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I. INTRODUCTION

Stochasticity is an inherent feature of many biological and chemical systems. Re-

cently, in part due to the emergence of the field of systems biology, the modeling of

stochastic processes in biology has become increasingly important. When simulating

such processes it is common to use the stochastic simulation algorithm (SSA), which

was first introduced by Gillespie 1, 2 and in a different form by Kurtz 3 . Although,

in a biological context, the SSA is not always used to characterize the interactions

between chemical species (see4,5 for example), for consistency with previous works,

we will use the terminology of a chemical system. Interacting groups of individuals

will be referred to as ‘species’ and their interactions will be known as ‘reactions’. In

general we assume that there are N ≥ 1 species, {S1, . . . , SN}, interacting stochas-

tically through M reaction channels {R1, . . . , RM}. The state of the system at time

t will be denoted by the vector X(t) = (X1(t), . . . , XN (t)), where Xi(t) represents

the number of molecules of Si at time t. The purpose of the SSA is to simulate

the time evolution of X(t) given some initial condition X(t0) = x0. The dynamics

of each reaction channel, Rj, (for j = 1, . . . , M) are completely characterized by a

propensity function, aj(x), which determines the probability of each reaction being

the next to fire and a stoichiometric vector, νj = (ν1j, . . . , νNj) which characterizes

the change in state brought about by a single firing of reaction channel j.

The use of the SSA (or refined versions thereof), originally designed to simulate

simple chemical systems with statistical exactness, has now become widespread. The

success of the SSA in recent years has precipitated its application to much larger

systems than was originally anticipated. For example, Arkin et al. 6 used the SSA to

simulate a stochastic version of the classic model of Shea and Ackers 7 describing the

processes which control the switch from lysogenic to lytic modes of growth in a virus,

lambda phage, which is now a common experimental model system. The stochastic

model contains 75 reactions in 57 chemical species8. Kurata et al. 9 simulate a 61-

reaction model of the heat-shock response of the bacterium Escherichia coli. Baker

et al. 4 employ the SSA in order to model cell migration via a position jump model.

Even in their most basic one-dimensional models, species numbers can be of the

order of hundreds with the number of reaction channels of a similar order.
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For such large systems of reactions it is necessary to make the SSA as efficient

as possible in order to maintain feasible simulation times. In some cases it may be

necessary to sacrifice the accuracy of the exact SSA in order to accelerate simulations

as is done in the ‘τ -leaping’ algorithm10–12. However, it is the improvement of the

efficiency of the exact SSA on which we focus in this paper.

II. BACKGROUND

One of the original (and most popular) implementations of the mathematically

exact SSA is known as the direct method2 (DM). Given a system at time t in state

X(t), a time interval τ , until the next reaction occurs, is generated and along with

it a reaction, with index j, is chosen to occur at time t + τ . The changes in the

numbers of molecules caused by the firing of reaction channel Rj are implemented,

the propensity functions are altered accordingly and the time is updated, ready

for the next (τ, j) pair to be selected. A method for the implementation of this

algorithm is given below:

1. Initialize the time t = t0 and the species numbers X(t0) = x0.

2. Evaluate the propensity functions, aj(x), associated with the reaction channels

Rj (j = 1, . . . , M) and their sum a0(x) =
∑M

j=1 aj(x).

3. Generate two random numbers rand1 and rand2 uniformly distributed in (0, 1).

4. Use rand1 to generate a time increment, τ , an exponentially distributed ran-

dom variable with mean 1/a0(x). i.e.

τ =
1

a0
ln

(

1

rand1

)

.

5. Use rand2 to generate a reaction index j with probability aj(x)/a0(x), in

proportion with its propensity function. i.e. find j such that13

j−1
∑

j′=1

aj′(x) < a0(x) · rand2 <
j

∑

j′=1

aj′(x)
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6. Update the state vector, x = x + νj and the time, t = t + τ .

7. If t < tfinal, the desired stopping time, then go to step (2). Otherwise stop.

In an early alternative version of the SSA, the First Reaction Method (FRM),

Gillespie 1 proposes to generate a putative time for each reaction. The reaction

whose time is first is implemented and new putative reaction times are calculated

using a freshly generated random number for each reaction, exploiting the memory-

less property of Poisson processes, and so the process continues.

Since these early formulations (DM and FRM) there have been several attempts

aimed increasing the speed and efficiency of the SSA: Gibson and Bruck 8 adapted

the FRM into their Next Reaction Method (NRM) which reuses the random num-

bers, originally generated for the reactions whose propensity functions had changed,

in order to calculate new putative reaction times, thus saving computational effort on

random number generation. They stored the putative reaction times in an ‘indexed

priority queue’, using a heap data structure in which the time and index of the next

reaction to occur are always easily accessible at the root of the heap. The number of

operations required in order to maintain the indexed priority queue at each iteration

is O(log(M)). They also increased the efficiency of the algorithm by introducing a

dependency graph which lists the propensity functions that depend on the outcome

of each reaction, enabling them to identify and alter only those propensity functions

which require updating. Such a dependency graph is now implemented as standard

in most efficient versions of the SSA. As well as increasing the speed of the SSA, the

NRM reformulation is important conceptually. Adaptations of the NRM have been

used in order to deal with propensity functions which change during the course of

a reaction (due to volume or temperature fluctuations) and to incorporate time de-

lays into the SSA14. The concepts underlying the NRM have also been incorporated

into an algorithm for efficiently simulating spatially extended systems in the Next

Sub-volume Method (NSM)5.

In response to the NRM, Cao et al. 15 introduced the Optimized Direct Method

(ODM) an adaptation of Gillespie ’s original DM with two key alterations. The first
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borrows the dependency graph of Gibson and Bruck 8 , updating only those reactions

whose propensity functions change. The second involves structuring the order of

propensity functions in the search list so that reactions occurring more frequently

are higher up, reducing the search depth of the linear search. In order to initialize

the search list appropriately, Cao et al. 15 introduced a pre-simulation step whereby

a small number of simulations are run in order to ascertain the relative frequencies

of each reaction. The justification for these pre-simulations is based on the premise

that, in order to find reliable statistics for the evolution of the species involved in

a reaction system, a large number of repeat simulations must be run. Hence a

small number of simulations used to initialize the reaction system will account for

a negligible proportion of the total time for all repeats. The ODM is accepted as

being of comparable efficiency to the NRM in a wide variety of situations16, but is

expected to outperform the NRM in systems of reactions that are tightly coupled

and therefore require a large amount of computational effort to maintain the indexed

priority queue of the NRM15.

Inspired by the idea of sorting propensity functions, McCollum et al. 17 intro-

duced the Sorting Direct Method (SDM). Using a simple bubble-sort-type algorithm

the SDM accounts for possible transient changes in reaction frequency by dynami-

cally changing the reaction selection order. This means that reactions which occur

more often, at a specific part of the simulation, tend to find themselves higher in

the search order, thus reducing the average search depth. The SDM also benefits

from not having to implement pre-simulations.

Both the ODM and the SDM rely on reordering the propensity functions in order

to reduce search depth. Li and Petzold 18 introduced the logarithmic direct method

(LDM) which uses a binary search to determine which reaction is due to fire next.

The search effort is therefore independent of the ordering of the propensity functions

and depends only on their number. The LDM has shown to be of comparable speed

to other efficient versions of the SSA.

An alternative method for the reduction of simulation times in situations which

require multiple repeated runs of the SSA is to run these repeats in parallel. With

the advent of massively parallel computer architectures such as those associated
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with graphical processing units (GPUs) it is becoming feasible to run hundreds

of instances of the same simulation at the same time. However, there are access

barriers to these methods since the implementation of stochastic models on these

architectures is far from trivial19.

In this paper we work with the premise of Gibson and Bruck 8 that random

number generation is expensive and aim to reduce the number of random numbers

employed per iteration to one by the statistically acceptable recycling of random

numbers. At the same time we hope to provide a method that is a sufficiently

straightforward adaptation of the DM that it can be implemented by experimental

scientists interested in computational modeling. Our method is compatible with,

and therefore able to build on the efficiency of, the ODM, SDM and LDM.

III. RECYCLING RANDOM NUMBERS

Our idea is simple but important, as it has the potential to accelerate all stochas-

tic simulations implemented using DM-derived SSAs. We replace steps 3-5 of the

DM algorithm (see page 3) as follows:

3. Generate a random number rand1 uniformly distributed in (0, 1).

4. Use rand1 to generate a reaction index j with probability aj(x)/a0(x), in

proportion with its propensity function. i.e. find j such that

j−1
∑

j′=1

aj′(x) < a0(x) · rand1 <
j

∑

j′=1

aj′(x).

5. Renormalize the random number so that it lies uniformly in (0, 1):

rand2 =
a0(x) · rand1 − ∑j−1

j′=1 aj′(x)

aj

. (1)

6. Use the renormalized random number, rand2, to generate a time increment,

6



Recycling random numbers in the stochastic simulation algorithm

τ , from the exponential distribution with mean 1/a0(x). i.e.

τ =
1

a0

ln
(

1

rand2

)

.

In order to make the most efficient use of the random numbers generated in the

DM we alter the order of the ‘time-step generation’ and the ‘reaction choice’ (steps

4 and 5, respectively, of the original algorithm20 of page 3). We also incorporate

an extra step (step 5 in our revised algorithm) between these. In this step we use

the fact that the scaled random number, a0 · rand1, is uniformly distributed in

[
∑j−1

j′=1 aj′(x),
∑j

j′=1 aj′(x)] to renormalize this random number by the size of this

interval (i.e. the size of the propensity function of the chosen reaction, aj) so that

we generate another random number that lies uniformly in (0, 1). We then use this

renormalized random number in step 6 in order to generate a new time-step. Because

we are able to recycle the random number it is now only necessary to generate one

random number per iteration (in step 3). This saves computational effort and can

speed up the SSA as demonstrated in Section IV.

It can be show that rand2 is uniformly distributed, independent of the interval

into which rand1 falls and as such there are no issues with the independence of the

’reaction choice’ and ‘time-step generation’. There may, however, be an issue with

the accuracy of the time-step generated on rare occasions. If the magnitude of the

propensity function chosen is small (i.e. approaching machine precision) then the

resulting renormalized random number will have very few digits. For example, if our

random numbers are generated initially with k digits of accuracy and the smallest

interval is of size 10−j (where 0 < j < k) then the resulting random number we will

use in order to generate the time-step will only have k − j digits of accuracy. This

will lead to inaccuracy in time-step, τ , when j ∼ k.

If it is the case that such small propensity functions account for a large propor-

tion of the total propensity sum, a0, then it may be argued that the SSA is not

the most appropriate strategy for simulating such a reaction system. Alternatively

if such small propensity functions make up only a small proportion of the total
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propensity sum then we can argue that they will not be chosen sufficiently often to

have a significant effect on the accuracy of the time-step. In any case, systems with

propensity functions which approach machine precision are rarely encountered. We

note that this consideration is similar to that of the SDM and the ODM in which

reactions with small propensity functions may not fire at all.

In the next section we demonstrate that the random numbers generated by our

recycling method pass all the stringent tests of randomness dictated by the battery

tests of the TestU01 test suite21. We also quantify the increased efficiency of our

simulations in comparison to the original DM.

IV. NUMERICAL RESULTS

When carrying out our numerical simulations we are interested in demonstrating

two properties: its accuracy and the gains in computational efficiency it can provide.

To demonstrate accuracy we test our method in two rigorous ways in order to

ascertain: i) that the recycled random numbers are sufficiently random, ii) that at

a functional level, employing recycled random numbers in the stochastic simulation

software yields the expected results.

A. Testing for the quality of randomness

Our revised simulation technique requires the transformation of the uniform ran-

dom numbers that are employed initially to determine the reaction which fires at

each time-step. In order to test the quality of randomness of these recycled uni-

form random numbers we generate a stream of such recycled random numbers by

setting-up a simple isomerisation reaction system consisting of N species and N

reactions:
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X1
c1−→ X2,

X2
c2−→ X3,

... (2)

XN
cN−→ X1,

where the reaction rates are chosen to be ci = 1 for i = 1, . . . , N . This reaction sys-

tems shuttles molecules between the reservoirs of the N species indefinitely produc-

ing a recycled uniform random number in each iteration. We choose N = 1, 000, 000

in order to have a small value for the size of the average normalised propensity

functions whilst maintaining a feasible simulation time. The initial molecular popu-

lations are Xi = 1, 000, 000 for i = 1, . . . , N . The pseudocode outlining our transfor-

mation scheme is given in Scheme 1. While all our computations are implemented

using double precision (64-bit) floating point arithmetic, we run our tests with 32-bit

uniform random numbers since, if the random numbers recycled from the original 32-

bit random numbers pass the rigorous tests for randomness, then random numbers

with more bits (e.g. 64 bits) will also pass the tests.

The stream of recycled uniform random numbers generated by reaction system

(2) is then fed into the bigCrush battery test suites of the TestU01 test suite21.

TestU01 implements empirical statistical tests of uniform random number generators

(RNGs) on the interval (0, 1) or bit sequences by aggregating and extending well

known tests from the literature23–26. Our recycled uniform random numbers pass all

tests of randomness dictated by bigCrush, the most stringent battery test suite.

The SBML (Systems Biology Markup Language) discrete stochastic models

test suite (DSMTS) by Evans et al. 27 provides test reaction systems as well as

the time evolution of their molecular species to rigorously test an exact stochas-

tic simulator. We wrote highly optimised special purpose C-code implementing

a subset of the DSMTS. We limit ourselves to the test reaction system requir-

ing a single reaction compartment and without external events which change

the course of the simulation since neither is relevant to the accuracy and ap-
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1Let rand1 = 0, p0 = 0, pNrand1 = 0;

2Let c1 = . . . = cN = 1, X1 = . . . = XN = 1000000;

3// compute the propensity prefix sums

4for i = 1 : N

5pi = pi−1 + ciXi;

6end

7

8rand1 =unif ();

9pN rand1 = pN · rand1;

10

11// find the index j of the next reaction

12// which fires using a binary search

13j = binarySearch ();

14

15// recycle pN rand1 to generate rand2

16rand2 = (pNrand1 − pj−1)/(pj − pj−1); // extra line of code

17

18// update the molecular populations

19if(j = N ){

20XN = XN − 1; X1 = X1 + 1;

21} else {

22Xj = Xj − 1; Xj+1 = Xj+1 + 1;

23}

Scheme 1. Pseudocode of the transformation scheme used to test for the quality of the

recycled uniform random numbers rand2. The code implements a stochastic simulation

for the reaction system (2). We use a binary search22, as introduced by Li and Petzold 18

for the (LDM), in order to find the index of the next reaction which fires, j. For simplicity

we assume the binary search is encapsulated in the function binarySearch in line 13.

Depending on which reaction fires the transformation given in equation (1) is performed

in line 16.

plicability of the our recycling method. We use the following DSMTS test re-

action systems: dsmts-001-01, dsmts-001-03, dsmts-001-04, dsmts-001-05,

dsmts-001-07, dsmts-002-01, dsmts-002-02, dsmts-002-04, dsmts-002-06,

dsmts-003-01, dsmts-003-02, dsmts-004-01, and dsmts-004-02. Evans et al. 27 ,

the creators of the DSMTS test suite, advise the implementation of at least 10,000

repeat simulations of each reaction system in order to detect subtle implementation

issues. For our tests we are especially cautious in computing 20,000 realisations for

each test case.

The DSMTS compares the values of the mean and standard deviation given by
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our simulation method against the known mean, µt, and known standard deviation,

σt, of the test reaction systems. For each realisation the species populations are

sampled at equidistant points in time. For each time point, t, the sample mean, X̄t,

and the sample variance, S2
t , across all realisations are computed. Appealing to the

central limit theorem, our simulator is assumed to be correct if Zt =
√

n(X̄t −µt)/σt

is the range (−3, 3) for each t in each simulation. Similarly, when testing for the

correct variance, if each Yt =
√

n/2(S2
t /σ2

t − 1) is in the range (−5, 5) then our

simulation method is considered to be correct27.

Evans et al. 27 assume that a correct simulator should not fail more than 2 or 3

mean tests and 5 or 6 standard deviation tests in total (i.e. over all reaction systems

and all time points). The number of failed data points for both our recycling DM

and the original DM are given in Table I. Our recycling DM fails fewer than the

maximum number of tests allowed for a “correct” simulation method, as defined by

Evans et al. 27 . Combined with the previous result pertaining to the quality of our

random numbers we can be assured that our recycling method is an exact realisation

of the SSA.

Direct method Recycling DM

Mean Standard deviation Mean Standard deviation

DSMTS-001-03 0 2 0 3

DSMTS-002-06 2 0 1 0

DSMTS-004-01 0 0 1 0

TABLE I. The number of data points failed by the original implementation of the DM2

and our new recycling DM. The two methods fail a comparable number of tests. However,

in both cases, this is fewer than the number of fails which would be considered to make

the simulation method incorrect.

B. Testing for efficiency

To demonstrate the efficiency of our simulation scheme we simulated three re-

action systems: the three species and four reaction dimerisation decay model in-

troduced by Gillespie 2 , the 9 species and 16 reaction circadian cycle model by

Vilar et al. 28 , and the 11 species and 16 reaction model of the Escherichia coli lac

operon by Wilkinson 29 (see Tables II and III). The first system is regularly used
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to benchmark stochastic simulation programmes2,11 and the latter two are models

of biologically important reaction systems.

Simulation time [msec.] Benefit

Original DM Recycling DM

Dimerisation decay 0.06191 0.05611 9.36%

Circadian cycle 316.3498 292.1804 7.64%

lac-operon 16.6434 14.7323 11.48%

TABLE II. Numerical results using 32-bit random numbers. All simulations have been

repeated 20,000 times and the average taken. All simulation times are given in milliseconds

(per realisation).

Double precision (64-bit floating point arithmetic) computations are common-

place in modern computing and, as such, we implement all our computations using

double precision. However, we implement two separate efficiency comparisons: one

using 32-bit random numbers (the currently accepted standard) and the other using

64-bit random numbers. While our transformation scheme gives a high quality of

randomness using 32-bits of randomness, in some situations 64-bits of randomness

may be desirable. We use the well known Mersenne twister to generate our initial

uniform random numbers 30. All simulations have been repeated 20,000 times and

all times are reported in milliseconds (per realisation). The efficiency comparisons

pertaining to simulations of the three example systems using 32-bit and 64-bit ran-

dom numbers are given in Table II and Table III, respectively. In both cases our

recycling DM demonstrates significant gains in speed over the original DM.

We found the benefit of recycling random numbers to be larger when using 64-bit

random numbers (as might have been expected given their higher cost of generation).

This indicates that recycling random numbers becomes more attractive the cost of

their generation increases.

There are four main steps in each iteration of the DM algorithm: (i) compute

the propensities, (ii) find the next reaction which fires, (iii) compute the time-step,

and (iv) update the molecular populations. The time spent computing each of these

steps, except for step (iii), depends on the size of the reaction system. The benefit

of recycling random numbers over generating another sample in each iteration will,

therefore, vary depending on the reaction system. Since other DM-derived SSAs
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Simulation time [msec.] Benefit

Original DM Recycling DM

Dimerisation decay 0.08438 0.0719 14.79%

Circadian cycle 437.01778 326.6415 25.26%

lac-operon 18.9685 15.6939 17.26%

TABLE III. Numerical results using 64-bits of randomness per random number. All sim-

ulations have been repeated 20,000 times and the average taken. All simulation times are

given in milliseconds (per realisation).

(ODM, SDM and LDM) work towards mitigating the effect of system size (reducing

the cost of (ii) and thus increasing the relative cost of random number generation)

we expect our recycling method to yield even greater proportional efficiency savings

in these methods.

V. DISCUSSION

We have suggested a simple improvement to the random number generation pro-

cedure for the DM - derived SSA which allows us to reduce simulation times by up

to 25% without significantly reducing the accuracy. Our contribution is significant

since with only one additional line of computer source code the simulation of all

of our example reaction systems benefited. By recycling random numbers in a sta-

tistically acceptable manner we are able to reduce the number of random numbers

used per step of the SSA from two to one. Since the generation of random numbers

has often been identified as a costly procedure in the SSA8 it is unsurprising that

our method yields an increase in efficiency. Our method is versatile enough to be

employed in tandem with other efficient implementations of the SSA including the

ODM, SDM and LDM. Furthermore our method is independent of the underlying

uniform RNG used. We are aware, however, that our method will not be applicable

to the NRM or the FRM, since it relies on the separation of the steps of reac-

tion choice and time-step generation which are implicitly coupled in both of these

methods.

It is hoped that the simplicity of this method, combined with its potential to

yield a significant reduction in simulation time for any reaction system, will lead to

its widespread application amongst experimentalists and modelers alike.
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