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Abstract

There exists a plethora of mathematical models for cluster growth/aggregation on regular lat-

tices. Almost all suffer from inherent anisotropy caused by the regular lattice upon which they are

grown. We analyse the little known model for stochastic cluster growth on a regular lattice first

introduced by , which produces circular clusters with no discernible anisotropy. We demonstrate

that even in the noise-reduced limit the clusters remain circular. We adapt the model by intro-

ducing a specific rearrangement algorithm so that, rather than adding elements to the cluster from

the outside (corresponding to apical growth), our model uses mitosis-like cell splitting events to

increase the cluster size. We analyze its surface scaling properties and compare it to the behavior

of more traditional models. In ‘1+1’ dimensions we discover and explore a new, non-monotonic

surface thickness scaling relationship which differs significantly from the Family-Vicsek scaling re-

lationship. This suggests that for models whose clusters do not grow through particle additions

which are solely dependent on surface considerations, the traditional classification into ‘universality

classes’ may not be appropriate.
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On-lattice models for cluster aggregation have been studied for at least the last 50 years.

One of the earliest, originally designed to simulate tumor formation, is known as the Eden

model [2, 3] and comes in three versions A, B and C [4]. In each version particles are added

to the surface of the cluster incrementally. On-lattice cluster aggregation models like Eden’s

have been used to represent biological phenomena such as wound healing [5], slime mold

growth [6] and, more recently, the in vitro growth of tumor monolayers [7, 8].

Some models of cluster aggregation can be classified into universality classes (UCs) de-

pending on the surface scaling properties of their aggregates. For example, version C of the

Eden model has scaling characteristics which are most similar to those of the Kardar-Parisi-

Zhang (KPZ) UC [4, 9]. The continuum equation associated with the KPZ UC predicts

circular clusters [9]. However, when Eden clusters are realized on a regular lattice there is

an inherent anisotropy which does not diminish as the clusters grow larger [10] (see 1 (a) of

the supplementary material[11] (SM)); the shape of large on-lattice Eden clusters is domi-

nated by the underlying lattice anisotropy (see SM Fig. 1 (b)). Such artificial anisotropy

is clearly an undesirable property for any on-lattice cluster growth model.

Several related models have attempted to reduce the effects of this inherent, regular-

lattice-induced anisotropy, by altering or completely revising the cluster aggregation al-

gorithms. However, few of these attempts have been shown to produce a truly isotropic

cluster aggregation model. In this paper we adapt and analyse a little known cluster for-

mation model, ‘Model II’ of Ferreira Jr. and Alves [1], so that cluster growth is driven by

random elemental division and rearrangement events on a square lattice. We demonstrate

the isotropy of the model in both the noisy and noise-reduced limits by considering both a

bespoke anisotropy measure and a more-standard series decomposition of the surface. The

elemental division mechanism we introduce can also be thought of as more akin to biological

growth than the surface addition rules employed by many Eden-derived models of cluster

aggregation. The clusters produced also have the desirable properties of being concave and

hole-free. We go on to investigate the scaling properties of this aggregation model and find

that the traditional techniques of classification into UCs are not sufficient for this model. A

new surface scaling relationship which may be more appropriate for this cluster aggregation

model is suggested. We conclude by employing the revised model with the explicit elemen-

tal division algorithm to act as the lattice upon which a position-jump model of diffusion is

implemented. This model of diffusion on a growing domain is compared both qualitatively
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and quantitatively to a continuum model of the same process with good agreement being

found in the mean field.

I. MEASURING ANISOTROPY

In order to accurately determine the anisotropy of a cluster it is important to have

a method of measurement which is itself free of lattice artifacts. Although box-counting

methods such as those employed by Meakin [12] can be useful in characterizing large-scale

anisotropies they may suffer from anisotropy themselves. As such we consider a bespoke

measure, the ‘angular surface anisotropy’. This is given by the normalized square of the

distance to the surface from the center of the cluster in a particular direction [10, 13]:

for each surface element, i, calculate the angle, φi, subtended by the x-axis and the line

connecting the center of the seed particle (or center of mass, translating the cluster so that

this lies at the origin) to the element’s center (see Fig. 1). Also calculate the element’s

distance from the seed/center of mass, ri (see Fig. 1). The angular surface anisotropy in the

direction θk is then given by

P (θk) =
1

N θk
s

Ns
∑

i=1

r2

i Iθk−δθ<φi<θk+δθ, (1)

where the sum is over the N θk

s =
∑Ns

i=1 Iθk−δθ<φi<θk+δθ surface elements with angles in the

appropriate region [θk−δθ, θk+δθ] (green stars in Fig. 1). I represents the indicator function.

The K values of θk are chosen so as to cover the entire circle. This necessarily defines

δθ = π/K. We choose K to be a power of two [14] and θ1 = 0 in order to capture the

anisotropy that might be caused by the square lattice. The angular surface anisotropy is

normalized by dividing P (θk) by
∑K

k=1 P (θk) for each value of k.

In order to quantitatively analyse the angular surface anisotropy, P (θ), we can consider

a Fourier decomposition of the curve. Fourier modes with large coefficients will indicate

larger contributions to the overall anisotropy from that mode. For example, for a cluster

with positive axial anisotropy we would expect to see a large positive quadrupole (coefficient

of the fourth Fourier mode).
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FIG. 1. (Color online) Measuring anisotropy of particle aggregates. In this example cluster elements

of the aggregate are represented by black squares (�). The angle to the x-axis, φi, and the distance

from the seed particle (red square, �), ri, are determined for each element. In each segment of the

circle the mean square distance of the centers of mass of the surface elements (green stars, ⋆) is

calculated and then normalized to find the ‘angular surface anisotropy’.

II. SOME ANISOTROPIC MODELS

In order to get a better idea of the anisotropy of small clusters ‘noise reduction’ can

be employed [10]. Noise reduction is a useful tool for reducing finite size effects which

can sometimes obscure inherent anisotropy in small clusters. (See the SM for a detailed

description.) The Eden model exhibits anisotropy in both the noisy and noise-reduced

limits (see SM Figs. 1 and 2, respectively).

There have, however, been several Eden-like cluster aggregation models which purport

to produce isotropic clusters. Paiva and Ferreira Jr [15], for example, have found on-lattice

versions of the Eden A and C models which are isotropic (see Fig. 2). Growth events, in

these models, depend on the neighborhood of the free space into which a new element is to

be positioned. Their technique for ensuring anisotropy is inspired by an isotropic, on-lattice

version of diffusion limited aggregation (DLA) by Bogoyavlenskiy [16]. In Bogoyavlenskiy’s

model, growth at a selected site is implemented with probability Pi = i2 where i is the

number of occupied nearest-neighbors of the growth site. However, this choice of occupancy-

dependent probability was found to produce diagonal anisotropy in the DLA clusters [17].
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Instead Alves and Ferreira Jr. [17] suggested growth probabilities given by

Pk =
(

i

n

)ν

, (2)

where n is the lattice coordination number (i.e. number of possible neighbors of a lattice site),

ν is an adjustable parameter and i, as before, is the number of occupied nearest-neighbors

of a site selected for growth. The majority of the work in this method is finding the value

of the tunable parameter, ν, which minimises the anisotropy. Paiva and Ferreira Jr [15] do

this by recognizing that the scaling behavior of the Eden model is affected by the lattice

anisotropy. They reason that if they can find an exponent ν = νc, in equation (2), for which

the growth parameter, β, of the on-lattice model is as close as possible to its predicted value,

1/3, then this will be the value that produces the most isotropic clusters. Using this method

they find νc ≈ 1 for version C of the Eden model and νc ≈ 1.72 for version A of the model,

although they do not provide any quantitative comparisons of the clusters’ anisotropy for

these values other than visually comparing the cluster border with a circle.
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FIG. 2. The anisotropy of the ‘isotropic’ Eden C model of Paiva and Ferreira Jr [15]. (a) The

angular surface anisotropy, P (θ), of the ‘isotropic’ Eden C model displays no clear periodicity. (b)

A typical noise-reduced (m = 60) ‘isotropic’ Eden cluster. (c) The angular surface anisotropy,

P (θ), of the noise-reduced clusters. A clear diagonal anisotropy is present. Clusters were grown to

N = 105 elements and anisotropy values are averaged over 200 repeats.

We have explicitly tested Eden clusters grown with the relevant νc values for anisotropy.

In the full model it is clear that the anisotropy of the model is reduced (c.f. Fig. 2 (a)

and SM Fig. 1 (b)). No periodicity is evident and the maximum anisotropy value is well

below 1% in comparison to the ∼ 2% anisotropy exhibited by the original Eden C model.

However, the noise-reduced version of the model (m = 60) shows a clear positive diagonal
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anisotropy (see Figs. 2 (b) and (c)) of around 40% and a negative axial anisotropy of around

20%. These anisotropies are confirmed when considering the Fourier decomposition of, P (θ)

(see Section IV B of the SM). Similar results are observed for the noise-reduced version of

the ‘isotropic’ Eden A model (results not shown). Clearly the randomness of the order of

addition of the particles is important for the ‘isotropic’ Eden models of Paiva and Ferreira Jr

[15] to maintain isotropy. In addition to these on-lattice cluster models there have also been

a variety of isotropic off-lattice versions of the Eden model [18–20], with which we shall not

concern ourselves further in this on-lattice focussed manuscript.

Recently Drasdo [8] introduced an on-lattice model of cluster growth via mitosis in order

to model tumor growth. An element of the cluster is chosen randomly to be a division

candidate and, providing it is within distance ∆R of an unoccupied lattice site, it divides.

Division is such that the two daughter elements are positioned adjacent to each other and the

elements of the cluster are rearranged so that the nearest empty site to the original parent

element is filled. Although it produces circular looking clusters (see Fig. 3 (a)) this model

is also inherently anisotropic. Large clusters can show a periodic variation in anisotropy

(indicative of an inherent anisotropy) and a peak anisotropy of about 1.5-2% (Fig. 3 (b)).

Note that this is of similar magnitude but with inverse orientation to the anisotropy found

in the Eden model: in Drasdo’s model the positive bias is in the diagonal directions and

the negative bias in the axial directions. The dominant nature of the axial and diagonal

anisotropies in Drasdo’s model are confirmed by considering the Fourier decomposition of,

P (θ) (see Section IV C of the SM). In the noise-reduced limit, the cluster anisotropy is even

more evident [8]. It should be noted, however, that Drasdo [8] also gives an analogue of

his model on a ‘Dirichlet lattice’ [7]. In this case there is no observable anisotropy to the

clusters [7, 8].

III. A MORE ISOTROPIC MODEL OF CLUSTER AGGREGATION

We adapt the model of Ferreira Jr. and Alves [1] to include a specific particle rear-

rangement algorithm. This rearrangement algorithm mimics the reorganisation of cells in a

biological cluster upon mitosis of an internal cell. The revised algorithm proceeds as follows:

an element of the cluster is randomly selected to divide. A uniformly distributed random

number (representing a clockwise angle with the x-axis) between 0 and 2π (the ‘direction
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FIG. 3. The anisotropy of clusters of the Drasdo model. (a) A typical example of a cluster grown

using the algorithm of Drasdo with k = 10. The cluster displays slightly flatter edges in the axial

directions. (b) The angular surface anisotropy, P (θ). Clear diagonal anisotropy of the clusters is

evident. Clusters were grown to N = 105 elements and anisotropy values are averaged over 200

repeats.

of division’) is then generated (see Fig. 4 (a)). Upon division a daughter element is placed

on a lattice site neighboring the parent interval in the direction of division and other el-

ements are displaced sequentially to make room. Displaced elements follow the direction

of an arrow, drawn from the center of the parent element in the direction of division, to a

neighboring lattice site. Elements are sequentially displaced in this way until a free lattice

site is encountered (see Fig. 4 (b)). The resulting model is similar to Drasdo’s but is less

anisotropic, even in the noise-reduced limit. In addition the specific rearrangement algo-

rithm engenders a biological realism in the model. In particular, the algorithm can now

be used to represent a discrete underlying growing domain for an on-lattice position-jump

model of a reaction-diffusion process (see Section V).

Fig. 5 demonstrates the values of the anisotropy metric, P (θ), produced by this model in

both the noisy and noise-reduced regimes. For a strongly anisotropic cluster we might expect

to see a periodic variation in the anisotropy metric as a result of the strong contribution of

a single multipole. Since, for the noisy cluster (Fig. 5 (a)), there is no clear periodicity to

the values of the angular surface anisotropy metric, P (θ), we suggest that the model is more

isotropic than previously proposed models of on-lattice cluster growth. We employ a Fourier

decomposition of, P (θ), in Section IV D of the SM in order to investigate this suggestion

further. Furthermore, for the noise-reduced variant of the model with parameter m = 60

(see Fig. 6 (b) for a sample cluster) we find that the clusters appear even more isotropic

than their random counterparts with a lower overall anisotropy of maximum absolute value
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(a) (b)

FIG. 4. (Color online) The rearrangement protocol for division in a random direction from a

random parent interval. (a) An element of the cluster is chosen randomly to divide (checked

pattern) and a uniformly distributed random angle is used to determine the direction in which the

element will divide. A line (blue arrow, −→) is drawn from the parent interval in this direction

until the first free site is encountered (green boundary, �). (b) Elements (various patterns) are

pushed in this direction in such a way that one of them occupies the free lattice site. The daughter

interval (also checked) is placed on the lattice site adjacent to the original parent interval in the

direction of division.

around 0.3%. There do appear to be periodic variations in the anisotropy values, however,

we found variations of comparable magnitude for a truly circular cluster (see SM Fig. 3 (d)).

The anisotropy of the noise reduced clusters is also analysed further in Section IV D of the

SM.

This model has the added benefit that it is more computationally efficient than Drasdo’s

since every element selected to divide produces a daughter element which increases the size

of the cluster more rapidly. In Drasdo’s model (especially for large cluster sizes) a large

amount of time is spent selecting sites that are unable to divide because of their distance

from the surface. Hence growth is retarded at long times. The slowing of growth in the

model is related to saturation of the surface which allows the classification of the Drasdo

model into a UC.
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FIG. 5. The anisotropy of clusters grown by elements dividing in random directions. (a) The

angular surface anisotropy, P (θ). (b) The angular surface anisotropy for the noise-reduced variant

of the model with m = 60. Clusters were grown to N = 105 elements and anisotropy values are

averaged over 200 repeats.

(a) (b)

FIG. 6. Examples of clusters grown using algorithm of Ferreira Jr. and Alves [1]. (a) A typical

example of such a cluster which looks relatively circular, displaying no obvious anisotropy. (b)

A typical example of a cluster grown with the noise-reduced variant of the model with m = 60.

Clusters were grown to N = 105.

IV. SURFACE SCALING AND UNIVERSALITY CLASSES

The UC of an aggregate has traditionally been determined by considering the surface

scaling properties of aggregates grown in a ‘1+1’ dimensional strip geometry. In the strip
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geometry clusters are grown from a base-layer of seed particles of length l incorporating

periodic boundary conditions on the vertical boundaries. The width of an aggregate, w, is

defined to be some measure of the standard deviation of the height of the surface particles.

For a large class of models the width is found to increase initially as a power law in the

effective height, ĥ = N/l, (where N is the number of particles) and then to level off to

a value which is dependent on the length of the substrate upon which the aggregate is

grown. The effective height at which the surface levels off can also be shown to depend, as

a power law, on the length of the substrate, l. These relationships are summarized by the

Family-Vicsek scaling relation [21]:

w(l, ĥ) ∼ lαf





ĥ

lz



 , f(x) ∼















xβ, x ≪ 1,

constant, x ≫ 1.
(3)

The growth exponent, β, characterizes the initial increase in surface width, whilst the rough-

ness exponent, α, captures the dependence of surface roughness at saturation on substrate

length. The dynamic exponent z determines the relationship between saturation height and

substrate length. The three scaling exponents are related by z = α/β. Determining these

exponents enables us to classify models into UCs. Each class has its own characteristic

stochastic partial differential equation of the form

∂ĥ(x, t)

∂t
= F + η(x, t), (4)

where F is the average rate of particle arrival at site x and η(x, t) is zero-mean, uncorre-

lated noise which models random fluctuations in the deposition process [22]. Implicitly, by

searching for the scaling coefficients which characterize a model into a particular UC, we

are assuming that the surface width will eventually saturate, which, as we discover, is not

necessarily a valid assumption.

Upon analyzing the model of Ferreira Jr. and Alves [1] using traditional scaling tech-

niques, it appears to exhibit a classic power law dependence of surface width on domain

length, l, (Fig. 7 (a)) and effective height, ĥ, (Fig. 7 (b)) in the appropriate limits. This

might lead us to conclude that the model follows the classic Family-Vicsek scaling relation-

ship, equation (3). However, by studying the scaling behavior of the surface we can see
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that the surface width exhibits a much more complicated, non-monotonic dependence on

the effective height. Fig. 8 (a) shows the variation of interface width with effective height

for four different values of domain length. We calculate critical exponents α = 0.15 ± 0.07

and β = 0.35 ± 0.07. When the surface width is rescaled (using the Family-Vicsek scaling

relationship) by the critical exponents, derived from the scaling relationships displayed in

Fig. 7, the data do not collapse onto themselves as they do for the Eden model (SM Fig.

8). This suggests a different functional form for the scaling relationship for this model.
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FIG. 7. (Color online) Scaling of the surface width of random direction mitosis clusters in ‘1+1’

dimensions. (a) The variation of w(l, ∞) (i.e. ĥ ≫ l) with domain length, l, for the random

directional mitosis model. The straight (black dashed) line plotted for comparison has gradient 1/8.

(b) The variation of w(∞, ĥ) (i.e. l ≫ ĥ) with effective height, ĥ. Descriptions as for (a). The

straight (black dashed) line plotted for comparison has gradient 1/3.

The fact that the surface width saturates at all is an artifact of the periodic boundary

conditions of the strip geometry. Division events with shallow division angles displace large

numbers of elements and effectively explore the surface in search of the lowest empty lattice

site to occupy. This effect introduces the surface correlations required to reduce surface

width, while division events with steep division angles effectively increase the surface width.

When the average surface height is low, particles chosen for division are at or near the

surface a large proportion of the time. This reduces the effect of shallow division events

since the surface cannot be explored fully and hence the surface width grows beyond its

saturation value. As the effective height increases, a higher proportion of division events are

initiated sufficiently far below the surface for shallow angle division events to allow surface

exploration. This explains the non-monotonic behavior of the surface width displayed in

Fig. 8 (a). In a similar division model where only elements on the bottom-most layer are

11



allowed to divide (in analogy to Model I of Ferreira Jr. and Alves [1]) this non-monotonicity

is not observed since the surface width cannot grow beyond its saturation value (data not

shown).

The surface thickness of these aggregates no longer obeys the Family-Vicsek scaling re-

lationship. Instead we propose that the thickness obeys a new scaling relationship:

w(l, ĥ) ∼ lαĥβf





ĥ

lγ



 . (5)

In order for the scaling of the saturation thickness, wcap, to be correct we must choose

α = 0.15, the value of the roughness exponent found previously. In this case we also chose

γ = α and β = 1 in order to achieve a tight collapse of the data points (see Fig. 8 (b)).
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FIG. 8. (Color online) The evolution of the surface width for model II of Ferreira Jr. and Alves

[1] for different system sizes. (a) The surface exhibits an initial power law dependence on effective

height, but quickly peaks, then falls and finally plateaus at the saturation value, wcap(l). (b) The

evolution of surface width rescaled according to equation (5). Axis labels are short hand where

w̃ = w(ĥ, l)/lαĥβ and h̃ = ĥ/lγ. A tight collapse of the data points can be seen. In both sub-figures

blue triangles (△) correspond to system size l = 10, red squares (�) to l = 20, green circles (#) to

l = 40 and black diamonds (⋄) to l = 80.

We also investigated the surface scaling of this model in a full two-dimensional geometry.

The findings of this investigation are presented visually in Fig. 9. The width is found to grow

with critical exponent β = 0.22 ± 0.07 (which is in approximate agreement with the value

found by Ferreira Jr. and Alves [1]). The small oscillations of the local slopes about the

average value of β in Fig. 9 (c) demonstrate that the value we have found for β is a reliable

one. This value of β differs from the value of the growth exponent in the strip geometry,
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β = 0.35 ± 0.07.
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FIG. 9. (Color online) Scaling of the surface width for model II of Ferreira Jr. and Alves [1] in two

dimensions. (a) The variation of surface width, w(l, R), with average cluster radius, R, for clusters

up to N = 106 particles. Simulations are averaged over 20 repeats. Saturation of the surface width

is not evident. The straight (black dashed) line is plotted for comparison and has gradient 1/5.

(b) Evaluation of the roughness exponent, α, using the method of local gradients [22]). The mean

value is plotted as a dashed blue line. (c) Evaluation of the growth exponent, β, using the method

of local gradients. The mean value is plotted as a dashed blue line. Note the log scale on each of

the x-axes.

An even more stark difference between the strip geometry and the full two-dimensional

geometry is the saturation behavior of the surface. In the strip geometry the surface was

found to saturate with roughness coefficient α ∼ 0.15, but in the two-dimensional geometry

the surface width does not appear to saturate. Fig. 9 (a) demonstrates unbounded growth of

the surface width for clusters of up to N = 106 particles. We should expect the surface width

not to saturate since additions to the surface are completely uncorrelated. A consistent value

for the roughness exponent, α, is unobtainable (see Fig. 9 (b)). Since the critical exponent

describes the scaling of the surface thickness with a local length scale at saturation, wcap ∼ lα,

the inability to determine α is consistent with our hypothesis that the surface width does

not saturate.

V. COMPARISON OF REACTION-DIFFUSION MODELS ON A GROWING

LATTICE

Although the traditional methods of analysing and classifying surface scaling are not suf-

ficient for the model of Ferreira Jr. and Alves [1], this does not prevent us from utilizing the

isotropic properties of the model. After the introduction a specific element rearrangement
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algorithm in Section III we can now employ the domain cluster aggregation model of Fer-

reira Jr. and Alves [1] in order to simulate discrete, stochastic reaction-diffusion processes

on a radially growing domain in two dimensions. This can be quantitatively compared to

an equivalent continuum model for the same process on a deterministically growing domain.

This is a natural extension of the work, in one dimension, of Baker et al. [23] and Yates

et al. [24] in to higher dimensions. The simulations might mimic a biological tissue (a tumor

for example) which is growing radially and upon which a reaction-diffusion process is taking

place [25].

For demonstrative purposes we will consider a purely diffusive process in the current

work, but note that the incorporation of reactions or an external signalling profile to which

particles can respond would be straightforward [23, 26, 27]. We allow particles to diffuse on

an initially (approximately) circular domain tessellated with a square lattice. The domain

grows as described in Section III with an element being chosen to divide from all the currently

available elements with equal probability at each time-step [28]. In addition, when an

element divides the particles that originally resided in the parent element are split roughly

evenly between the two daughter elements using the binomial distribution [23]. The elements

that move in order to make room for the daughter elements do so according to the cluster

rearrangement algorithm outlined in Section III and take the particles at their lattice site

with them, causing an advective flow of particles due to the domain growth. We restrict

particles in the individual-level model to remain in the domain which corresponds to a zero

flux boundary condition in the equivalent the continuum model.

Given the constant rate of element splitting, ̺, in the individual-level model, we can write

down a probability master equation for the evolution of the number of domain elements

at time t. This master equation determines that the number of domain elements grows

exponentially. This, coupled with the fact that each element is equally likely to split and

that the growth model is isotropic, leads us to assume uniformly exponential domain growth

in the continuum model. The growth occurs at a rate, ρ, which we can easily relate to the

splitting rate, ̺, in the discrete model: the increase in area due to a division event must

produce a corresponding increase in area in the continuum model and (since growth occurs

isotropically) this corresponds to an increase in radius in the continuum model.

Since the PDE, boundary and initial conditions are circularly symmetric the population-

level solution will be circularly symmetric for all time. This means we need only solve a

14



one-dimensional PDE for population density, u(r, t), in the continuum model:

∂u

∂t
+

1

r

∂

∂r
(rvu) = D

(

∂2u

∂r2
+

1

r

∂u

∂r

)

for r ∈ [0, exp(ρt)/2], t ∈ [0, ∞). (6)

The flow due to domain growth is given by v = dr/dt = ρr, where ρ is the strain, which

is determined from the element splitting rate, ̺, in the individual-level model. We chose

the initial domain to have radius 1/2 which, therefore, determines the size of each lattice

element in the individual-based model. We solve equation (6) using the NAG solver D03PE

[29].
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FIG. 10. (Color online) A comparison of the individual-level (with square domain tessellation) and

population-level models of diffusion on a growing circular domain. In the individual-level model

50, 000 particles are initialised with a density profile which decays approximately exponentially from

the centre to the edge of the domain. The continuum model is initialised similarly with a profile

u = A exp(−10r), where A, the normalising factor, ensures that the area under the continuum

initial condition corresponds to the correct number of particles in the individual-level simulation.

There are initially 1885 elements in the circular domain of the individual-level model. Over a

simulation time of 1500 time units, with an element splitting rate of ̺ = 0.001, this number grows

to ∼ 8448. (a) The histograms represent the density of particles in each square of the domain

tessellation. (b) The surface represents the radially symmetric solution of PDE (6) with D = h2,

where h = 1/49 is the length of an element in the individual-level model. (c) The evolution of the

histogram distance error (HDE) (see Section VI of the SM for a definition of the HDE metric).

A snapshot comparison of the densities of the two models is given in Fig. 10. The models

appear to give qualitatively similar results. We also plot the evolution of the histogram

distance error (HDE) in Fig. 10 (c). The HDE, which gives an indication of how closely the

two models correspond (see Section VI of the SM for a definition of the HDE metric), is low,

indicating a good quantitative comparison between the individual-level and population-level

domain growth models of diffusion on a radially growing domain.
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VI. DISCUSSION

In summary, we demonstrated that that the model of Ferreira Jr. and Alves [1] is capable

of growing circular clusters free from the inherent anisotropy of the underlying square lattice.

Our revised model description also includes an explicit algorithm for rearrangement of the

cluster upon division of an element. Such an isotropic model will be essential when modeling

domain growth in biological contexts where no anisotropy is present. As a representative

example we presented a comparison between an individual-level, position-jump model of

particle diffusion on a radially growing domain and a continuum counterpart.

Our investigation into the surface scaling properties of clusters generated by the domain

growth model suggests that the traditional mechanisms for classifying growing aggregates

into UCs, based on the saturation behavior of their surface widths (often in a strip geometry),

may be inadequate for partitioning models, such as that of Ferreira Jr. and Alves [1], whose

clusters do not grow through particle additions whose probabilities are based purely on

surface considerations. In particular, the model for isotropic cluster growth analysed in

this manuscript does not exhibit Family-Vicsek scaling behavior and, as such, cannot be

placed in a traditional UC. Further work is required to determine whether the inability to

be classified into UCs is common to other aggregation models whose particles are added

using more global considerations.

ACKNOWLEDGMENTS

CAY would like to thank Christ Church College for a Junior Research Fellowship.

[1] S.C. Ferreira Jr. and S.G. Alves. Pitfalls in the determination of the universality class of radial

clusters. J. Stat. Mech.-Theory. E., 2006(11):P11007, 2006.

[2] M. Eden. A two-dimensional growth process. In Proceedings of the Fourth Berkeley Symposium

on Mathematics Statistics and Probability, volume 4, pages 223–239. University of California

Press, 1961.

[3] M. Eden. A Probabilistic Model for Morphogenesis, chapter 4: Information Networks, pages

359–370. Pergamon Press, New York, 1958.

16



[4] R. Jullien and R. Botet. Surface thickness in the Eden model. Phys. Rev. Lett., 54(18):

2055–2055, 1985.

[5] T. Callaghan, E. Khain, L.M. Sander, and R.M. Ziff. A stochastic model for wound healing.

J. Stat. Phys., 122(5):909–924, 2006.

[6] G. Wagner, R. Halvorsrud, and P. Meakin. Extended Eden model reproduces growth of an

acellular slime mold. Phys. Rev. E, 60(5):5879–5887, 1999.

[7] M. Block, E. Schöll, and D. Drasdo. Classifying the expansion kinetics and critical surface

dynamics of growing cell populations. Phys. Rev. Lett., 99(24):248101, 2007.

[8] D. Drasdo. Coarse graining in simulated cell populations. Adv. Complex. Syst., 8(3):319, 2005.

[9] M.T. Batchelor, B.I. Henry, and S.D. Watt. Continuum model for radial interface growth.

Physica A, 260(1-2):11–19, 1998.

[10] M.T. Batchelor and B.I. Henry. Limits to Eden growth in two and three dimensions. Phys.

Lett. A, 157(4-5):229–236, 1991.

[11] . See Supplemental Material at [URL will be inserted by publisher] for further analysis of

anisotropy metrics, discussion of Fourier surface decompositions, a discussion of noise reduc-

tion and further scaling analysis.

[12] P. Meakin. Universality, nonuniversality, and the effects of anisotropy on diffusion-limited

aggregation. Phys. Rev. A, 33(5):3371–3382, 1986.

[13] P. Freche, D. Stauffer, and H.E. Stanley. Surface structure and anisotropy of Eden clusters.

J. Phys. A.-Math. Gen., 18:L1163–L1168, 1985.

[14] . Choosing K to be a sufficiently large power of two ensures that each axis and diagonal has

a sector of the circle centered upon it. This ensures that we measure the anisotropy in each of

these directions in a consistent manner. In all the anisotropy measurements presented in this

paper we choose K = 64.

[15] L.R. Paiva and S.C. Ferreira Jr. Universality class of isotropic on-lattice Eden clusters. J.

Phys. A.-Math. Theor., 40(1):F43–F49, 2007.

[16] V.A. Bogoyavlenskiy. How to grow isotropic on-lattice diffusion-limited aggregates. J. Phys.

A.-Math. Gen., 35:2533, 2002.

[17] S.G. Alves and S.C. Ferreira Jr. Is it really possible to grow isotropic on-lattice diffusion-

limited aggregates? J. Phys. A.-Math. Gen., 39:2843, 2006.

[18] R. Jullien and R. Botet. Aggregation and Fractal Aggregates. World Scientific, Singapore,

17



1987.

[19] C.Y. Wang, P.L. Liu, and J.B. Bassingthwaighte. Off-lattice Eden-C cluster growth model.

J. Phys. A.-Math. Gen., 28(8):2141–2147, 1995.

[20] P.F. Ho and C.Y. Wang. Cluster growth by mitosis. Math. Biosci., 155(2):139–146, 1999.

[21] F. Family and T. Vicsek. Scaling of the active zone in the Eden process on percolation networks

and the ballistic deposition model. J. Phys. A.-Math. Gen., 18(2):L75–L81, 1985.

[22] A.L. Barabási and H.E. Stanley. Fractal Concepts in Surface Growth. Cambridge University

Press, 1995.

[23] R.E. Baker, C.A. Yates, and R. Erban. From microscopic to macroscopic descriptions of cell

migration on growing domains. Bull. Math. Biol., 72(3):719–762, 2010.

[24] C.A. Yates, R.E. Baker, R. Erban, and P.K. Maini. Going from microscopic to macroscopic

on non-uniform growing domains. Phys. Rev. E, 86:021921, 2012.

[25] A.M. Smith, R.E. Baker, D. Kay, and P.K. Maini. Incorporating chemical signalling factors

into cell-based models of growing epithelial tissues. J. Math. Biol., 2011.

[26] H.G. Othmer, S.R. Dunbar, and W. Alt. Models of dispersal in biological systems. J. Math.

Biol., 26(3):263–298, 1988.

[27] J. Hu, H.-W. Kang, and H.G. Othmer. Stochastic analysis of reaction-diffusion processes.

Bull. Math. Biol., 2013.

[28] . By choosing a single particle per evenly spaced time-step we will generate exponential

domain growth. However, we note that by altering the rate at which a particle are chosen we

can incorporate different types of domain growth including linear and logistic, for example.

[29] The Numerical Algorithms Group. NAG Toolbox for Matlab, 2009.

18


	An isotropic model for cluster growth on a regular lattice
	Abstract
	Measuring anisotropy
	Some anisotropic models
	A more isotropic model of cluster aggregation
	Surface scaling and Universality classes
	Comparison of reaction-diffusion models on a growing lattice
	Discussion
	Acknowledgments
	References


