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Abstract

Position-jump processes are used for the mathematical modelling of spatially extended

chemical and biological systems with increasing frequency. A large subset of the litera-

ture concerning such processes is concerned with modelling the effect of stochasticity on

reaction-diffusion systems. Traditionally, computational domains have been divided into

regular voxels. Molecules are assumed well-mixed within each of these voxels and are

allowed to react with other molecules within the same voxel or to jump to neighbouring

voxels with predefined transition rates.

For a variety of reasons implementing position-jump processes on irregular grids is be-

coming increasingly important. However, it is not immediately clear what form an appro-

priate irregular partition of the domain should take if it is to allow the derivation of mean

molecular concentrations that agree with a given partial differential equation for molecu-

lar concentrations. It has been demonstrated, in one dimension, that the Voronoi domain

partition is the appropriate method with which to divide the computational domain.

In this report, we investigate theoretically the propriety of the Voronoi domain parti-

tion as an appropriate method to partition domains for position-jump models in higher

dimensions. We also provide simulations of diffusion processes in two dimensions in order

to corroborate our results.
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I. INTRODUCTION

Spatial reaction-diffusion models have been employed to describe many emergent

phenomena in biological systems, including spatial ecology [1], animal coat pattern-

ing [2], limb/digit formation [3, 4] and tumour growth [5]. Of particular interest

to mathematical biologists in recent years have been the effects of noise on those

systems which form patterns via diffusion-driven instability [6].

In order to investigate the effects of stochasticity in these spatially extended

reaction-diffusion systems we will consider ‘compartment-based’ or ‘mesoscopic’

models. Such models are characterised by a discretisation of the computational

domain into a grid/lattice of discrete voxels between which molecules can move.

These movements may represent diffusion or some other form of active transport.

Molecules are considered to be well-mixed in each of the voxels and can react stochas-

tically with other molecules in their voxel with prescribed rates. By far the simplest

grids with which to partition the domain are uniform, with each voxel a regular

2d-sided polytope of the same size (where d is the dimension of the domain). Since

particle numbers and particle concentration scale by a constant factor on the uniform

Cartesian grid it is a simple matter to convert from one to the other. In addition,

for simple isotropic diffusion, the transition rates between intervals are independent

of the interval under consideration since all intervals are the same size.

In recent work [7] we demonstrated (using a one-dimensional model) that there

is a choice to be made when partitioning the domain into a non-uniform rectilinear

grid. The two natural choices are referred to as the Voronoi and interval-centred

partitions, respectively. In the Voronoi partition molecular positions (xi for voxel

i = 1, . . . , k) are chosen and are associated with each voxel. The voxel edges are

then naturally defined in a Voronoi neighbourhood sense: a point on the domain is

defined to lie in the interval i if it is nearer to xi than any other xj for j = 1, . . . , k,

j 6= i. In the interval-centred partition the desired mesh of voxels is specified first

and molecular positions defined to be the centroid of each voxel. Given a partial

differential equation (PDE) such as the diffusion equation, we demonstrated that,

in one dimension, only the Voronoi partition will permit the derivation of transition

rates which give mean-field molecular concentrations consistent with the PDE [7].
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As a confirmatory example of the propriety of the Voronoi domain partition, Fig. 1

of the supplementary material (SM) [8] compares molecular concentrations for the

position-jump model on the Voronoi domain partition with the deterministic PDE

counterpart concentrations for an example morphogen gradient formation system in

one dimension. Good agreement is exhibited between the molecular concentrations

given by the stochastic and deterministic models.

In the next section we compare two potential partitions for regular polytopal

rectilinear grids in higher dimensions and demonstrate that only on the Voronoi

partition is it possible to rederive the associated mean-field PDE for molecular con-

centrations. We also provide confirmatory numerical simulations which compare

molecular concentrations given by the two partitions. We conclude in Section III by

discussing the potential implications of our results.

II. POSITION-JUMP PROCESSES ON NON-UNIFORM GRIDS IN TWO

DIMENSIONS

A pertinent question to ask, given our previous work in one-dimension [7], is

‘What role does the Voronoi partition play for unstructured grids higher dimen-

sions?’

A. General unstructured grids

In order to answer this question we begin by considering molecules moving be-

tween nodes on a general triangularised lattice. In what follows, for ease of working

and readability, we will derive results for a two-dimensional domain, but note that

results can trivially be extended to higher dimensions. Associated with each node of

the lattice is a voxel which encloses the node. The set of voxels forms a tessellation

of the domain [9]. Molecules reside at the nodes and are able to move between

elements along the edges of the lattice. We introduce a global numbering system

in which all the nodes of the lattice take a number from 1 to k (Fig. 1 (a)). We

also introduce a local labelling system whereby the neighbouring nodes of a central

node with global label i = i0 are labelled i1, i2, . . . , iJ(i0), where J(i0) is the number
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of neighbours of node i0 (Fig. 1 (b)). Although, for ease of representation, we have

chosen to realise our general unstructured grid in two dimensions, the same grid

definition will hold in higher dimensions.
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FIG. 1. (Color online) (a) Global node labelling from 1 to k = 25. (b) Local node labelling

starting with the central node, i0, and proceeding clockwise to iJ(i0), where J(i0) = 6 is

the number of neighbours of node i0. The domain plotted in (b) corresponds to the area

enclosed by the red rectangle in (a).

The vectors connecting vertex i0 to its neighbours are labelled locally as r1, r2,

. . . , rJ(i0) and, in two dimensions, can be expressed in Cartesian coordinate form as

(x1, y1), (x2, y2),. . . , (xJ(i0), yJ(i0)). We denote the transition rates to go from node i0

to one of its neighbours, ij, for j = 1, . . . , J(i0), as T
ij

i0
and the transition rate from

that neighbour back to node i0 as T i0
ij

. A vector specifying the number of molecules

at each node can be written as follows:

n = (n1, n2, . . . , ni0, . . . , niJ(i0)
, . . . , nk), (1)

where we have replaced some of the global labels with their local counterparts (with

respect to central node i0) for ease of notation in what follows [10]. Define operators

L
ij

i0
for central node i0 and neighbouring nodes ij, j = 1, . . . , J(i0) by their actions

on the vector n, as follows:

L
ij

i0
n = (n1, n2, . . . , ni0 + 1, . . . , nij

− 1, . . . , niJ(i0)
, . . . , nk). (2)

5



Operator L
ij

i0
takes a molecule from neighbouring node ij and moves it to central

node i0. Let Pr(n, t) denote the probability that the molecules take the configuration

n at time t. Then we can write down a reaction diffusion master equation (RDME)

as follows:

d Pr(n, t)

dt
=

k
∑

i0=1

J(i0)
∑

j=1

{

(ni0 + 1)T
ij

i0
Pr(L

ij

i0
n) − ni0T

ij

i0
Pr(n, t)

}

. (3)

We note that this RDME is independent of the dimension in which the grid is

embedded and, as such, it holds for all dimensions.

In order to find an equation for the evolution of the mean number of molecules

at general node l0 in terms of the mean numbers of molecules at its neighbouring

nodes we multiply equation (3) by nl0 and sum over all the possible values the vector

of molecular concentrations can take. Upon simplification we derive the following

equations

d 〈nl0〉

dt
=

J(l0)
∑

j=1

{

〈nlj 〉T
l0
lj

− 〈nl0〉 T
lj
l0

}

, for l0 = 1, . . . , k, (4)

where 〈nl0〉 denotes the mean number of molecules at node l0 and 〈nlj 〉 is defined

similarly. In order to find an equation for the evolution of molecular concentration

rather than molecular numbers we use the relationship between numbers, concen-

tration and area/volume of a voxel (denoted Alj for node/voxel lj). Equation (4)

becomes

dul0

dt
=

1

Al0

J(l0)
∑

j=1

{

ulj Alj T
l0
lj

− ul0Al0T
lj
l0

}

, for l0 = 1, . . . , k, (5)

where ul0 = 〈nl0〉 /Al0 is the mean molecular concentration in interval l0 with ulj

defined similarly for j = 1, . . . , J(l0). Given transition rates and the appropriate

grid geometry, by Taylor expanding these concentrations about l0 in Eq. (5), we

can theoretically determine whether the individual-level model corresponds to a

population-level PDE in any dimension. Additionally, we can use Eq. (5) to derive

the appropriate transition rates corresponding to a particular PDE.

For example, if we want to find transition rates which correspond to the diffusion

equation in two dimensions then, after Taylor expansion of the appropriate concen-

tration terms, ulj , we can equate the coefficients of the derivatives of ul0 to find a
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system of equations which must be satisfid by the transition rates:

J(l0)
∑

j=1

{

Alj T
l0
lj

− Al0T
lj
l0

}

= 0, (6)

J(l0)
∑

j=1

Alj T
l0
lj

xj = 0, (7)

J(l0)
∑

j=1

Alj T
l0
lj

yj = 0, (8)

J(l0)
∑

j=1

Alj T
l0
lj

x2
j = 2DAl0, (9)

J(l0)
∑

j=1

Alj T
l0
lj

xjyj = 0, (10)

J(l0)
∑

j=1

Alj T
l0
lj

y2
j = 2DAl0. (11)

Specifically Eq. (6) is derived by equating coefficients of the zeroth derivative,

ul0 , Eqs. (7) and (8), to coefficients of the first derivatives and Eqs. (9)-(11) to

coefficients of the second derivatives.

Although on a general irregular lattice it may not be possible to use Eqs. (6)-(11)

to derive consistent transition rates which allow for the molecular concentrations

expected due to diffusion, there are special and informative cases in which we can

derive the transition rates explicitly. In particular, for the domain tessellations

shown in Fig. 2 (below) and Fig. 4 of the SM it is possible to derive consistent

transition rates for which the mean molecular concentrations correspond to the

concentrations given by the diffusion equation.

B. The non-uniform rectilinear domain partition

Consider the rectilinear domain partition. Using Eqs. (6)-(11) in an analogous

manner to the method used in [7], it is possible to show that the necessary rectilinear

domain tessellation is a Voronoi tessellation (Fig. 2). Using Eqs. (7)-(11) we can

derive transition rates for the diffusion equation consistent with this tessellation.

Denote the non-zero component of the vector from l0 to l1, l2, l3 and l4 (respectively)

as rr
l0

, rd
l0

, rl
l0

and ru
l0

(respectively) where the superscripts r, d, l and u (respectively)
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FIG. 2. (Color online) The rectilinear domain tessellations. Voxel boundaries are demar-

cated in red, the grid on which the molecules move is displayed using a dashed black line

and the points at which the molecules reside in each element are represented by red stars

(∗).

stand for right, down, left and up (respectively). We define ri
lj

for j = 1, . . . , 4 and

i = r, d, l, u analogously but note that there is some redundancy in this notation

(e.g. rr
l0

= −rl
l1

). Equation (10) is satisfied automatically due to the rectilinear

nature of the grid. Combining Eqs. (7) and (9) defines the transition rates T l0
l1

and

T l0
l3

as

T l0
l1

=
2DAl0

Al1rr
l0

(rr
l0

− rl
l0

)
, (12)

T l0
l3

= −
2DAl0

Al3rl
l0

(rr
l0

− rl
l0

)
, (13)

where, as before, Alj denotes the area of voxel j. In a similar manner we can employ

Eqs. (8) and (11) to find the transition rates T l0
l2

and T l0
l4

:

T l0
l2

= −
2DAl0

Al2rd
l0

(ru
l0

− rd
l0

)
, (14)

T l0
l4

=
2DAl0

Al4ru
l0

(ru
l0

− rd
l0

)
. (15)
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Using a simple index shift we can use the transition rates given in Eqs. (12)-(15) to

find the transition rates T l1
l0

, T l2
l0

, T l3
l0

and T l4
l0

:

T l1
l0

=
2DAl1

Al0rr
l0

(rr
l1

− rl
l1

)
, (16)

T l2
l0

= −
2DAl2

Al0rd
l0

(ru
l2

− rd
l2

)
, (17)

T l3
l0

= −
2DAl3

Al0rl
l0

(rr
l3

− rl
l3

)
, (18)

T l4
l0

=
2DAl4

Al0ru
l0

(ru
l4

− rd
l4

)
. (19)

These transition rates imply that Eq. (6) can only be satisfied if

Alj = α(rr
lj

− rl
lj

)(rr
lu

− rd
lj

). (20)

Using the argument that the contiguous elements must span the domain (as in one

dimension), we find α = 1/4. Only the Voronoi partition is consistent with the voxel

areas and transition rates determined by Eqs. (6)-(11). It is of comfort to note that,

in the special case of a regular grid consisting of squares, the transition rates are as

we might expect: T = D/h2, where h is the distance between neighbouring nodes

and, consequently, also the length of the sides of the squares.

In Section II of the SM we provide example simulations which compare molecular

concentrations for the individual-based models and their PDE counterparts for the

Voronoi and interval-centred domain partitions. These examples clearly demonstrate

the propriety of the Voronoi domain partition. In addition, in Section III A of the

SM we use Eqs. (6)-(11) in order to derive appropriate transition rates for two other

regular domain partitions.

Although the Voronoi partition has been shown to be crucial on the rectilinear

grid in order to derive the transition rates which give molecular concentrations that

correspond to the expected mean-field PDE, the two examples given in Section III

B of the SM demonstrate that, in general, for a non-uniform grid in dimension

d > 1, the Voronoi partition is neither a necessary nor a sufficient condition for the

derivation of appropriate transition rates.

9



III. DISCUSSION

By initially considering a general unstructured domain tessellation, we demon-

strated that the Voronoi partition was necessary when considering non-uniform rec-

tilinear domain tessellations in higher dimensions. We corroborated our findings

with numerical simulations demonstrating clearly the propriety of the Voronoi par-

tition over its interval-centred counterpart. We also demonstrated that consistent

transition rates can be found for other regular domain tessellations such as the tri-

angular and hexagonal tessellations and also for semi-regular domain tessellations

(see Section III of the SM). This latter case is important since it demonstrates that,

in general, in higher dimensions, the Voronoi partition is not necessary in order to

derive consistent transition probabilities. In addition, we presented an example of

a Voronoi partition which did not support the derivation of consistent transition

rates. We should, therefore, not expect a Voronoi partition to be either a necessary

or sufficient condition for the derivation of consistent transition rates on a general

unstructured grid.

In a wider context, we have highlighted the importance of considering molecu-

lar concentrations when attempting to draw comparisons between individual-based

models and deterministic counterparts, rather than simply considering molecular

copy numbers.
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