ring homomorphims which do for

rings what maps do for sets, what linear maps do for vector spaces and what group

homomorphisms do for groups.

Definition 2.1 (Ring homomorphism). Let R, S be rings. A map φ : R → S is said

to be a ring homomorphism if and only if for all a, b ∈ R, we have

φ(a+ b) = φ(a) + φ(b) and φ(a · b) = φ(a) · φ(b).

Examples 2.2. Consider two maps from the integers involving the number 2:
13



(1) The function φ : Z→ Z2 defined by

φ(n) =

{
0 if n is even

1 if n is odd

is a ring homomorphism. Indeed, if we compare the rules for adding and multi-

plying even and odd integers

+ even odd

even even odd

odd odd even

· even odd

even even even

odd even odd

with the addition and multiplication tables for Z2, we see that computing in

Z and then applying φ is the same as applying φ and then computing in Z2.

(2) The function φ : Z → 2Z defined by φ(n) = 2n is not a ring homomorphism,

because φ(nm) = 2nm is typically not equal to 4nm = (2n)(2m) = φ(n)φ(m).

Lemma 2.3. The composition of two ring homomorphisms is a ring homomorphism.

Proof. This is an exercise. �

Lemma 2.4. If φ : R→ S is a ring homomorphism then

(1) for a, b ∈ R, we have φ(b− a) = φ(b)− φ(a);

(2) φ(0R) = 0S;

(3) for a ∈ R, we have φ(−a) = −φ(a).

Proof. For part (1), we have

φ(b− a) + φ(a) = φ
(
(b− a) + a

)
= φ

(
b+ (a− a)

)
= φ(b+ 0) = φ(b),

and add −φ(a) to both sides. For (2), substitute b = a in (1) to obtain

φ(0R) = φ(a− a) = φ(a)− φ(a) = 0S.

For part (3), substitute b = 0 into part (1) and use part (2) to obtain

φ(−a) = φ(0R − a) = φ(0R)− φ(a) = 0S − φ(a) = −φ(a)

as required. �

Example 2.5. For n ∈ Z≥0, the map φ : Z→ Zn sending m to its equivalence class [m]

modulo n is a ring homomorphism. To see this, generalise the method from Example 2.2

above. For details, see Example 2.10 which provides a much broader generalisation.

Example 2.6 (Evaluation map). Let R be a commutative ring and choose r ∈ R. Let

S be a subring of R (the first time you read this example, assume S = R for simplicity).

Given a polynomial f ∈ S[x] with coefficients in S, then f(r) ∈ R, so we obtain a map

φ : S[x]→ R : f 7→ f(r)

given by evaluating each polynomial at r ∈ R, i.e., substitute r ∈ R into each polynomial.
14



We claim that this map is a ring homomorphism. Indeed, given any two polynomials

f =
∑m

k=0 akx
k and g =

∑n
k=0 bkx

k, we have for ` = max{m,n} that

φ(f + g) = φ

(∑̀
k=0

(ak + bk)x
k

)
=
∑̀
k=0

(ak + bk)r
k =

m∑
k=0

akr
k +

n∑
k=0

bkr
k = φ(f) + φ(g),

where the third equals sign uses commutativity of addition and distributivity in R. Also,

for ` = m+ n, we have that

φ(fg) = φ

(∑̀
k=0

(∑
i+j=k

aibj

)
xk

)
by definition of multiplication in R[x]

=
∑̀
k=0

(∑
i+j=k

aibj

)
rk

=
m∑
i=0

air
i ·

n∑
j=0

bjr
j see below

= φ

(
m∑
i=0

aix
i

)
· φ

(
n∑
j=0

bjx
j

)
= φ(f) · φ(g),

where the middle equals sign requires the distributive laws, commutativity of addition

and associativity of both addition and multiplication in the ring R.

2.2. Kernel and Image. A ring homomorphism φ : R→ S defines a subset in R and a

subset in S that play an important role in what follows:

Definition 2.7 (Kernel and image). Let φ : R → S be a ring homomorphism. The

kernel of φ is the subset of R given by

Ker(φ) = {a ∈ R | φ(a) = 0}

and the image of φ is the subset of S given by

Im(φ) = {φ(a) ∈ S | a ∈ R}.

Lemma 2.8 (Properties of the kernel). Let φ : R → S be a ring homomorphism.

Then Ker(φ) is an ideal of R. Moreover, φ is injective iff Ker(φ) = {0}.

Proof. Since φ(0R) = 0S we have 0R ∈ Ker(φ) and hence Ker(φ) 6= ∅. For a, b ∈ Ker(φ),

φ(a− b) = φ(a)− φ(b) = 0− 0 = 0,

and for r ∈ R and a ∈ Ker(φ) we have

φ(ra) = φ(r)φ(a) = φ(r) · 0 = 0 and φ(ar) = φ(a)φ(r) = 0 · φ(r) = 0.

Thus a− b, ra, ar ∈ Ker(φ), so Ker(φ) is an ideal in R.
15



To prove the second statement, assume Ker(φ) = {0} and suppose that a, b ∈ R satisfy

φ(a) = φ(b). Then Lemma 2.4(1) implies that

φ(b− a) = φ(b)− φ(a) = 0

so b− a ∈ Ker(φ). This forces a = b, so φ is injective. Conversely, assume φ is injective

and let a ∈ Ker(φ). Lemma 2.4(2) gives φ(0) = 0 = φ(a), and injectivity of φ forces

a = 0, hence Ker(φ) = {0} as required. �

Lemma 2.9 (Properties of the image). Let φ : R → S be a ring homomorphism.

Then Im(φ) is a subring of S. Moreover, φ is surjective iff Im(φ) = S.

Proof. Again φ(0R) = 0S, so Im(φ) is nonempty. Let a, b ∈ Im(φ), so there exists c, d ∈ R
such that a = φ(c) and b = φ(d). Then

a− b = φ(c)− φ(d) = φ(c− d)

by Lemma 2.4(1), and ab = φ(c)φ(d) = φ(cd). This gives a − b, ab ∈ Im(φ), so Im(φ) is

a subring of S. That φ is surjective if and only if Im(φ) = S holds by definition. �

Example 2.10 (Two fundamental maps). Let I be an ideal in a ring R, and consider

the map π : R → R/I defined by setting π(a) = a + I. This is a ring homomorphism,

because

π(a+ b) = (a+ b) + I = (a+ I) + (b+ I) = π(a) + π(b),

and

π(ab) = ab+ I = (a+ I)(b+ I) = π(a) · π(b).

It’s clearly surjective, and π(a) = 0 ⇐⇒ a ∈ I. Therefore Im(π) = R/I and Ker(π) = I.

Now let S be a subring of a ring R. Consider the map ι : S → R defined by sending

each element s ∈ S to the same element considered as an element in R, i.e., ι(s) = s ∈ R.

This is a ring homomorphism because

ι(a+ b) = a+ b = ι(a) + ι(b)

and

ι(a · b) = a · b = ι(a) · ι(b).
It’s clearly injective and it has image S ⊆ R, so Ker(ι) = {0} and Im(ι) = S.

Theorem 2.11 (Universal property of the quotient map). Let φ : R→ S is a ring

homomorphism and let I be an ideal in R satisfying I ⊆ Ker(φ). Then there exists a

unique ring homomorphism φ : R/I → S such that the diagram

R
φ

//

π
��

S

R/I
φ

88

commutes, i.e., φ ◦ π = φ (here π : R→ R/I is the quotient map from Example 2.10).
16



Proof. Consider the map φ : R/I → S defined by setting φ
(
a + I

)
= φ(a). To see that

this map is well-defined independent of any choices, notice that

a+ I = b+ I ⇐⇒ a− b ∈ I =⇒ a− b ∈ Ker(φ)

⇐⇒ 0 = φ(a− b) = φ(a)− φ(b) ⇐⇒ φ(a) = φ(b).

In particular, we’ve shown that a+ I = b+ I =⇒ φ(a) = φ(b), so φ does not depend on

the choice of representative a in the coset a+ I.

To see that φ is a ring homomorphism, notice that

φ((a+ I) + (b+ I)) = φ((a+ b) + I) = φ(a+ b) = φ(a) + φ(b) = φ(a+ I) + φ(b+ I)

and

φ((a+ I) · (b+ I)) = φ(ab+ I) = φ(ab) = φ(a) · φ(b) = φ(a+ I) · φ(b+ I).

This ring homomorphism satisfies φ ◦ π = φ, because for all a ∈ R we have(
φ ◦ π

)
(a) = φ(a+ I) = φ(a)

as required. Notice that it’s the unique such ring homomorphism: the condition φ◦π = φ

forces us to have (φ ◦ π)(a) = φ(a) for all a ∈ R, and since π(a) = a + I, this forces our

map to satisfy φ(a+ I) = φ(a) for all a ∈ R. �

2.3. Isomorphisms of rings. We now study isomorphisms of rings.

Definition 2.12 (Ring isomorphism). Let R, S be rings. A homomorphism φ : R→ S

is called an isomorphism if there is a ring homomorphism ψ : S → R such that ψ(φ(r)) = r

for all r ∈ R and φ(ψ(s)) = s for all s ∈ S. Given an isomorphism φ : R → S, we say

that R is isomorphic to S and write R ∼= S.

Remarks 2.13. (1) Clearly the inverse of a ring isomorphism is a ring isomorphism.

Indeed, forgetting for a moment the addition and multiplication, an isomorphism

φ : R→ S is bijective as a map of sets, and the inverse is the map φ−1 = ψ from

Definition 2.12. In particular, we’re allowed to say that R and S are isomorphic

without having to worry about whether we say R first or S first.

(2) If R is isomorphic to S then there is no structural difference between the two rings

(see Exercise sheet 4).

Theorem 2.14 (The first isomorphism theorem). Let φ : R → S be a ring homo-

morphism. Then there is a ring isomorphism

φ :
(
R/Ker(φ)

)
−→ Im(φ).

Proof. Applying the universal property from Theorem 2.11 to the ideal I := Ker(φ) gives

a ring homomorphism φ : R/Ker(φ) → S given by φ
(
a + I

)
= φ(a). We may write this

as a surjective ring homomorphism

(2.1) φ : R/Ker(φ)→ Im(φ)
17



simply by changing the target of the morphism from S to the image of φ. To see that φ is

injective, suppose φ(a+ I) = φ(b+ I), i.e, φ(a) = φ(b). Then φ(a− b) = φ(a)−φ(b) = 0,

giving a− b ∈ Ker(φ) = I and hence a+ I = b+ I as required. Therefore the map φ from

(2.1) is a bijective ring homomorphism, so it’s an isomorphism by Exercise Sheet 3. �

Remark 2.15. (1) It is impossible to overstate how important Theorem 2.14

is. We’ll give several applications in the weeks ahead.

(2) Theorem 2.14 says in particular that every ring homomorphism can be written as

the composition of a surjective ring homomorphism, then an isomorphism, and

finally an injective ring homomorphism as shown below:

R
φ

//

π
��

S

R/I
φ

// Im(φ)

ι

OO

2.4. The characteristic of a ring with 1. We use the following standard short hand

notation for iterated sums in a ring R: for any positive integer n and for a ∈ R, we write

na = a+ · · ·+ a︸ ︷︷ ︸
n

and (−n)a = −(na).

In particular, zero copies of an element a ∈ R is the zero element 0R in the ring R (one

might write this as 0a = 0R, where 0 is the zero element in Z). This is just notation and

has nothing to do with the ring multiplication. Notice that 0R · a = 0R is a fact that we

proved in Lemma 1.8, but 0a = 0R is just a natural notation when 0 is the zero integer.

Definition 2.16 (Characteristic of a ring with 1). Let R be a ring with 1. The

characteristic of R, denoted char(R), is a non-negative integer defined as follows; if there

is a positive integer m such that m1R = 0R, then char(R) is the smallest such positive

integer; otherwise, there is no such positive integer and we say that char(R) = 0.

Examples 2.17. (1) The zero ring R = {0} is actually a ring with 1 (!!), and it’s the

only ring for which char(R) = 1.

(2) For any positive integer n, we have that char(Zn) = n.

(3) The field C has characteristic zero, and hence so do Z,Q,R.

Lemma 2.18. Let R be a ring of characteristic n > 0. Then na = 0 for all a ∈ R.

Proof. For a ∈ R, we have

na = a+ · · ·+ a︸ ︷︷ ︸
n

= (1R · a+ · · ·+ 1R · a︸ ︷︷ ︸
n

) = (1R + · · ·+ 1R︸ ︷︷ ︸
n

) · a = 0R · a = 0R

as required. �

Let R be a ring with 1. It’s easy to see that the following subset is a subring of R:

Z1R := {n 1R | n ∈ Z} =
{
· · · , (−2)1R,−1R, 0R, 1R, (2)1R, · · ·

}
.

18



Lemma 2.19. Let R be a ring with 1. Then either:

(1) char(R) = 0, in which case Z1R is isomorphic to Z; or

(2) char(R) = n > 0, in which case Z1R is isomorphic to Zn.

Proof. The map φ : Z→ R given by φ(n) = n1R is a ring homomorphism because

φ(n+m) = (n+m)1R = n1R +m1R = φ(n) + φ(m),

and the distributive law gives

φ(nm) = nm1R = n1R ·m1R = φ(n) · φ(m).

Moreover, the image of φ is clearly Z1R.

Suppose first that char(R) = 0. Then φ(n) = n 1R equals 0R if and only if n = 0,

so Ker(φ) = {0}. Applying the fundamental isomorphism theorem to φ gives Z ∼= Z1R
which proves part (1). Otherwise, char(R) = n > 0. Then φ(m) = m1R = 0 if and only if

n|m, therefore Ker(φ) = Zn. Applying the fundamental isomorphism theorem to φ gives

Zn ∼= Z1R, so part (2) holds. �

Proposition 2.20. The characteristic of an integral domain is either 0 or a prime.

Proof. Let R be an integral domain. Notice first that since R 6= {0}, we have char(R) 6= 1.

Suppose that n := char(R) is neither 0 nor a prime, i.e., n = rs for some 1 < r, s < n.

Then 0 = n 1R = (rs)1R = (r 1R) · (s 1R), but since R is an integral domain it follows

that either r 1R = 0 or s 1R = 0. Either case is impossible in a ring of characteristic n

because r, s < n. Thus, the characteristic must be zero or prime after all. �

End of Week 3.

2.5. The Chinese remainder theorem. In this section we revisit the fabulously named

‘Chinese remainder theorem’ that you met in Algebra 1A. We first introduce and study

two new ideals that we can associate to a pair of ideals.

Definition 2.21 (Sum and intersection of ideals). Let I and J be ideals of R. The

sum of I and J is the subset

I + J := {a+ b ∈ R | a ∈ I, b ∈ J},

and the intersection of I and J is the subet

I ∩ J := {a ∈ R | a ∈ I and a ∈ J} .

Lemma 2.22. Both I ∩ J and I + J are ideals of R.

Proof. See Exercise Sheet 4.

�
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Example 2.23. For m,n ∈ Z, if we write I = Zm = 〈m〉 and J = Zn = 〈n〉, then

I + J = 〈gcd(m,n)〉 and I ∩ J = 〈lcm(m,n)〉.

Definition 2.24 (Direct product of rings). Let R and S be rings. The direct product

of R and S is the ring

R× S =
{

(r, s) | r ∈ R, s ∈ S
}
,

where the operations are (a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (ac, bd).

Theorem 2.25 (Chinese remainder theorem). Let R be a commutative ring with 1.

Let I, J be ideals in R satisfying I + J = R. Then there is a ring isomorphism

R

I ∩ J
∼=
R

I
× R

J
.

Proof. Consider the map φ : R → R/I × R/J defined by setting φ(a) = (a + I, a + J).

It’s a ring homomorphism because

φ(a+ b) = (a+ b+ I, a+ b+ J)

=
(
(a+ I) + (b+ I), (a+ J) + (b+ J)

)
by Definition 1.32

= (a+ I, a+ J) + (b+ I, b+ J) by Definition 2.24

= φ(a) + φ(b)

and

φ(a · b) = (a · b+ I, a · b+ J)

=
(
(a+ I) · (b+ I), (a+ J) · (b+ J)

)
by Definition 1.32

= (a+ I, a+ J) · (b+ I, b+ J) by Definition 2.24

= φ(a) · φ(b).

We now compute the kernel of φ. For this, notice that

a ∈ Ker(φ) ⇐⇒ (a+ I, a+ J) = (0 + I, 0 + J) ⇐⇒ a ∈ I ∩ J,

so Ker(φ) = I ∩ J . Apply the Fundamental Isomorphism Theorem 2.14 to φ to see that

φ : R/(I ∩ J) −→ Im(φ)

is an isomorphism. It remains to show that the image of φ is equal to the ring R/I×R/J .

To see this, consider an arbitrary element (a+ I, b+ J) ∈ R/I ×R/J . Since R = I + J ,

there exists x ∈ I and y ∈ J such that 1 = x+ y. Define r := ay + bx ∈ R. Then

φ(r) = (ay + bx+ I, ay + bx+ J)

= (ay + I, bx+ J) as bx ∈ I and ay ∈ J
=
(
a(1− x) + I, b(1− y) + J

)
as 1 = x+ y

=
(
a− ax+ I, b− by + J

)
= (a+ I, b+ J) as x ∈ I and y ∈ J.

Since (a+ I, b+ J) ∈ R/I ×R/J was arbitrary, it follows that φ is surjective. �
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Example 2.26. Let m,n ∈ Z be coprime natural numbers. This means there exists

λ, µ ∈ Z such that 1 = λm+µn, i.e., Z = Zm+Zn. Theorem 2.25 gives an isomorphism

φ : Zmn → Zm × Zn; this is the Chinese Remainder Theorem from Algebra 1A.

2.6. Field of fractions of an integral domain. We now construct from every integral

domain R, an injective homomorphism to a field F (R), called the field of fractions of R.

Consider the set T = {(a, b) ∈ R × R | b 6= 0} together with two binary operations

T × T → T given by

(a, b) + (c, d) := (ad+ bc, bd) and (a, b) · (c, d) := (ac, bd).

These operations are well defined - that is, the formulas each define a map from T ×T to

T - precisely because R is an integral domain. Indeed, suppose otherwise, i.e., suppose

that bd = 0. The fact that R is an integral domain forces either b = 0 or d = 0, but then

either (a, b) 6∈ T or (c, d) 6∈ T which is absurd.

Lemma 2.27. Define a relation ∼ on T by setting

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

Then for all a, a′, b, b′, c, c′, d, d′ ∈ R with b, b′, d, d′ 6= 0, we have that

(a, b) ∼ (a′, b′) and (c, d) ∼ (c′, d′) =⇒
{

(a, b) + (c, d) ∼ (a′, b′) + (c′, d′)

(a, b) · (c, d) ∼ (a′, b′) · (c′, d′)

In other words, ∼ satisfies the conditions of being a congruence relation on T .

Proof. We’re allowed to use

(2.2) (a, b) ∼ (a′, b′) i.e., that ab′ = a′b

and that

(2.3) (c, d) ∼ (c′, d′) i.e., that cd′ = c′d.

Notice that

(ad+ bc)b′d′ = ab′dd′ + bb′cd′

= a′bdd′ + bb′c′d using both (2.2) and (2.3)

= (a′d′ + b′c′)bd.

This is equivalent to having

(a, b) + (c, d) = (ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′) = (a′, b′) + (c′, d′)

Similarly for the product formula, notice that (2.2) and (2.3) give

ab′cd′ = a′bcd′ = a′bc′d

which is equivalent to having (a, b) · (c, d) = (ac, bd) ∼ (a′c′, b′d′) = (a′, b′) · (c′, d′) as

required. �
21



Just as with a congruence relation on a ring (see Definition 1.24), Lemma 2.27 shows

that taking equivalence classes commutes with both of our binary operations on T , so we

get a pair of binary operations on the set of equivalence classes

F (R) := T/∼ .

Following the standard convention in Q, we write equivalence classes as a
b

rather than as

[(a, b)], so our operations become the familiar operations F (R)×F (R)→ F (R) given by

(2.4)
a

b
+
c

d
:=

ad+ bc

bd
and

a

b
· c
d

:=
ac

bd
.

Remark 2.28. It might have been nice to apply Theorem 1.26 directly to show that T/∼
is a ring, but this is impossible because T isn’t a ring: an element (a, b) ∈ T does not

have an additive inverse if b is not a unit. Despite this, we can show that T/ ∼ is a ring;

in fact, it’s a field.

Theorem 2.29. Let R be an integral domain. The set F (R) with the binary operations

from (2.4) above is a field; this is called the field of fractions of R. Moreover, the map

R→ F (R) defined by sending a to a
1

is an injective homomorphism.

Proof. To check that F (R) is an abelian group under addition, notice that for a
b
, c
d
, e
f
∈

F (R), we have(a
b

+
c

d

)
+
e

f
=
ad+ bc

bd
+
e

f
=
adf + bcf + bde

bdf
=
a

b
+
cf + de

df
=
a

b
+

(
c

d
+
e

f

)
so addition is associative. Addition is commutative in F (R) because multiplication in

the integral domain R is commutative (and addition is commutative) and hence

a

b
+
c

d
=
ad+ bc

bd
=
cb+ da

db
=
c

d
+
a

b

The zero element is 0
1

because

a

b
+

0

1
=
a · 1 + b · 0

b · 1
=
a

b
=

0 · b+ 1 · a
1 · b

=
0

1
+
a

b
,

and the additive inverse of a
b

is −a
b

because 0 · 1 = 0 = b2 · 0 and hence in F (R) we have

a

b
+
−a
b

=
ab+ (−a)b

b2
=

0

b2
=

0

1
=
−ab+ ab

b2
=
−a
b

+
a

b
.

Associativity of multiplication is much easier: multiplication in R is associative, so

a

b
·
(
c

d
· e
f

)
=
a

b
· ce
df

=
a(ce)

b(df)
=

(ac)e

(bd)f
=
ac

bd
· e
f

=
(a
b
· c
d

)
· e
f
.
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For the distributive laws, b2df(acf + ade) = bdf(abcf + abde), so in F (R) we have

a

b
·
(
c

d
+
e

f

)
=
a

b
· cf + de

df
=
a(cf + de)

bdf

=
acf + ade

bdf

=
abcf + abde

b2df

=
ac

bd
+
ae

bf
=
a

b
· c
d

+
a

b
· e
f
.

The other distributive law is similar. This proves that F (R) with the given operations

is a ring. Since R is a commutative ring with 1, the ring F (R) is commutative (easy!)

and 1
1

makes it a ring with 1. It’s not the zero ring, because 0
1
6= 1

1
(otherwise 0 = 1 in

R which is absurd). It remains to show that every nonzero element has a multiplicative

inverse. For this, let a
b
∈ F (R) be a nonzero equivalence class. Then b

a
∈ F (R) satisfies

a

b
· b
a

=
ab

ba
=

1

1
=
ba

ab
=
b

a
· a
b

in F (R) as required. Proving the statement about the homomorphism is easy. �

Examples 2.30. The two best known examples of this construction are the field F (Z) =

Q of rational numbers and, for any field k, the field F (k[x]) = k(x) of rational functions.

End of Week 4.

3. Factorisation in integral domains

Throughout this section we let R be an integral domain. We introduce several special

classes of such rings and study factorisation properties.

3.1. Primes and irreducibles in integral domains. We’ve already seen many exam-

ples of integral domains:

(1) any field k is an integral domain by Remark 1.12;

(2) the ring of integers Z and the ring of Gaussian integers Z[i] are both integral

domains by Lemma 1.20 (because they’re both subrings of C).

(3) the rings R[x] and R[[x]] associated to an integral domain R are integral domains

by Exercise Sheets 1 and 2.

We first establish a property that characterises integral domains.

Lemma 3.1 (Cancellation property). Let R be a commutative ring with 1 such that

0 6= 1. Then R is an integral domain if and only if for all a, b, c ∈ R, we have

ab = ac and a 6= 0 =⇒ b = c.
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Proof. First, let R be an integral domain, and suppose ab = ac and a 6= 0. Then

0 = ab+ (−ac) = ab+ a(−c) = a(b+ (−c)).

Since R is an integral domain and a 6= 0, we have b + (−c) = 0, that is b = c. For the

opposite implication, let R be a commutative ring with 1 such that 0 6= 1, and assume the

cancellation property. Suppose a, b ∈ R satisfies ab = 0 and a 6= 0. Then ab = 0 = a · 0,

and since a 6= 0 the cancellation property gives b = 0 as required. �

Definition 3.2 (Divisibility). Let a, b ∈ R. We say that a divides b (equivalently, that

b is divisible by a) if there exists c ∈ R such that b = ac. We write simply a|b.

Any statement about divisibility can be rephrased in terms of ideals as follows:

Lemma 3.3. For a, b ∈ R we have a|b ⇐⇒ b ∈ Ra ⇐⇒ Rb ⊆ Ra.

Proof. If a|b then there exists c ∈ R such that b = ca ∈ Ra. Since Ra is an ideal, it

follows that rb ∈ Ra for all r ∈ R, giving Rb ⊆ Ra. Conversely, if Rb ⊆ Ra, then in

particular, b ∈ Rb lies in Ra, and hence there exists c ∈ R such that b = ca, so a|b. �

Recall that an element a ∈ R is a unit if there exists b ∈ R satisfying ab = 1 = ba.

Lemma 3.4 (Units don’t change the ideal). Let R be an integral domain and let

a, b ∈ R. Then

Ra = Rb ⇐⇒ a|b and b|a ⇐⇒ a = ub for some unit u ∈ R.

In particular, R = Ru if and only if u is a unit in R.

Proof. If Ra = Rb, then we have both Ra ⊆ Rb and Rb ⊆ Ra, hence b|a and a|b. Thus

there exist u, v ∈ R such that a = ub and b = va. Putting these equations together

shows that 1a = a = ub = uva. If a = 0, then b = 0 and there’s nothing to prove.

Otherwise, the cancellation law in the integral domain R gives uv = 1, so u is a unit in

R. Conversely, suppose a = ub for some unit u ∈ R. Then a ∈ Rb, so Ra ⊆ Rb. Since

u is a unit, we may multiply a = ub by u−1 to obtain b = u−1a. This gives b ∈ Ra

and hence Rb ⊆ Ra. These two inclusions together give Ra = Rb as required. The final

statement of the lemma follows from the special case a = 1. �

Definition 3.5 (Primes and irreducibles). Let R be an integral domain. Let p ∈ R
be nonzero and not a unit. Then we say:

(1) p is prime iff for all a, b ∈ R, we have p|ab =⇒ p|a or p|b.
(2) p is irreducible iff for all a, b ∈ R, we have p = ab =⇒ a or b is a unit.

We say that p is reducible if it’s not irreducible, i.e., if there exists a, b ∈ R such that

p = ab where neither a nor b is a unit.

Examples 3.6. (1) The prime elements in Z are {. . . ,−7,−5,−3,−2, 2, 3, 5, 7, . . . },
i.e., ±1 times the positive prime numbers. The irreducible elements are identical.

(2) Let k be a field. Every nonzero element in k is a unit, so k contains neither primes

nor irreducibles.
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Proposition 3.7. Let R be an integral domain. Then every prime element is irreducible.

Proof. Let p ∈ R be prime, and suppose p = ab. Then either p|a or p|b. Assume without

loss of generality (we may swap the letters a and b if we want) that p|a, i.e., there exists

c ∈ R such that a = pc. Then p · 1 = p = ab = pcb, and the cancellation property gives

cb = 1, so b must be a unit. This shows that p is irreducible. �

The converse is not true in general, see Exercise Sheet 5.

3.2. Euclidean domains and PIDs. We start by formalising a notion that you met in

Algebra 1A when studying the rings Z and k[x] where k is a field.

Definition 3.8 (Euclidean domain). Let R be an integral domain. A Euclidean valu-

ation on R is a map ν : Rr {0} → {0, 1, 2, . . .} such that:

(1) for f, g ∈ Rr {0} we have ν(f) ≤ ν(fg); and

(2) for all f, g ∈ R with g 6= 0, there exists q, r ∈ R such that

f = qg + r

and either r = 0 or r 6= 0 and ν(r) < ν(g).

We say that R is a Euclidean domain if it has a Euclidean valuation.

Examples 3.9. (1) Let k be any field, and define ν : k\{0} → {0, 1, 2, . . . } by setting

ν(a) = 1. Then ν is a Euclidean valuation (check it!), so k is a Euclidean domain.

(2) Absolute value ν(n) = |n| provides a Euclidean valuation on the ring of integers,

so Z is a Euclidean domain.

(3) For k a field, the degree of a polynomial ν(f(x)) = deg f(x) provides a Euclidean

valuation on k[x] (see Algebra 1A), so k[x] is a Euclidean domain.

(4) In Exercise Sheet 1 you saw that Z[i] = {a + bi ∈ C : a, b ∈ Z} are a subring of

the field C, so Z[i] is an integral domain. On Exercise Sheet 5, you’re asked to

show that Z[i] is a Euclidean domain.

We now introduce Principal Ideal Domains. Let R be an integral domain. Since R is

necessarily a commutative ring, Example 1.29 shows that each a ∈ R determines an ideal

Ra := 〈a〉 = {r · a | r ∈ R}.

called the ideal generated by a.

Definition 3.10 (PID). An ideal I of R is a principal ideal if I = Ra for some a ∈ R.

An integral domain R is a Principal Ideal Domain (PID) if every ideal in R is principal.

Theorem 3.11 (Euclidean domains are PIDs). Let R be a Euclidean domain. Then

R is a PID.

Proof. Let R be a Euclidean domain with Euclidean valuation ν. Let I be an ideal in R.

If I = {0} then I = R0, so I is principal. Otherwise we have I 6= {0}. Define

S = {ν(a) ∈ Z≥0 | a ∈ I, a 6= 0}.
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Since I is nonzero, this is a nonempty subset of {0, 1, 2, . . .} and hence we may choose g

to be an element of I that achieves the minimum value in S, i.e., g 6= 0 and ν(f) ≥ ν(g)

for all f ∈ I. Now let f ∈ I. Since R is a Euclidean domain there exist q, r ∈ R such

that f = qg+ r and r = 0 or ν(r) < ν(g). If r 6= 0 then r = f − qg ∈ I which contradicts

minimality in our choice of g. Thus r = 0, so f = qg ∈ Rg. Hence I ⊆ Rg. On the other

hand, since g ∈ I we have Rg ⊆ I. Hence I = Rg and so I is principal. �

Examples 3.12. Theorem 3.11 implies that the following rings are PID’s:

(1) any field;

(2) the ring of integers Z;

(3) the polynomial ring k[x] with coefficients in a field k; and

(4) the ring of Gaussian integers Z[i].

Examples 3.13. (1) Exercise Sheet 5 asks you to prove that the integral domain

R = Z[x] is not a PID, so it can’t be a Euclidean domain.

(2) It is harder to produce a PID that is not a Euclidean domain. One example is

the subring R = {a(1
2

+
√
19
2
i) | a ∈ Z} of C. We shan’t prove this.

3.3. Key properties of PIDs. We now examine some key properties of PIDs that go

some way to explaining why they’re an important class of rings.

Definition 3.14. Let R be a PID. Two elements a, b ∈ R are said to be coprime if every

common factor is a unit; by this, we mean that if d|a and d|b, then d is a unit.

Lemma 3.15. Let R be a PID and let a, b ∈ R be coprime. There exists r, s ∈ R such

that 1 = ra+ sb.

Proof. Consider the ideal Ra+Rb. Since R is a PID, there exists d ∈ R such that

Ra+Rb = Rd.

In particular, a, b ∈ Rd, so d divides both a and b. Since a and b are coprime, it follows

that d is a unit. Lemma 3.4 gives Rd = R and hence Ra + Rb = R. Since R is a ring

with 1, there exists r, s ∈ R such that 1 = ra+ sb as required. �

Proposition 3.16. Let R be a PID. Then every irreducible element in R is prime.

Proof. Suppose that p|ab and that p does not divide a. Let d be a common factor of both

a and p. In particular, we have p = cd for some c ∈ R. Since p is irreducible, either d is

a unit, or c is a unit. If c is a unit, then combining d = c−1p with the fact that d|a would

imply that p|a which is a contradiction. Therefore d is a unit, so a and p are coprime.

Lemma 3.15 gives r, s ∈ R such that 1 = ra+ sp. Then

b = 1 · b = (ra+ sp) · b = rab+ psb.

We know ab is divisible by p, so b is divisible by p as required. �

Theorem 3.17. Let R be a PID. If p is irreducible then R/Rp is a field.
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Proof. The ring R is commutative with 1, hence so is the quotient ring R/Rp. Lemma 3.4

implies that Rp 6= R because p is not a unit, so R/Rp is not the zero ring. It remains to

show that every nonzero element of R/Rp is a unit.

For this, let a + Rp ∈ R/Rp be nonzero, i.e., a + Rp 6= 0 + Rp, i.e., a 6∈ Rp, i.e., p

does not divide a. Let d be a common factor of a and p. In particular, p = cd for some

c ∈ R. Since p is irreducible, either d is a unit, or c is a unit. In fact c cannot be a unit

(otherwise the equation d = c−1p shows that p|d and since d|a it follows that p|a which

is a contradiction), so d must be a unit. Therefore a and p are coprime, and Lemma 3.15

gives r, s ∈ R such that 1 = ra+ sp. Then

1 +Rp = (ra+ sp) +Rp = ra+Rp = (r +Rp) · (a+Rp).

This shows that a+Rp has a multiplicative inverse as required. �

Remark 3.18. It is impossible to overstate how important Theorem 3.17 is.

3.4. Unique factorisation domains. Finally, we’re in a position to introduce the spe-

cial class of integral domains that we really care about.

Definition 3.19 (UFD). An integral domain R is called a Unique Factorisation Domain

(UFD) if

(1) every nonzero nonunit element in R can be written as the product of finitely many

irreducibles in R; and

(2) given two such decompositions, say r1 · · · rs = r′1 · · · r′t we have that s = t and,

after renumbering if necessary, we have Rri = Rr′i for 1 ≤ i ≤ s.

Proposition 3.20. Let R be a UFD. Then p ∈ R is irreducible if and only if it is prime.

Proof. Every prime is irreducible by Proposition 3.7 since R is an integral domain. Con-

versely, let p ∈ R be irreducible, and suppose a, b ∈ R satisfy p|ab, i.e.,

ab = cp

for some c ∈ R. If a is a unit, then b = a−1cp and so p|b which is what we want to prove;

and similarly for b. Therefore, we may assume that neither a nor b is a unit. Also, if a is

zero, then we have p|0 (simply because every element divides the zero element), that is,

p|a which again is what we want to prove; and similarly b is nonzero. Therefore we may

assume that a and b are nonzero and nonunit. By applying part (1) from Definition 3.19,

we may take the irreducible factorisations of both a = p1 · · · pk and b = p′1 · · · p′` to get

p1 · · · pkp′1 · · · p′` = ab = cp.

We can further factorise the element c to get a pair of irreducible decompositions, so

part (2) from Definition 3.19 and Lemma 3.4 together give a unit u ∈ R such that either

pi = up for some 1 ≤ i ≤ k or p′j = up for some 1 ≤ j ≤ `. Substitute the expression into

the decomposition of a or b to see that either p|a or p|b as required. �

Theorem 3.21. Let R be a PID. Then R is a UFD.
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Proof. We first show part (1) of Definition 3.19. Let a ∈ R be a nonzero, nonunit element

and suppose for a contradiction a cannot be written as a finite product of irreducibles.

In particular, a itself is reducible, so there exists a decomposition

a = a1b1

for some a1, b1 ∈ R where both a1 and b1 are nonunits (and nonzero because a is nonzero).

If both a1 and b1 can be expressed as products of irreducibles then a can as well which is

absurd, so at least one of them cannot be written in this way. Without loss of generality,

suppose that this is a1. Notice that

Ra ⊆ Ra1 (because a1|a) and Ra 6= Ra1 (because b is not a unit), hence Ra $ Ra1.

Applying the same argument to a1 produces an element a2 ∈ R that cannot be expressed

as a product of irreducibles such that Ra1 $ Ra2. Repeat to obtain a strictly increasing

chain of ideals in R:

Ra $ Ra1 $ Ra2 $ Ra3 · · ·
This completes the first step of the proof. As a second step, we show that the union

I = Ra1 ∪Ra2 ∪ · · ·

is an ideal. Indeed, 0 ∈ Ra ⊆ I, so I is nonempty. Let b, c ∈ I and r ∈ R. There exists

i ≥ 1 such that b, c ∈ Rai, therefore b− c, rb, br ∈ Rai ⊆ I. Thus I is an ideal. For step

three, since R is a principal ideal domain we have that I = Rd for some d ∈ R. Then

d = 1 · d ∈ I and thus d ∈ Rai for some i ≥ 1. But then

Rai+1 ⊆ I = Rd ⊆ Rai $ Rai+1

which is absurd. This contradiction proves Definition 3.19(1).

For part (2) of Definition 3.19, suppose

(3.1) p1 · · · ps = p′1 · · · p′t
are two such decompositions where we may assume without loss of generality that s ≤ t.

Equation (3.1) shows that p1 divides p′1 · · · p′t. Proposition 3.16 shows that the irreducible

element p1 is prime, so p1|p′i for some 1 ≤ i ≤ t. Thus p′i = ap1, and since p′i is irreducible

it follows that a must be a unit and hence Rp1 = Rp′i by Lemma 3.4. Relabel p′i as p′1 and

vice-versa, giving Rp1 = Rp′1, so there exists a unit u1 ∈ R such that p′1 = u1p1, giving

p1 · · · ps = p′1 · · · p′t = u1p1p
′
2 · · · p′t.

The cancellation property in the integral domain R leaves

p2 · · · ps = p′1 · · · p′t = u1p
′
2 · · · p′t.

Repeat for each element on the left hand side, giving Rpi = Rp′i for all 1 ≤ i ≤ s and

1 = u1 · · ·usp′s+1 · · · p′t.

But the p′j are prime and hence nonunits, so we must have s = t. �

As an application, we obtain the following result which you saw in Algebra 1A:
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Corollary 3.22 (Fundamental Theorem of Arithmetic). Every natural number

greater than 1 is of the form Πpnii for distinct prime numbers pi and positive integers

ni. The primes pi and their exponents ni are uniquely determined (up to order).

Proof (non-examinable, just for interest). The ring Z is a Euclidean domain, so it’s a

PID by Theorem 3.11 and hence a UFD by Theorem 3.21. Therefore every integer,

and in particular every positive integer, can be written as the product of finitely many

irreducible (=prime) elements in Z, each of which is prime by Proposition 3.20. Some

of these primes could be negative (because −1 is a unit in Z), but if we factor out all

the minus signs then we get the desired decomposition as a product of primes. The only

units in Z are ±1, so having Zp = Zq with p, q > 0 forces p = q, so the decomposition is

unique up to the order in which we write the factors. �

Example 3.23. The ring Z[x] is not a PID (see Exercise Sheet 5), but we will shortly

see that it is a UFD.

To summarise, we’ve shown that

Euclidean domain =⇒ PID =⇒ UFD =⇒ integral domain.

In particular, each ring listed in Examples 3.9 is a UFD.

End of Week 5.

3.5. Polynomials over a UFD. Let R be an integral domain. A common factor c of

a1, . . . , am ∈ R is called a highest common factor (hcf) if for any other common factor b

of a1, . . . , am we have b|c. Evidently if both b and c are hcfs of a1, . . . , am, then b|c and

c|b, so b = uc for a unit u by Lemma 3.4.

If all common factors of a1, . . . , am are units, we say a1, . . . , am are coprime.

Lemma 3.24 (Highest common factors in a UFD). If R is a UFD and a1, . . . , am ∈
R are not all zero, then they have an hcf c.

Proof. We induct on m, assuming a1, . . . , am are not all zero. If m = 1 then we can take

c = a1. Otherwise, we may assume by reordering that a1, . . . , am−1 are not all zero and

have an hcf a 6= 0. Observe that an hcf c of a and b = am is an hcf of a1, . . . , am since it

is clearly a common factor, and any common factor d of a1, . . . , am divides both a and b,

hence c. If b = 0 or a is a unit, we may take c = a, and if b is a unit, we may take c = b.

Otherwise, since R is a UFD, we may write a = p1 · · · pk and b = q1 · · · q` as products

of irreducibles. Now if some pi divides b, it must divide some qj (since irreducibles are

prime) in which case, by reordering, we may assume i = j = 1 and q1 = u1p1 for a unit u1.

Repeating this process with a/p1 and b/p1, we eventually obtain that a = ca′ and b = cb′

where, for some 0 ≤ j ≤ min{k, `} and some unit u, a′ = pj+1 · · · pk and b′ = uqj+1 · · · q`
have only units as common factors, and c = p1 · · · pj. Hence c is a common factor of

a and b, and if d = r1 · · · rm is another, written as a product of irreducibles, then r1
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cannot divide both a′ and b′, so it must divide some pi with 1 ≤ i ≤ j. By reordering,

we may assume p1 = v1r1 for a unit v1, and repeating this process with d/r1 and c/r1,

we eventually obtain that d|c. Hence c is an hcf of a and b. �

Definition 3.25 (Primitive polynomial). A nonzero polynomial f ∈ R[x], with R a

UFD, is primitive if its coefficients are coprime. More generally, we say f has content

c ∈ R if c is an hcf of the coefficients of f (thus if c is a unit, f is primitive).

Example 3.26. In Z[x], f = 3x3 + 6x− 3 has content 3 and g = x3 + 2x− 1 is primitive.

Lemma 3.27 (Pulling out the content). Let R be a UFD. A nonzero polynomial

f ∈ R[x] has content c if and only if f = c · g with g ∈ R[x] primitive. In particular c

and g are uniquely determined by f up to multiplication by a unit.

Proof. We may write f = a · g with a ∈ R and g ∈ R[x] if and only if a is a common

factor of the coefficients of f . Then if g has content b, f has content ab. Thus f = c · g
has content c if and only if g is primitive.

Now if f = c · g = d · h with g, h primitive, then d = uc for some unit u, so c · g =

d · h = (uc) · h and hence g = u · h by cancellation. �

Since every UFD R is an integral domain, it has a field of fractions F (see section 2.6).

For example, Z has field of fractions Q. We now relate factorizations in R[x] and F [x].

Lemma 3.28. Let R be a UFD with field of fractions F , and suppose h ∈ R[x].

(1) If h = fg with f, g ∈ R[x] primitive, then h is primitive.

(2) If h = f1f2 · · · fk where fj ∈ R[x] has content cj, then h has content c1c2 · · · ck.

(3) If h is irreducible in F [x] and primitive in R[x], then h is irreducible in R[x].

(4) If h = g1g2 · · · gk where gj ∈ F [x], then h = c · f1f2 · · · fk where c ∈ R, each

fj ∈ R[x] is primitive and gj = uj · fj for some unit uj ∈ F .

Proof. (1) Let

f =
n∑
i=0

aix
i and g =

m∑
i=0

bix
i

be primitive and suppose h = fg has content c. If p is any irreducible factor of c, then

since f, g are primitive, there is a least i such that p does not divide the coefficient ai of

f and a least j such that p does not divide the coefficient bj of g. The coefficient of xi+j

in h = fg is

(3.2) (a0bi+j + · · ·+ ai−1bj+1) + aibj + (ai+1bj−1 + · · ·+ ai+jb0).

Minimality of i implies that p divides a0bi+j + · · ·+ai−1bj+1, while minimality of j implies

that p divides ai+1bj−1 + · · ·+ ai+jb0. But p divides the content c of fg, so it must divide

the coefficient (3.2) and hence it must divide aibj. But p is irreducible and hence prime

by Proposition 3.20, so p must divide either ai or bj, which is a contradiction. Hence c

has no irreducible factors, so it must be a unit, since R is a UFD.
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(2) By Lemma 3.27, fj = cj · f ′j with f ′j primitive. Hence h = f1 · · · fk = (c1 · · · ck) ·
(f ′1 · · · f ′k), and f ′1 · · · f ′k is primitive by (1) and induction on k. Hence h has content

c1 · · · ck by Lemma 3.27.

(3) If h ∈ R[x] is irreducible in F [x], then it is nonzero and a nonunit in F [x], so it

has positive degree, and is neither zero nor a unit in R[x]. Suppose now that h = fg for

f, g ∈ R[x]. Then either f or g must be a unit in F [x], say f , i.e., f is a nonzero constant

a in F ∩ R[x] = R. Now h = a · g is primitive and so its content is a unit divisible by a.

Thus a is a unit in R, i.e., f is a unit in R[x]. Hence h is irreducible in R[x].

(4) If h = g1g2 · · · gk, then each gj has coefficients of the form a/v for a, v ∈ R with

v 6= 0. Clearing denominators, for some nonzero vj ∈ R ⊆ F , vjgj = hj ∈ R[x]. Thus

(3.3) d · h = h1h2 · · ·hk

in R[x] with d = v1v2 · · · vk ∈ R. Now suppose h = c′ · f and hj = cj · fj for each j, where

f, f1, . . . , fk ∈ R[x] are primitive and c′, c1, . . . , ck ∈ R. Then d · h has content dc′ and

also, by (3.3) and (2), content c1 · · · ck. Hence c1 · · · ck = dc, where c = c′u for some unit

u ∈ R, and

d · h = (c1 · · · ck) · (f1 · · · fk) = dc · (f1 · · · fk).

Hence h = c · (f1 · · · fk) by cancellation, and each fj is primitive with vjgj = cjfj and

vj, cj ∈ R nonzero. Thus vj and cj are units in F , as is uj = cj/vj, and gj = ujfj. �

Corollary 3.29 (Gauss’ Lemma). Let R be a UFD with field of fractions F , and let

h ∈ R[x]. Then h is irreducible in R[x] if and only if either it is an irreducible element

of R, or it is primitive in R[x] and irreducible in F [x].

Proof. (⇒) Lemma 3.27 gives h = c · g for c ∈ R and g ∈ R[x] primitive. Since h is

irreducible in R[x], either:

(1) g is a unit in R[x], in which case g ∈ R, hence h ∈ R, and irreducibility of h in

R[x] forces irreducibility of h in R as required; or

(2) c is a unit, in which case g being primitive implies h is primitive. If h ∈ R, then

h is a unit in R, hence a unit in R[x], contradicting irreducibility. Thus h has

positive degree and hence is not a unit in F [x]. Now if h = g1g2 in F [x] then by

Lemma 3.28 (4), h = d ·f1f2 with d ∈ R, f1, f2 ∈ R[x] primitive, and gj = ujfj for

units u1, u2 ∈ F . By irreducibility of h in R[x], either f1 or f2 is a unit in R[x],

hence either g1 or g2 is a unit in F [x]. We conclude that h is irreducible in F [x].

(⇐) If h ∈ R is irreducible then it’s irreducible in R[x] for degree reasons, while if h ∈ R[x]

is primitive in R[x] and irreducible in F [x], it is irreducible in R[x] by Lemma 3.28 (3). �

Since F is a field, Examples 3.12 and Theorem 3.21 show that F [x] is a UFD. Now

suppose h ∈ R[x] is a nonzero nonunit. If h is not in R, it is a nonzero nonunit in F [x]

hence has a factorization h = g1 · · · gk into irreducibles in F [x]. Thus by Lemma 3.28(4),

h = c · f1 · · · fk, where c ∈ R and each fj ∈ R[x] is primitive and gj = uj · fj for some

units uj ∈ F . If h ∈ R, this also holds with k = 0. Irreducibility of gj in F [x] forces
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irreducibility of fj in F [x], hence in R[x] by Lemma 3.28(3). Now since R is a UFD, we

may factorize c = r1 · · · r` into irreducibles in R, so that

(3.4) h = r1 · · · r` · f1 · · · fk
is a factorization into irreducibles in R[x] by Gauss’ Lemma (Corollary 3.29).

Theorem 3.30. If R is a UFD, then the polynomial ring R[x] is also a UFD.

Proof. Definition 3.19(1), i.e., existence, follows from (3.4) above. For the uniqueness

condition of Definition 3.19(2), suppose h ∈ R[x] admits two such decompositions

r1 · · · r` · f1 · · · fk = r′1 · · · r′m · f ′1 · · · f ′n.

The content of f is unique up to multiplication by a unit, so r1 · · · r` = u · r′1 · · · r′m for

some unit u ∈ R. Since R is a UFD, we have ` = m and (after permuting indices)

Rri = Rr′i for 1 ≤ i ≤ `. Similarly, the primitive part of h is unique up to multiplication

by a unit, so there is a unit u′ ∈ R such that f1 · · · fk = u′ · f ′1 · · · f ′n, and each fi, f
′
j is

irreducible in F [x] by Gauss’ Lemma (Corollary 3.29). Since F [x] is a UFD, k = n and

(after permuting indices) Ffi = Ff ′i for 1 ≤ i ≤ k. Now Lemma 3.4 gives a unit ui ∈ F
such that fi = uif

′
i ∈ R[x]. Write ui = ai/bi and multiply fi = uif

′
i by bi, then use

Lemma 3.27 and primitivity of fi, f
′
i to see that fi is a unit times f ′i as required. �

End of Week 6.

4. Algebras and fields

In this chapter we study a class of rings with 1 that are simultaneously vector spaces.

4.1. Algebras. Throughout this chapter we let k be a field.

Definition 4.1 (k-algebra). A k-vector space V is called a k-algebra if it’s also a ring,

where the scalar product and the ring multiplication are compatible in the following sense:

(4.1) λ(u · v) = (λu) · v = u · (λv) for all u, v ∈ V, λ ∈ k.

The dimension of a k-algebra V is the dimension of V as a vector space over k, and a

nonempty subset W of V is a subalgebra if it is both a subring and a vector subspace.

Remarks 4.2. (1) For v ∈ V , the ‘multiply on the left by v’ map Tv : V → V given by

Tv(u) = v · u is a k-linear map; the same is true for ‘multiply on the right’.

(2) Suppose that (vi)i∈I is a basis for the k-algebra V . To determine the multiplication

on V , it suffices to know only the values of vi · vj for all i, j ∈ I, because(∑
i∈I

αivi

)
·

(∑
j∈I

βjvj

)
=
∑
i,j∈I

(αiβj)(vi · vj).

Examples 4.3. (1) Let k be a field. Then k = k · 1 is a k-algebra of dimension 1.
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(2) For n ≥ 1, the set Mn(k) of n× n matrices with coefficients in k is a k-algebra of

dimension n2.

(3) The field C = R+Ri is an R-algebra that is a 2-dimensional vector space over R.

Example 4.4 (The quaternions). Consider the vector space of dimension 4 over R
with basis 1, i, j, k, that is

H = R + Ri+ Rj + Rk =
{
a+ bi+ cj + dk | a, b, c, d ∈ R

}
,

where the R-bilinear product is determined from

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j.

Exercise Sheet 7 asks you to show that H is a noncommutative ring. Since the product

was defined to be R-bilinear, it follows that H is an R-algebra of dimension 4; this is the

quaternionic algebra, or simply, the quaternions. You’ll see in Exercise Sheet 8 that H is

a division ring; this is the first time that you’ve seen a division ring that is not a field!

4.2. General polynomial rings. To introduce a large class of k-algebras, we study

polynomials in several variables. For this, let n ≥ 1, let x1, . . . , xn be variables and let R

be a ring. A polynomial f in x1, . . . , xn with coefficients in R is a formal sum

(4.2) f(x1, . . . , xn) =
∑

i1,...,in≥0

ai1,...,inx
i1
1 · · ·xinn ,

with coefficients ai1,...,in ∈ R for all tuples (i1, . . . , in) ∈ Nn, where only finitely many of the

ai1,...,in are nonzero. To avoid having to write so many indices, let’s write aI := ai1,...,in
and xI := xi11 · · ·xinn for any n-tuple I = (i1, . . . , in) ∈ Nn. Then every polynomial in

x1, . . . , xn can be written in the form

f =
∑
I∈Nn

aIx
I

where only finitely many of the elements aI ∈ R are nonzero and where xI := xi11 · · ·xinn .

Definition 4.5 (General polynomial ring). For n ≥ 1, the polynomial ring in n

variables with coefficients in R is the set R[x1, . . . , xn] of all polynomials in x1, . . . , xn
with coefficients in R, where for f =

∑
I∈Nn aIx

I and g =
∑

I∈Nn bIx
I we define

f + g =
∑
I∈Nn

(aI + bI)x
I and f · g =

∑
I∈Nn

( ∑
J+K=I

aJ · bK

)
xI .

Example 4.6. To illustrate this, set n = 3 and write R[x, y, z] for the polynomial ring

in three variables. Then for f = x2y + 3xz and g = 2x− 3xz, we have

f + g = x2y + 2x and f · g = 2x3y + 6x2z − 3x3yz − 9x2z2.

Remarks 4.7. (1) This ring is a generalisation of the ring R[x] from Example 1.21,

and the proof that it is a ring can be carried out directly just as in Example 1.15.
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(2) If the coefficient ring R is a field k, then the general polynomial ring k[x1, . . . , xn]

is a k-algebra with basis as a vector space given by all monomials

xi11 x
i2
2 · · ·xinn : i1, . . . , in ∈ N;

this vector space is not finite dimensional! As in Remark 4.2, multiplication of

polynomials is determined by the bilinearity and multiplication of monomials:

(xi11 x
i2
2 · · · xinn ) · (xj11 x

j2
2 · · ·xjnn ) = xi1+j11 xi2+j22 · · ·xin+jnn .

Proposition 4.8. The polynomial ring R[x1, . . . , xn] in n variables is isomorphic to the

polynomial ring S[xn] in the variable xn with coefficients in S = R[x1, . . . , xn−1].

Proof. The idea is that for any f =
∑

i1,...,in≥0 ai1,...,inx
i1
1 · · ·xinn in the ring R[x1, . . . , xn],

gathering all terms involving xinn for each power in ≥ 0 gives an expression

(4.3) f(x1, . . . , xn) =
∑
in≥0

( ∑
i1,...,in−1≥0

ai1,...,inx
i1
1 · · ·x

in−1

n−1

)
xinn ,

which we may regard as an element of S[xn] if we view the elements in the parentheses

as coefficients in S. See Exercise Sheet 7 for details. �

Corollary 4.9. Let k be a field. Then k[x1, . . . , xn] is a UFD.

Proof. We know k is a PID, hence a UFD. Assume by induction that S := k[x1, . . . , xn−1]

is a UFD, then S[xn] is a UFD by Theorem 3.30 and we’re done by Proposition 4.8. �

Remark 4.10. Note that k[x1, . . . , xn] is not a PID for n ≥ 2, see Exercise Sheet 7.

4.3. Constructing field extensions. We now construct new fields from old.

Definition 4.11 (Subfield and field extension). A non-zero subring k 6= {0} of a

field K is a subfield if for each nonzero element a ∈ k, the multiplicative inverse of a in

K lies in k. We also refer to k ⊆ K as a field extension.

In this case, choose non-zero a ∈ k to write 1K = a · a−1 whence 1K ∈ k and then it is

easy to see that k is a field in its own right with 1k = 1K . Conversely, if k is a non-zero

subring of a field K that is a field (so there is a multiplicative identity in k and each

non-zero a ∈ k has a multiplicative inverse in k) then k is a subfield: 1k = 1K and the

inverses in k and K coincide. Moreover, K gets structure too:

Lemma 4.12. Let k ⊆ K be a field extension. Then K is a k-algebra.

Proof. K is a field so that (K,+) is already an abelian group. We now restrict the

multiplication K ×K → K to obtain a scalar multiplication k×K → K. We then have

λ(µv) = (λµ)v, as multiplication is associative

1k · v = 1K · v = v as 1k = 1K

(λ+ µ)v = λv + µv as the distributive laws hold in K,

λ(v + w) = λv + λw as the distributive laws hold in K
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for v ∈ K and λ, µ ∈ k, so K is a vector space over k. In addition, multiplication in K is

associative and commutative, so (λv) ·w = v · (λw) = λ(vw) for v, w ∈ K and λ ∈ k. �

Given a field extension k ⊆ K, we now construct intermediate fields k ⊆ k[a] ⊆ K.

Theorem 4.13 (Constructing intermediate fields). Let k ⊆ K be a field extension,

and let a ∈ K be a root of some nonzero polynomial in k[x]. The set

k[a] :=
{
f(a) ∈ K | f ∈ k[x]

}
is a field, with field extensions k ⊆ k[a] ⊆ K. In fact (1, a, a2, . . . , an−1) is a basis for

k[a] over k where n = min{deg(p) | p ∈ k[x] satisfies p(a) = 0}.

Proof. Consider the evaluation homomorphism φa : k[x]→ K given by φa(f) = f(a) from

Example 2.6. Since k is a field, k[x] is a PID and hence Ker(φa) is a principal ideal, that

is, Ker(φa) = k[x]p for some p ∈ k[x].

We claim that p is irreducible. If p = 0, then Ker(φa) = 0 which is absurd because a is a

root of some nonzero polynomial by assumption; and if p were a unit, then Ker(φa) = k[x]

which is absurd because nonzero constant polynomials do not lie in Ker(φa). Finally,

supose there exists f, g ∈ k[x] such that p = fg where neither f nor g is a unit, i.e.,

where f, g of degree smaller than that of p. But as f(a)g(a) = p(a) = 0, so (at least) one

of f(a) or g(a) is 0, say f(a). Then f ∈ Ker(φa) = k[x]p and hence p|f which is absurd

as f is a non-zero polynomial of smaller degree than p. This proves that p is irreducible

after all. In particular, n = deg p.

Now observe that k[a] is the image of the ring homomorphism φa so that it is a subring

of K isomorphic to k[x]/Kerφa = k[x]/k[x]p by the First Isomorphism Theorem 2.14.

However, by Theorem 3.17, k[x]/k[x]p is a field so that k[a] is too.

Lemma 4.12 shows that k[a] is a k-algebra, so it remains to show (1, a, a2, . . . , an−1)

is a basis of k[a] over k. To show spanning, let f(a) ∈ k[a]. Since k[x] is a Euclidean

domain, division of f by p gives q, r ∈ k[x] such that f = qp + r where either r = 0 or

deg (r) < deg (p) = n, say r = b0 + b1x+ · · ·+ bn−1x
n−1. In either case

f(a) = q(a)p(a) + r(a)

= r(a)

= b0 · 1 + b1a+ · · ·+ bn−1a
n−1.

Thus f(a) is a linear combination of 1, a, . . . , an−1. To show that 1, a, . . . , an−1 are linearly

independent, suppose c0 ·1+c1a+ · · ·+cn−1a
n−1 = 0. Then h := c0 +c1x+ · · ·+cn−1x

n−1

lies in Ker(φa) = k[x]p, so p|h. Since deg(h) < deg(p), this is possible only if h = 0, that

is, only if c0 = c1 = · · · = cn−1 = 0. �

Examples 4.14. (1) We have that R ⊆ C and that i ∈ C is a root of the irreducible

polynomial x2 + 1 ∈ R[x]. Here R[i] = R + Ri = C has basis (1, i).

(2) We have that Q ⊆ R and that 3
√

2 is a root of the irreducible polynomial x3− 2 ∈
Q[x]. Here Q[ 3

√
2] = Q + Q 3

√
2 + Q( 3

√
2)2 has basis (1, 3

√
2, ( 3
√

2)2).
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We now prove a kind of converse to Theorem 4.13. Suppose that we have only the field

k and an irreducible polynomial p ∈ k[x]. We now construct a field extension k ⊆ K and

an element a ∈ K such that a is a root of p.

Theorem 4.15 (Constructing field extensions containing roots). Let p ∈ k[x] be

irreducible in k[x]. The field extension k ⊆ K := k[x]/k[x]p has dimension n := deg(p)

as a k-vector space, and the element a := [x] ∈ K in this new field is a root of p.

Proof. Since k is a field, k[x] is a PID, so Theorem 3.17 shows that irreducibility of p

implies that K = k[x]/k[x]p is a field. The multiplicative identity in K is [1] ∈ K, so if

we identify k with the subfield k[1] ⊆ K then we have that k ⊆ K is a field extension.

Now let a = [x] ∈ K and let f ∈ k[x]. Write f =
∑

i cix
i. Then

f(a) =
∑
i

cia
i =

∑
i

ci[x
i] = [

∑
i

cix
i] = [f ].

In particular, p(a) = [p] = [0] so that a is a root of p in K and

k[a] = {f(a) : f ∈ k[x]} = {[f ] : f ∈ k[x]} = K.

Hence by Theorem 4.13, the dimension of K as a vector space over k is the minimum

degree of a polynomial in k[x] that vanishes at a. Now p is such a polynomial and if h is

another, then h(a) = [h] = [0] so p|h and hence deg h ≥ deg p. Thus dimK = deg p. �

Corollary 4.16 (Construction of splitting fields). Let k be a field and let f ∈ k[x]

be nonconstant. Then there exists a field extension k ⊆ K and an element a ∈ K such

that f(a) = 0. Moreover, f can be written as product of polynomials of degree 1 in K[x].

Proof. See Exercise Sheet 7. �

Examples 4.17. (1) The polynomial p = x2 + 1 ∈ R[x] is irreducible in R[x], so

Theorem 4.15 gives a root a in the field

R[x]/R[x](x2 + 1) = R + Ra,

where a = [x]. Now a2 + 1 = 0 and thus a2 = −1. This field is isomorphic to C.

(2) Consider the polynomial x2− 3 ∈ Q[x]. This is an irreducible polynomial in Q[x]

and Theorem 4.15 gives a root a in the field

Q[x]/Q[x](x2 − 3) = Q + Qa

where a = [x]. This field is isomorphic to the subfield Q + Q
√

3 of R.

(3) Consider p = x2 + x + 1 in Z2[x]. If the polynomial were not irreducible there

would be a linear factor in Z2[x]. But as p(0) = p(1) = 1 this is not the case, so

p is irreducible and has a root a = [x] in the field Z2[x]/Z2[x]p = Z2 + Z2a.
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4.4. Normed R-algebras. Recall from Algebra 2A that an inner product on a real

vector space V is a positive definite symmetric bilinear form

〈 · , · 〉 : V × V → R.

The corresponding norm is ‖ · ‖ : V → R given by ‖v‖ =
√
〈v, v〉. Positive definiteness

gives that ‖v‖ = 0 =⇒ v = 0.

Definition 4.18 (Normed R-algebra). Let V be an R-algebra with 1 such that V 6=
{0}. We say that V is a normed R-algebra if it is equipped with an inner product such

that the corresponding norm satisfies ‖u · v‖ = ‖u‖ · ‖v‖ for all u, v ∈ V .

Remark 4.19. The V 6= {0} assumption gives 1V 6= 0 and hence ‖1V ‖ 6= 0. We have

‖1V ‖ = ‖1V · 1V ‖ = ‖1V ‖ · ‖1V ‖. Since the norm takes values in the integral domain R,

the resulting equality ‖1V ‖ · (1− ‖1V ‖) = 0 implies that ‖1V ‖ = 1.

Examples 4.20 (R, C and H are normed R-algebras). Examples 4.3–4.4 shows that

R, C and H are R-algebras of dimension one, two and four respectively, and in each case

a basis over R is given. With respect to these bases, the standard dot product on Rn

gives a norm on each algebra.

(1) The norm of a ∈ R is absolute value |a| =
√
a2, and since |a · b| = |a| · |b| for all

a, b ∈ R we have that R is a normed R-algebra.

(2) The norm of z = z1 + z2i ∈ C is ‖z‖ =
√
zz̄ =

√
z21 + z22 so ‖z · w‖2 = zz̄ww̄ =

‖z‖2 · ‖w‖2, i.e., C is a normed R-algebra and if w = w1 + w2i we have

(4.4) (z21 + z22)(w2
1 + w2

2) = (z1w1 − z2w2)
2 + (z1w2 + z2w1)

2.

(3) The norm of z = z1 + z2i + z3j + z4k ∈ H us
√
z21 + z22 + z23 + z24 and if w =

w1 + w2i+ w3j + w4k we have

zw = (z1w1 − z2w2 − z3w3 − z4w4) + (z1w2 + z2w1 + z3w4 − z4w3)i

+(z1w3 − z2w4 + z3w1 + z4w2)j + (z1w4 + z2w3 − z3w2 + z4w1)k

and can show (see Exercise Sheet 8) that ‖z‖2 · ‖w‖2 = ‖z · w‖2. Hence H is a

normed R-algebra and

(4.5) (z21 + z22 + z23 + z24)(w2
1 + w2

2 + w2
3 + w2

4)

= (z1w1 − z2w2 − z3w3 − z4w4)
2 + (z1w2 + z2w1 + z3w4 − z4w3)

2

+ (z1w3 − z2w4 + z3w1 + z4w2)
2 + (z1w4 + z2w3 − z3w2 + z4w1)

2.

Theorem 4.21 (Classification of normed R-algebras). There are exactly three normed

R-algebras up to isomorphism, namely, R, C and H.

Idea of proof. Let V be a normed R-algebra.

• If 1, t are orthonormal in V , then t2 = −1.

• If 1, i, j are orthonormal in V , then so are 1, i, j, ij. Moreover ji = −ij.
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• If 1, i, j, ij, e are orthonormal in V , then (ij)e = −e(ij) = iej = −ije so (ij)e = 0

which is absurd.

Thus dimV ∈ {1, 2, 4} and we get V ∼= R, C or H accordingly. �

There is a beautiful application in Number Theory of normed algebras, obtained by

using complex numbers and quaternions with integer coefficients.

Theorem 4.22 (Fermat’s two square theorem and Lagrange’s four square theorem). Let

n ∈ N. Then n is a sum of four integer squares, and n is a sum of two integer squares

provided it has no prime factors congruent to 3 modulo 4.

The idea is to use (4.4)–(4.5) to show that if we have two sums of two squares or of

four squares then their product is also a sum of two squares or four squares respectively.

Hence we are reduced to the case that n is prime, but the proof in this case is beyond

the scope of the course.

Example 4.23. To give the idea, consider a simple example: 21 = 3 · 7. We have

3 = 12 + 12 + 12 + 02 and 7 = 22 + 12 + 12 + 12,

so

21 = 3 · 7 = (12 + 12 + 12 + 02) · (22 + 12 + 12 + 12) = 02 + 42 + 22 + 12.

Similarly 2 = 12 +12 and 5 = 22 +12 so 10 = 2 ·5 = (12 +12)(22 +12) = (2−1)2 +(1+2)2.

End of Week 7.
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5. The structure of linear operators

Let V be an n-dimensional vector space over k. Let α : V → V be a linear operator

and let A be the matrix representing α with respect to a given basis (v1, v2, . . . , vn) of V .

5.1. Minimal polynomials. Given a polynomial f =
∑n

i=0 ait
i ∈ k[t], we write

f(A) = a0In + a1A+ a2A
2 + · · ·+ anA

n

for the n × n matrix obtained by substituting A for t (and formally replacing t0 = 1 by

the n× n matrix identity In). It is not hard to show that the map k[t]→Mn(k) defined

by sending f 7→ f(A) is a ring homomorphism. Recall from Exercise 3.4 that the rings

End (V ) and Mn(k) are isomorphic as rings as well as vector spaces over k of dimension

n2, and by precomposing with this isomorphism we obtain a ring homomorphism

(5.1) Φα : k[t]→ End(V ), f 7→ f(α),

where the multiplication in End(V ) is the composition of maps.

Lemma 5.1. The kernel of the ring homomorphism Φα is not the zero ideal.

Proof. The dimension of End(V ) as a k-vector space is n2, so the list id, α, α2, . . . , αn
2

comprising n2+1 linear operators, or equivalently, the list (In, A,A2, . . . , An
2
) of matrices,

is linearly dependent. If a0, . . . , an2 ∈ k (not all zero) satisfy a0In + · · · + an2An
2

= 0,

then the polynomial f =
∑n2

i=0 ait
i satisfies Φα(f) = 0, so f ∈ Ker(Φα) is nonzero. �

Since k[t] is a PID, there exists a monic polynomial mα ∈ k[t] of degree at least one

such that Ker(Φα) = k[t]mα. Recall from the proof of Theorem 3.11 that mα ∈ k[t] is

the unique monic polynomial of smallest degree such that mα(α) = mα(A) = 0.

Definition 5.2 (Minimal polynomial). The minimal polynomial of α : V → V is the

monic polynomial mα ∈ k[t] of lowest degree such that mα(α) = 0. We also write mA

and refer to the minimal polynomial of an n× n matrix A representing α.

Examples 5.3. (1) If α = λid then p(α) = 0 where p(t) = t− λ, so mα(t) = t− λ.

(2) If A =
[

0 1
1 0

]
, then A2 = I2 and p(A) = 0 where p(t) = t2 − 1. As A is not a

diagonal matrix, we have that q(A) 6= 0 for any q = t− λ. Hence mA(t) = t2 − 1.

Lemma 5.4. Let p be a polynomial such that p(α) = 0. Then every eigenvalue of α is a

root of p. In particular every eigenvalue of α is a root of mα.

Proof. Let v 6= 0 be an eigenvector for eigenvalue λ and suppose p(t) =
∑k

i=0 ait
i. Then

p(α) = 0 gives

0 = p(α) v = (a0id + a1α + · · ·+ akα
k)v = (a0 + a1λ+ · · ·+ akλ

k)v = p(λ)v.

As v 6= 0 it follows that p(λ) = 0. �
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Definition 5.5 (Characteristic polynomial and multiplicities of eigenvalues).

The characteristic polynomial of α : V → V is ∆α(t) = det (α−tid) = det (A−tIn), where

A is a matrix representing α with respect to some basis. The algebraic multiplicity, am(λ),

of an eigenvalue λ is the multiplicity of λ as a root of ∆α(t). The geometric multiplicity

gm(λ) is the dimension of the eigenspace Eα(λ) = Ker(α− λ id) = Ker(A− λIn).

Remarks 5.6. (1) This characteristic polynomial of a linear operator α does not de-

pend on the choice of matrix A representing α, so it’s well-defined.

(2) We have am(λ) ≥ gm(λ).

Theorem 5.7 (Cayley-Hamilton). For any A ∈Mn(k) we have ∆A(A) = 0 ∈Mn(k).

Equivalently, for any linear α : V → V we have ∆α(α) = 0 ∈ End(V ).

Remark 5.8. One can’t argue that det (A − AIn) = det (0) = 0 and thus ∆A(A) = 0

because ∆α(A) is a matrix whereas det (0) is a scalar. To illustrate this for n = 2:

A =

(
a b
c d

)
has ∆A(t) = det

(
a− t b
c d− t

)
= t2 − (a+ d)t+ (ad− bc),

so the Cayley–Hamilton Theorem is the generalisation to arbitrary n of the calculation

∆A(A) = A2 − (a+ d)A+ (ad− bc) · I2

=

(
a2 + bc ab+ bd
ca+ cd bc+ d2

)
−
(
a2 + ad ab+ bd
ac+ cd ad+ d2

)
+ (ad− bc)

(
1 0
0 1

)
=

(
0 0
0 0

)
.

If you don’t think this is remarkable, check the case n = 3 for yourself!

Corollary 5.9. The minimal polynomial mα divides the characteristic polynomial ∆α.

In fact the roots of mα are precisely the eigenvalues of α.

Proof. The Cayley–Hamilton theorem gives that the characteristic polynomial ∆α lies in

the kernel of the ring homomorphism Φα from (5.1). Since Ker(Φα) = k[t]mα, we have

that mα divides ∆α. Therefore every root of mα is a root of ∆α, and hence an eigenvalue

of α. Conversely, every eigenvalue of α is a root of mα by Lemma 5.4. �

Remark 5.10. When working over C, Corollary 5.9 says that if λ1, . . . , λk are the distinct

eigenvalues of λ and ∆α(t) = (λ1 − t)r1 · · · (λk − t)rk , then

mα(t) = (t− λ1)s1 · · · (t− λk)sk

with 1 ≤ si ≤ ri for all 1 ≤ i ≤ k.

Proof of Theorem 5.7. Suppose ∆A(t) = det (A− tIn) = a0 + a1t + · · · + ant
n. We must

show that ∆A(A) = a0In + a1A + · · · + anA
n is equal to the zero matrix. Recall the

adjugate formula from [Algebra 1B]:

(5.2) adj (A− tIn)(A− tIn) = det (A− tIn)In = ∆A(t)In.

Write adj (A− tIn) = B0 +B1t+ · · ·+Bn−1t
n−1 for Bi ∈Mn(k). Substite into (5.2) gives

(5.3) (B0 +B1t+ · · ·+Bn−1t
n−1)(A− tIn) = (a0 + a1t+ · · ·+ ant

n)In.
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Comparing terms involving ti for any 1 ≤ i ≤ n, we have that

(5.4)
(
BiA−Bi−1

)
ti = (Bit

i)A+ (Bi−1t
i−1)(−tIn) = aiInti

Notice that in gathering terms here, we used the fact that the monomial ti commutes

with A (after all, these equations involve elements in the ring R[t] where R = Mn(k), so

we have Ati = tiA). If we now subsitute any matrix T ∈ Mn(k) into equation (5.3), the

left hand side will become a polynomial in T in which the coefficient of T i is given by

equation (5.4) if and only if AT i = T iA. For any such matrix T satisfies

(B0 +B1T + · · ·+Bn−1T
n−1)(A− T ) = a0In + a1T + · · ·+ anT

n.

Since A satisfies A · Ai = Ai · A, we may substitute T = A to obtain

∆A(A) = a0In + a1A+ · · · anAn = (B0 +B1A+ · · ·+Bn−1A
n−1)(A− A) = 0

as required. �

5.2. Invariant subspaces. Let α : V → V be a linear operator over a field k.

Definition 5.11 (Invariant subspace). For a linear operator α : V → V , we say that

a subspace W of V is α-invariant if α(W ) ⊆ W . If W is α-invariant, then the restriction

of α to W , denoted α|W ∈ End(W ), is the linear operator α|W : W → W : w 7→ α(w).

Examples 5.12. (1) The subspaces {0} and V are always α-invariant.

(2) Let λ be an eigenvalue of α. If v is an eigenvector for λ, then the one dimensional

subspace kv is α-invariant because α(av) = aα(v) = aλv ∈ kv.

(3) For any θ ∈ R with θ 6= 2πk for k ∈ Z, the linear operator α : R3 → R3 that rotates

every vector by θ radians anticlockwise around the z-axis has V1 := Re1 ⊕ Re2
and V2 := Re3 as α-invariant subspaces. The restriction α|V1 : V1 → V1 is simply

rotation by θ radians in the plane, while α|V2 : V2 → V2 is the identity on the real

line. Notice that the matrix for α in the basis e1, e2, e3 is the ‘block’ matrix

A =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
.

Notice that this matrix has two square non-zero ‘blocks’ (the top left 2×2 matrix

and the bottom right 1× 1 matrix). These two blocks are precisely the matrices

for the linear maps α|V1 and α|V2 in the given bases on V1 and V2 respectively.

Definition 5.13 (Direct sum of linear maps and matrices). For 1 ≤ i ≤ k, let Vi
be a vector space and let αi ∈ End(Vi). The direct sum of α1, . . . , αk is the linear map

(α1 ⊕ · · · ⊕ αk) :
⊕
1≤i≤k

Vi →
⊕
1≤i≤k

Vi

defined as follows: each v ∈
⊕

1≤i≤k Vi can be written uniquely in the form v = v1+· · ·+vk
for some vi ∈ Vi, and we define

(α1 ⊕ · · · ⊕ αk)(v1 + · · ·+ vk) := α1(v1) + · · ·+ αk(vk).
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Remark 5.14. For 1 ≤ i ≤ k, let Ai ∈ Mni(k) be the matrix for a linear map αi with

respect to some basis Bi of Vi. Then the matrix for the direct sum α1 ⊕ · · · ⊕ αk with

respect to the concatenated basis B1,B2, . . . ∪ Bk of
⊕

1≤i≤k Vi is the direct sum (block

matrix)

A1 ⊕ · · · ⊕ Ak :=


A1

A2

. . .
Ak


(zeros everywhere else in the matrix) of the matrices A1, . . . , Ak.

Lemma 5.15. For α ∈ End(V ), suppose V = V1 ⊕ V2 ⊕ · · · ⊕ Vk where V1, . . . , Vk are

α-invariant subspaces. For 1 ≤ i ≤ k, write αi := α|Vi ∈ End(Vi). Then

(1) α = α1 ⊕ · · · ⊕ αk ∈
⊕k

i=1 End(Vi); and

(2) the minimal polynomial mα is the least common multiple of mα1 , . . . ,mαk .

Proof. For (1), each v ∈ V can be written uniquely as v = v1 + · · ·+ vk for vi ∈ Vi, and

α(v) = α(v1) + · · ·+ α(vk) = α1(v1) + · · ·+ αk(vk)

where αi(vi) ∈ Vi which proves (1). For (2), we claim first that any f ∈ k[t] satisfies

(5.5) f(α) = f(α1)⊕ f(α2)⊕ · · · ⊕ f(αk).

Indeed, for i > 0 and v = v1 + · · ·+vk we have αi(v1 + · · ·+vk) = αi1(v1)+ · · ·+αik(vk), so

αi = αi1⊕ · · · ⊕αik. For any scalar c ∈ k, it follows that cαi = cαi1⊕ · · · ⊕ cαik. We add in

End(V ) using the formula from Exercise 3.4, so any polynomial f =
∑

i cit
i satisfies (5.5)

as claimed. Then mα divides f if and only if f(α) = 0 which holds if and only if f(αi) = 0

for all 1 ≤ i ≤ k, which holds if and only if mαi |f for all 1 ≤ i ≤ k. Equivalently mα is

the least common multiple of mα1 , . . . ,mαk as required. �

End of Week 8.

5.3. Jordan blocks. To begin our study of the structure of α, we first consider the

special case where α : V → V has only one eigenvalue λ, so Remark 5.10 tells us that

(5.6) ∆α(t) = (λ− t)r and mα(t) = (t− λ)s

where 1 ≤ s ≤ r. From now on we assume that our field k contains λ to ensure that

∆α(t) splits into a product of linear factors as in (5.6). We can choose k to be Q[λ] (see

Theorem 4.13), but for simplicity we choose to work with the field k = C. We also set

αλ = α− λ id.

Definition 5.16 (Cyclic subspace generated by v). For any vector space V and any

v ∈ V , the cyclic subspace generated by v is the subspace

C[α]v =
{
p(α)v ∈ V | p ∈ C[t]

}
.
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Remark 5.17. Note that C[α]v is an α-invariant subspace of V . Indeed, for p1, p2 ∈ C[t]

and λ1, λ2 ∈ k, we have λ1(p1(α)v)+λ2p2(α)v = (λ1p1+λ2p2)(α)v, so C[α]v is a subspace

of V . It is also α-invariant since αp(α)v = u(α)v where u is the polynomial tp(t).

Example 5.18. If v ∈ Eα(λ), that is, if α(v) = λv, then C[α]v = Cv. Thus, for every

eigenvector v of α we have that Cv is the cyclic α-invariant subspace generated by v.

Proposition 5.19. Let α ∈ End(V ) be such that ∆α(t) = (λ− t)r and mα(t) = (t− λ)s.

For any nonzero vector v ∈ V , define e := e(v) ∈ Z>0 to be the smallest positive integer

such that αλ
e(v) = 0 where αλ := α− λ id, and write

v1 = αλ
e−1(v), v2 = αλ

e−2(v), . . . , ve−1 = αλ(v), ve = v.

Then

(1) (v1, v2, . . . , ve) is a basis for the C-vector space W := C[α]v;

(2) in this basis, the matrix for the linear map β := α|W ∈ End(W ) is the e×e matrix

J(λ, e) =


λ 1

λ 1
. . . . . .

λ 1
λ

 ; and

(3) we have that Eβ(λ) = Cv1, that mβ(t) = (t− λ)e and that ∆β(t) = (λ− t)e.

Proof. Note first that since mα(t) = (t − λ)s, we have that αλ
s(v) = mα(α)v = 0 and

therefore 1 ≤ e ≤ s is well-defined.

To see that v1, . . . , ve span W , let w ∈ W . By hypothesis w = f(α)v for some f ∈ C[t].

Exercise Sheet 9 gives a0, . . . , ak ∈ C such that f(t) = a0 + a1(t − λ) + · · · + ak(t − λ)k

for some k ≥ 0, and hence

w = f(α)v = a0v + a1αλ(v) + a2αλ
2(v) + · · · ,

so W is spanned by v1, . . . , ve because αλ
e(v) = 0. The fact that v1, . . . , ve are linearly

independent is immediate from Exercise 9.3, so statement (1) holds.

For (2), we compute that

α(v1) = λ v1 + αλ(v1) = λ v1 + αλ
e(v) = λ v1

and for 2 ≤ i ≤ e we have

α(vi) = λ vi + αλ(vi) = λ vi + vi−1 = vi−1 + λ vi.

Therefore we have expressed the image under α of each basis vector vi in terms of the

basis (v1, v2, . . . , ve), and the coefficients in this expansion provide the entries in each

column of the matrix for β; the resulting matrix is therefore J(λ, e).

The statements from part (3) follow from Exercise 9.4. �

Definition 5.20 (Jordan block). We call J(λ, e) a Jordan block of α.
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Example 5.21. Consider the linear operator α : C2 → C2, v 7→ Av where

A =

(
3/2 1/2
−1/2 1/2

)
satisfies ∆α(t) = (1 − t)2, and mα(t) = (t − 1)2. Following Proposition 5.19 we first

compute an eigenvector v1 for λ = 1, i.e., solve

(A− I)v1 = 0, that is

(
1/2 1/2
−1/2 −1/2

)
v1 =

(
0
0

)
giving, say, v1 = (1,−1)t. Next solve

(A− I)v2 = v1, that is

(
1/2 1/2
−1/2 −1/2

)
v2 =

(
1
−1

)
giving, say, v2 = (0, 2)t. The matrix required to change basis so that A can be written in

the form of Proposition 5.19 is the matrix whose columns are v1, v2, namely

P =

(
1 0
−1 2

)
.

Please check for yourself that

P−1AP =

(
1 0

1/2 1/2

)(
3/2 1/2
−1/2 1/2

)(
1 0
−1 2

)
=

(
1 1
0 1

)
= J(1, 2).

Theorem 5.22 (Jordan normal form - special case). Let α ∈ End(V ) be such that

∆α(t) = (λ − t)r and mα(t) = (t − λ)s. Then there exists a basis for V such that the

matrix for α with respect to this basis is

A := JNF(α) :=


J(λ, e1)

J(λ, e2)
. . .

J(λ, em)

 = J(λ, e1)⊕ · · · ⊕ J(λ, em),

where

(1) m = gm (λ) is the number of Jordan blocks;

(2) s = max{e1, . . . , em}; and

(3) r = e1 + · · ·+ em.

The proof uses the following Lemma.

Lemma. Let α ∈ End(V ) with mα(t) = (t−λ)s. Then there exist nonzero v1, . . . , vm ∈ V
such that

(5.7) V = C[α]v1 ⊕ · · · ⊕ C[α]vm

Proof of Theorem 5.22. Let Wj := C[α]vj as in the lemma, and ej := dimWj. Each Wj

is α-invariant, so if we let αj be the restriction of α to Wj, then α = α1 ⊕ · · · ⊕ αm by

Lemma 5.15, and we choose the basis on each subspace Wj by applying Proposition 5.19

which gives the required form for the matrix A and gives mαj = (t− λ)ej for 1 ≤ j ≤ m.

Moreover:
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(1) Each v ∈ V is v = w1 + · · ·+wm ∈ V for wj ∈ Wj by (5.7), so if v ∈ Eα(λ), then

α1(w1) + · · ·+ αm(wm) = α(v) = λ(v) = λw1 + · · ·+ λwm

and thus αj(wj) = λwj for 1 ≤ j ≤ m. Then Eα(λ) = Eα1(λ)⊕ · · · ⊕Eαm(λ). By

Proposition 5.19, we have dimEαi(λ) = 1, so

m = dimEα1(λ) + · · ·+ dimEαm(λ) = dimEα(λ) = gm (λ).

This proves (1).

(2) Lemma 5.15 shows that mα(t) is the least common multiple of mα1(t), . . . ,mαm(t).

Proposition 5.19 shows that mαi(t) = (t− λ)ei , so (2) follows immediately.

(3) This says simply that dimV = dimW1 + · · ·+ dimWm. �

Proof of the lemma (not examinable). We use induction on s. If s = 1, then α = λid.

Pick any basis v1, . . . , vr for V and apply Proposition 5.19 with e = 1 for each basis vector

to see that

V = Cv1 ⊕ · · · ⊕ Cvr = C[α]v1 ⊕ · · · ⊕ C[α]vr.

This proves the case s = 1. Now suppose that s ≥ 2 and that the claim holds for smaller

values of s. Consider the α-invariant subspace

W = αλ(V ) = {αλ(v) ∈ V | v ∈ V }.

Notice that αλ
s−1(w) = 0 for all w ∈ W and the minimal polynomial of α|W is (t−λ)s−1.

The inductive hypothesis gives αλ(v1), . . . , αλ(v`) ∈ W \ {0} with

(5.8) W = C[α]αλ(v1)⊕ · · · ⊕ C[α]αλ(v`).

Let βi be the restriction of α to C[α]vi. Proposition 5.19 shows that Eβi(λ) = Cwi where

wi = αλ
ei−1(vi) ∈ C[α]αλ(vi) for some ei ≥ 2. Since the sum from (5.8) is direct, it follows

as in the proof of (1) above that (w1, . . . , w`) is a basis for Eα|W (λ). Extend this to a

basis (w1, . . . , w`, v`+1, . . . , v`+m) for Eα(λ) ⊆ C[α]v1 + · · ·+C[α]v`+Cv`+1 + · · ·+Cv`+m.

We can now throw away that wi’s completely, because we claim that

V = C[α]v1 ⊕ · · · ⊕ C[α]v` ⊕ C[α]v`+1 ⊕ · · · ⊕ C[α]v`+m.

Since v`+1, . . . , v`+m are eigenvectors for λ, this is the same as saying that

(5.9) V = C[α]v1 ⊕ · · · ⊕ C[α]v` ⊕ (Cv`+1 ⊕ · · · ⊕ Cv`+m).

The right hand side is by definition contained in the left. For the opposite inclusion, let

v ∈ V . Then αλ(v) ∈ W , so by (5.8) there exist p1, . . . , pe ∈ C[t] such that

αλ(v) = p1(α)αλ(v1) + · · ·+ pe(α)αλ(v`).

Gather all terms on one side to obtain αλ(v − (p1(α)v1 + · · ·+ pe(α)ve)) = 0, so

v − (p1(α)v1 + · · ·+ p`(α)v`) ∈ Eα(λ) ⊆ C[α]v1 + · · ·+ C[α]v` + Cv`+1 + · · ·+ Cv`+m.

Now we know that the decomposition

v = (p1(α)v1 + · · ·+ p`(α)v`) +
(
v − (p1(α)v1 + · · ·+ p`(α)v`))
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presents v as the sum of an element of C[α]v1 + · · ·+C[α]v` and an element of the space

C[α]v1 + · · · + C[α]v` + Cv`+1 + · · · + Cv`+m, so it lies in the right hand side of (5.9) as

required. It remains to show that the sum from (5.9) is direct. Suppose

0 = p1(α)v1 + · · ·+ p`(α)v` + a`+1v`+1 + · · ·+ a`+mv`+m.

Applying αλ to both sides gives

0 = p1(α)αλ(v1) + · · ·+ p`(α)αλ(v`).

Since W is a direct sum in equation (5.8), we have αλ(pi(α)vi) = 0 for 1 ≤ i ≤ `, so

pi(α)vi is an eigenvector that lies in C[α]vi, so it must be a multiple of wi. Since w1, . . . , w`
are linearly independent, it follows that pi(α)vi = 0 for 1 ≤ i ≤ `. Hence

0 = a`+1v`+1 + · · ·+ a`+mv`+m

and as v`+1, . . . , v`+m are linearly independent, it follows that a`+1 = . . . = a`+m = 0.

This finishes the proof. �

Example 5.23. For a complex vector space V of dimension 4, suppose that α ∈ End(V )

has mα(t) = (t− 5)2 and ∆α(t) = (t− 5)4. Since the degree of mα(t) is 2, we must have

at least one largest block J(5, 2), so the possible decompositions of the 4-dimensional

space V are J(5, 2)⊕ J(5, 2) and J(5, 2)⊕ J(5, 1)⊕ J(5, 1). If we know in addition that

gm(5) = 3 then we must have three blocks, so the second possibility applies.

5.4. Primary Decomposition. What if a linear map α : V → V has more than one

eigenvalue? Our goal is to choose a basis in which the matrix for α is a block matrix

(see Remark 5.14), and Lemma 5.15 tells us that we can achieve this by writing V as the

direct sum of α-invariant subspaces. But does such a decomposition exist?

Our goal now is produce one such decomposition of V . The key is to factor the minimal

polynomial mα in the ring k[t] as a product of irreducible factors. We begin with the

case where the minimal polynomial has two coprime factors (see Definition 3.14). In this

section, k is any field.

Proposition 5.24 (Primary decomposition in the case k = 2). Let α : V → V be a

linear operator and suppose that the minimal polynomial satisfies mα = q1q2, where q1, q2
are monic and coprime. For 1 ≤ i ≤ 2, let Vi = Ker(qi(α)). Then:

(1) the subspaces V1, V2 are α-invariant and satisfy V = V1 ⊕ V2; and

(2) the maps αi = α|Vi for 1 ≤ i ≤ 2 satisfy α = α1 ⊕ α2 and mαi = qi.

Proof. Define subspaces W1 = Im(q2(α)) and W2 = Im(q1(α)). Our first goal is to prove

a modified version of parts (1) and (2) with Wi in place of Vi.

We first prove that Wi are α-invariant and V = W1 ⊕W2. Since qi(α) commutes with

α, Exercise Sheet 10 shows that Im(qi(α)) is α-invariant, i.e., Wi is α-invariant. Since

q1, q2 are coprime, Lemma 3.15 gives f, g ∈ k[t] such that 1 = fq1 + gq2, so

id = f(α)q1(α) + g(α)q2(α).
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Any v ∈ V satisfies

v = id(v) = q2(α)
(
g(α)(v)

)
+ q1(α)

(
f(α)(v)

)
∈ W1 +W2,

so V = W1+W2. To see that the sum is direct, suppose v ∈ W1∩W2, say v = q1(α)(v1) =

q2(α)(v2). Then using the equation above, we have that

v = f(α)q1(α)(v) + g(α)q2(α)(v)

= [f(α)q1(α)q2(α)](v2) + [g(α)q2(α)q1(α)](v1)

= [f(α)mα(α)](v2) + [g(α)mα(α)](v1)

= 0.

Hence W1 ∩W2 = {0} and V = W1 ⊕W2, so the modified version of (1) holds.

For the modified version of (2), the fact that αi = α|Wi
satisfy α = α1 ⊕ α2 follows

from Lemma 5.15. For the statement about the minimal polynomial, fix i = 1 and note

that

mα1 divides f ⇐⇒ f(α1)(w) = 0 for all w ∈ W1

⇐⇒ f(α)(w) = 0 for all w ∈ W1 as α(w) = α1(w) for w ∈ W1

⇐⇒ f(α)
(
q2(α)(v)

)
= 0 for all v ∈ V as W1 = Im(q2(α))

⇐⇒ mα divides fq2 by definition of mα

⇐⇒ q1 divides f as mα = q1q2

⇐⇒ q1 is the minimal polynomial of α1

as required. Similarly q2 is the minimal polynomial of α2.

We’ve now proved the result for Wi in place of Vi, so it remains to show that Wi = Vi
for 1 ≤ i ≤ 2. Since each v ∈ V satisfies q1(α)q2(α)(v) = mα(α)(v) = 0, we have that

W1 = Im(q2(α)) ⊆ Ker(q1(α)) = V1. The rank-nullity theorem from Linear Algebra gives

dim Ker(q1(α)) + dim Im(q1(α)) = dimV = dimW1 + dimW2.

Subtract dim Im(q1(α)) = dimW2 to leave dimV1 = dim Ker(q1(α)) = dimW1, so in fact

the inclusion W1 ⊆ V1 must be equailty. Showing W2 = V2 is similar. �

Theorem 5.25 (Primary Decomposition). Let α : V → V be a linear operator and

write mα = pn1
1 · · · p

nk
k , where p1, . . . , pk are the distinct monic irreducible factors of mα

in k[t]. Let qi = pnii and let Vi = Ker(qi(α)). Then:

(1) the subspaces V1, . . . , Vk are α-invariant and V = V1 ⊕ · · · ⊕ Vk; and

(2) the maps αi = α|Vi for 1 ≤ i ≤ k satisfy α = α1 ⊕ · · · ⊕ αk and mαi = qi.

Proof. We use induction on k. For k = 1, we have mα = pn1
1 = q1. Then

V1 = Ker
(
q1(α)

)
= Ker

(
mα(α)

)
= V

because mα(α) is the zero map by Definition 5.2. This proves the case k = 1. For k ≥ 2,

suppose the result holds for any linear operator whose minimal polynomial has less than k
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distinct irreducible factors. Suppose now that mα = pn1
1 · · · p

nk
k . Define r1 = pn1

1 · · · p
nk−1

k−1
and r2 = pnkk , so mα = r1r2. Note that r1 and r2 are coprime, Proposition 5.24 gives

V = Ker
(
r1(α)

)
⊕Ker

(
r2(α)

)
,

where βi := α|Ker(ri(α)) satisfies α = β1 ⊕ β2 and mβi = ri for 1 ≤ i ≤ 2. In particular, β1
is a linear operator on Ker(r1(α)) whose minimal polynomial r1 = pn1

1 · · · p
nk−1

k−1 has k − 1

irreducble factors, so by induction there exist β1-invariant subspaces such that

Ker
(
r1(α)

)
= V1 ⊕ · · · ⊕ Vk−1

and maps αi = β1|Vi for 1 ≤ i ≤ k − 1 satisfy β1 = α1 ⊕ · · · ⊕ αk−1 and mαi = pnii . Since

β1 := α|Ker(r1(α)) and αi = β1|Vi , we have that αi = α|Vi for 1 ≤ i ≤ k − 1. Defining

Vk := Ker
(
r2(α)

)
gives V = V1⊕ · · · ⊕Vk, and if we set αk := β2|Vk = α|Vk , then we have

that αi = α|Vi and α = α1⊕ · · · ⊕αk for 1 ≤ i ≤ k. It remains to note that mαi = pnii for

all 1 ≤ i ≤ k. �

End of Week 9.

Example 5.26. Consider rotation by θ radians about the z-axis from Examples 5.12(3),

and let’s work over the field C. The characteristic polynomial of α is

∆α(A) = det(A− tI3) = (eiθ − t)(e−iθ − t)(1− t).

Since each root has multiplicity one, Remark 5.10 shows that

mα(t) = (t− eiθ)(t− e−iθ)(t− 1).

If we now work over R, as we should since V = R3 is a vector space over R, we obtain

(5.10) mα(t) = (t2 − 2 cos θt+ 1)(t− 1)

as the factorisation of mα into irreducibles q1 = (t2 − 2 cos θt+ 1) and q2 = t− 1 in R[t]

(which is a UFD). Now compute

q1(α) =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)2

− 2 cos θ

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
+

(
1 0 0
0 1 0
0 0 1

)

=

(
0 0 0
0 0 0
0 0 2− 2 cos(θ)

)
and

q2(α) =

(
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

)
−

(
1 0 0
0 1 0
0 0 1

)
=

(
cos(θ)− 1 − sin(θ) 0

sin(θ) cos(θ)− 1 0
0 0 0

)
.

Notice that

Ker(q1(α)) =

{(
x
y
0

)
∈ R3 | x, y ∈ R

}
and Ker(q2(α)) =

{(
0
0
z

)
∈ R3 | z ∈ R

}
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are the α-invariant subspaces V1 and V2 that we considered in Examples 5.12(3). Thus,

even if we had not noticed that V = V1⊕V2 as in Examples 5.12(3), we could nevertheless

have computed the factorisation (5.10) of the minimal polynomial mα and obtained the

following direct sum decomposition:

V = Ker(mα1(α))⊕Ker(mα2(α))

with α = α|Ker(mα1 (α))
⊕ α|Ker(mα2 (α))

.

Corollary 5.27 (Diagonalisability). A linear map α : V → V is diagonalisable iff

mα(t) = (t− λ1)(t− λ2) · · · (t− λk)

for distinct λ1, . . . , λk ∈ k.

Proof. Suppose first that α ∈ End(V ) is diagonalisable with distinct eigenvalues λ1, . . . , λk.

Let Vi = Eα(λi) be the λi-eigenspace. Pick a basis Bi for Vi. Then the matrix for α with

respect to the concatenated basis B = B1,B2, . . . ,Bk of V is

A =


A1

A2

. . .
Ak


where Ai = λiIni for ni = gm (λi). Now mAi = t− λi and Lemma 5.15 gives

mA(t) = mA1(t)mA2(t) · · ·mAk(t) = (t− λ1)(t− λ2) · · · (t− λk).

For the converse, we apply Theorem 5.25 with qi := t− λi for 1 ≤ i ≤ k to obtain

V = Ker(α− λ1id)⊕ · · · ⊕Ker(α− λkid) = Eα(λ1)⊕ · · · ⊕ Eα(λk),

so V must therefore have a basis comprising eigenvectors of α, i.e., α is diagonalisable. �

5.5. Jordan Decomposition. We now tackle the general case, where α ∈ End(V ) need

not have a single eigenvalue. Let’s work over a field k that contains all of the eigenvalues

of α, in which case we can decompose the minimal polynomial as

mα(t) = (t− λ1)s1 · (t− λ2)s2 · · · (t− λk)sk

where λ1, . . . , λk are the distinct eigenvalues of α (recall that the roots of mα are exactly

the eigenvalues of α); for example, we could use C, but using the results of Section 4 one

can often get away with a much smaller field.

In any event, the Primary Decomposition Theorem 5.25 implies that

V = Ker(α− λ1id)s1 ⊕Ker(α− λ2id)s2 ⊕ · · · ⊕Ker(α− λkid)sk

is a decomposition of V as a direct sum of α-invariant subspaces.

Definition 5.28 (Generalised eigenspace). Let α : V → V be a linear map with

eigenvalue λ. A nonzero vector v ∈ V is a generalised eigenvector with respect to λ if

(α− λ id)sv = 0 for some positive integer s. The generalised λ-eigenspace of α is

Gα(λ) =
{
v ∈ V : (α− λid)sv = 0 for some positive integer s

}
.
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Remark 5.29. We have Eα(λ) ⊆ Gα(λ).

Lemma 5.30. Let s be the multiplicity of the eigenvalue λ as a root of mα. Then

Gα(λ) = Ker(α− λid)t for all t ≥ s.

Proof. The right hand side is contained in the left by Definition 5.28. For the opposite

inclusion, supposemα(t) = (t−λ1)s1(t−λ2)s2 · · · (t−λk)sk . By the Primary Decomposition

Theorem we have that

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk,

where Vi = ker (α − λiid)si , and the minimal polynomial of αi = α|Vi is (t − λi)si . Now

suppose that λ = λi. The map αj only has the eigenvalue λj, so for j 6= i we have

ker (αj − λiid) = {0} and αj − λiid is a bijective linear operator on Vj. Now let

v = v1 + v2 + · · ·+ vk

be any element in Gα(λ) with vi ∈ Vi. Suppose that (α− λiid)tv = 0. Then

0 = (α− λiid)tv = (α1 − λiid)tv1 + · · ·+ (αk − λiid)tvk.

This happens if and only if (αj − λiid)tvj = 0 for all j = 1, . . . , k. As (αj − λiid)t is

bijective if j 6= i, we must have that vj = 0 for j 6= i. Hence v = vi ∈ Vi = ker (α− λi)si .
This shows that Gα(λi) ⊆ ker (α − λiid)si and as (α − λiid)siv = 0 clearly implies that

(α− λiid)tv = 0 for any t ≥ si, it follows that Gα(λi) ⊆ ker (α− λiid)t as required. �

Remark 5.31. This last lemma implies in particular that Gα(λ) = ker (α − λid)r where

r is the algebraic multiplicity of λ. This is useful for calculating Gα(λ) as it is easier to

determine ∆α(t) than mα(t).

Theorem 5.32 (Jordan Decomposition). Suppose that the characteristic and minimal

polynomials are ∆α(t) =
∏

1≤i≤k(λi−t)ri and mα(t) =
∏

1≤i≤k(t−λi)si respectively. Then

V = Gα(λ1)⊕ · · · ⊕Gα(λk),

and if α = α1⊕ · · ·⊕αk is the corresponding decomposition of α, then ∆αi(t) = (λi− t)ri
and mαi(t) = (t− λi)si.

Proof. Almost everything follows directly from the Primary Decomposition Theorem 5.25

and Lemma 5.30. It remains to prove that ∆αi(t) = (λi − t)ri . To see this, Corollary 5.9

shows that the roots of mαi are exactly the eigenvalues of αi, so ∆αi(t) = (λi − t)ti for

some positive integer ti. We have that α = α1 ⊕ · · · ⊕ αk from Theorem 5.25, and hence
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A = A1 ⊕ · · · ⊕ Ak where Ai ∈M`i(k) is any matrix for the map αi. Therefore

(λ1 − t)r1 · · · (λk − t)rk = ∆α(t)

= det(A− tIn)

= det
(
A1 ⊕ · · · ⊕ Ak − t(I`1 ⊕ · · · ⊕ I`k)

)
= det

(
(A1 − tI`1)⊕ · · · ⊕ (Ak − tI`k)

)
= det(A1 − tI`1) · det(A2 − tI`2) · · · det(Ak − tI`k)
= ∆α1(t) · · ·∆αk(t)

= (λ1 − t)t1 · · · (λk − t)tk

where the fact that the determinant of a direct sum equals the product of the determi-

nants is Exercise 9.6 (it was also on the final exercise sheet of Algebra 2A!). Comparing

exponents gives ti = ri for i = 1, . . . , k as required. �

The next result achieves the main goal of Algebra 2B:

Corollary 5.33 (Jordan normal form). For α ∈ End(V ), write the characteristic

polynomial as ∆α(t) = (λ1 − t)r1 · · · (λk − t)rk . Then there exists a basis on V such that

the matrix A for α expressed in this basis is

JNF(α) := JNF(α1)⊕ · · · ⊕ JNF(αk),

where for 1 ≤ i ≤ k, the map αi is the restriction of α to Gα(λi).

Proof. Theorem 5.32 gives the decompositions V = Gα(λ1) ⊕ Gα(λ2) ⊕ · · · ⊕ Gα(λk),

α = α1 ⊕ · · · ⊕ αk, and the characteristic and minimal polynomials of each αi. The

αi each satisfy the hypotheses of Theorem 5.22 and we conclude that there is a basis

Bi of Gα(λi) for which αi has matrix JNF(αi). Concatenating these bases gives a basis

B = B1, . . . ,Bk for which α has matrix JNF(α) := JNF(α1)⊕ · · · ⊕ JNF(αk). �

Remark 5.34. The matrix A in Theorem 5.33 is called a Jordan Normal Form for α. One

can show that the Jordan blocks in JNF(α) are unique up to the order in which we write

the blocks.

Example 5.35. We’ll conclude the unit by discussing in complete detail how to compute

a basis for C4 that puts the matrix

A =

 2 −4 2 2
−2 0 1 3
−2 −2 3 3
−2 −6 3 7

 ,

into Jordan Normal Form.

First, we expand the determinant to compute that

∆α(t) = (2− t)2(4− t)2.
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Using trial and error, we notice that (A− 2I)(A− 4I) 6= 04×4, but that

(A− 2I)(A− 4I)2 = 04×4,

so the minimal polynomial of α is mα(t) = (t− 2)(t− 4I)2. By Primary decomposition,

we may treat each eigenvalue in turn, namely:

(1) λ = 2. The exponent of t − 2 in the minimal polynomial is 1, so Theorem 5.22

says that the maximal Jordan block for eigenvalue 2 is 1× 1.

(2) λ = 4. The exponent of t − 4 in the minimal polynomial is 2, so Theorem 5.22

says that the maximal Jordan block for eigenvalue 4 is 2× 2.

This means we already known that the Jordan Normal Form of the matrix A is of the

form

JNF(α) =

4 1 0 0
0 4 0 0
0 0 2 0
0 0 0 λ


where λ equals either 2 or 4. Notice that by Remark 5.34, it doesn’t matter which order

you put the blocks in, but you are not allowed to split up the 2× 2 block with 4’s on the

diagonal.

To compute JNF(α), and indeed, to compute a matrix P satisfying P−1AP = JNF(α),

we compute the eigenspaces of both eigenvalues. First, for eigenvalue 2, solve

(A− 2I)v = 0,

that is  0 −4 2 2
−2 −2 1 3
−2 −2 1 3
−2 −6 3 5

 ·
xyz
w

 =

0
0
0
0

 .

Perform row operations to obtain 2 −2 −1 −3
0 2 −1 −1
0 0 0 0
0 0 0 0

 ·
xyz
w

 =

0
0
0
0

 .

The solution set Eα(2) therefore satisfies 2x− 2y − z − 3w = 0 and 2y − z − w = 0, i.e.,

Eα(2) =


 w

1
2
(z + w)
z
w

 | z, w ∈ C

 =

z
0

1
2
0

+ w

2
1
0
2

 | x, y ∈ C

 ,

so Eα(2) has basis (0, 1, 2, 0)T and (2, 1, 0, 2)T . In particular, the geometric multiplicity

of 2 is two, and therefore there are two Jordan blocks for the eigenvalue 2, that is, 2 is

the final unknown entry in the Jordan Normal Form of the matrix.
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Next, we repeat for the eigenvalue 4. We already know that the eigenspace must be of

dimension one, because there is only one Jordan block for eigenvalue 4. We now solve

(A− 4I)v = 0,

that is  −2 −4 2 2
−2 −4 1 3
−2 −2 −1 3
−2 −6 3 3

 ·
xyz
w

 =

0
0
0
0

 .

Perform row operations (add each row to -1 times the top row) to obtain 2 4 −2 −2
0 0 −1 1
0 2 −3 1
0 −2 1 1

 ·
xyz
w

 =

0
0
0
0


and then rearrange to get 2 4 −2 −2

0 2 −3 1
0 0 −1 1
0 0 0 0

 ·
xyz
w

 =

0
0
0
0


The solution set Eα(4) therefore satisfies 2x + 4y − 2z − 2w = 0, 2y − 3z + w = 0 and

−z + w = 0. Therefore

Eα(4) =


0
w
w
w

 | w ∈ C

 =

w
0

1
1
1

 | w ∈ C

 ,

so Eα(2) has basis v1 = (0, 1, 1, 1)T . To compute the matrix P , we must find the second

basis vector in the generalised eigenspace for eigenvalue 4 (as in Proposition 5.19), so we

compute v2 given by

(A− 4I)v2 = v1,

that is, we solve  −2 −4 2 2
−2 −4 1 3
−2 −2 −1 3
−2 −6 3 3

 ·
xyz
w

 =

0
1
1
1

 .

Perform the same operations as you did in computing the eigenspace gives similar equa-

tions (just the right hand sides are different), namely 2x+4y−2z−2w = 0, 2y−3z+w = 1

and −z + w = 1. A vector satisfying these equations is v2 = (1, 0, 0, 1)T .

Since we put the Jordan block for eigenvalue 4 first in our Jordan Normal form, we

must collect v1, v2 as the first columns (in that order!) in our matrix P , and then we can
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feed in the basis for the eigenspace Eα(2) as columns three and four, giving

P =

0 1 0 2
1 0 1 1
1 0 2 0
1 1 0 2


If we let J denote the Jordan Normal Form matrix, then you can check that

P−1AP = J

by checking more simply that AP = PJ .

End of Algebra 2B.
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