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Amongst the most striking aspects of the movement of many animal
groups are their sudden coherent changes in direction. Recent ob-
servations of locusts and starlings have shown that this directional
switching is an intrinsic property of their motion. Similar direc-
tion switches are seen in self-propelled particle and other models
of group motion. Comprehending the factors which determine such
switches is key to understanding the movement of these groups.
Here we adopt a coarse-grained approach to the study of directional
switching in a self-propelled particle model assuming an underlying
one-dimensional Fokker-Planck equation for the mean velocity of
the particles. We continue with this assumption in analyzing exper-
imental data on locusts and use a similar systematic Fokker-Planck
equation coefficient estimation approach to extract the relevant in-
formation for the assumed Fokker-Planck equation underlying that
experimental data. In the experiment itself the motion of groups of
5 to 100 locust nymphs was investigated in a homogeneous labora-
tory environment, helping us to establish the intrinsic dynamics of
locust marching bands. We determine the mean time between di-
rection switches as a function of group density for the experimental
data and the self-propelled particle model. This systematic approach
allows us to identify key differences between the experimental data
and the model, revealing that individual locusts increase the ran-
domness of their movements in response to a loss of alignment by
the group. We give a quantitative description of how locusts use
noise to maintain swarm alignment. We discuss further how proper-
ties of individual animal behavior, inferred using the Fokker-Planck
equation coefficient estimation approach, can be implemented in
the self-propelled particle model in order to replicate qualitatively
the group level dynamics seen in the experimental data.

collective behavior | locusts | swarming | density dependent switching |
coarse-graining

While recent years have seen an explosion in the number
of simulation models of moving animal groups, there is

little detailed comparison between these models and experi-
mental data (1, 2). The models usually produce motion that
‘looks like’ that of a swarm of locusts, a school of fish or a
flock of birds, but the similarities are difficult to quantify (3).
Furthermore, the simulation models themselves are often dif-
ficult to understand from a mathematical viewpoint since, by
their nature, they resist simple mean-field descriptions. These
complications make it difficult to use models to predict, for
example, the rate at which groups change direction of travel
or how spatial patterns evolve through time (4,5). We are left
with a multitude of models all of which seem to relate to the
available experimental data, but none of which provides clear
predictive power.

One approach to the problem of linking experimental data

to model behavior is the detailed study of the local interac-
tions between animals. This approach has yielded better un-
derstanding of the rules which govern the interaction of fish
(6, 7) and birds (8, 9). However, establishing these rules is
technically difficult since it requires automated tracking of in-
dividuals over long periods of time and quantification of often
complicated interactions.

Coherent animal groups often make sudden changes in di-
rection (1, 10–12). In some cases a switch in direction is a
response to an external influence, such as the presence of a
predator, but in other cases animal groups appear to switch
direction spontaneously. Recently, experiments on various
densities of desert locusts (Schistocerca gregaria) in a ho-
mogeneous environment confirmed that directional switching
can occur without changes in the external environment (10).
In experiments with lower locust densities it was found that
groups of locust nymphs were highly aligned and marched
in one-direction around a ring-shaped arena for up to two
or three hours, before spontaneously switching direction in
the space of only a few minutes and marching in the op-
posite direction, again for a number of hours. In experi-
ments with higher densities marching groups formed travelling
in the same direction for the 8-hour duration of the experi-
ment. The group property of average velocity/alignment (as
it will variously be denoted throughout the rest of this pa-
per) of the locust experiments was previously modelled by a
one-dimensional self-propelled particle (SPP) model similar
to that in (13). In a manner analogous to the experiments in
(10) this model also exhibits spontaneous direction switching
where ‘particles’ rapidly change alignment.

In this paper we investigate directional switching in a SPP
model and in our experimental data of the motion of locusts.
A coarse-grained model characterizes the behavior of a system
in terms of a single “coarse” variable (average locust velocity
in our case) and does not take into account the “fine” details of
the behavior of individual locusts. If such a model is explicitly
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available we can apply available mathematical techniques to
study the properties of group switching as will be shown later
for a simple toy model. In a more complicated scenario, where
we are not able to write a coarse-grained model explicitly,
we can often still assume that there exists a coarse-grained
Fokker-Planck equation (FPE) describing the evolution of the
average velocity of the particles in the SPP model. We use ap-
propriately initialized computational experiments to estimate
the (explicitly unavailable) drift and diffusion coefficients of
such a FPE. The drift coefficient represents the mean rate of
change of the average velocity of the locusts, while the diffu-
sion coefficient quantifies the randomness of the evolution of
this coarse-grained variable (precise mathematical definitions
are given later in Eqs. [13] and [14]). We also estimate the
drift and diffusion coefficients of a coarse-grained FPE based
on experimental data. Coarse-graining enables efficient de-
scription and analysis of these data and assists the refinement
of the individual based model so as to simulate observed group
properties more accurately.

Our studies suggest that an individual’s response to a loss
of alignment in the group is increased randomness of its mo-
tion, until an aligned state is again achieved. This alignment-
dependent stochasticity, using randomness to keep the group
ordered, appears counterintuitive. While the constructive ef-
fects of noise at the level of an individual have been reported
in other biological systems (14), here we present an exam-
ple where noise has been found to be a constructive force at
the collective level in an ecological system. Furthermore, the
lack of sources of environmental noise in the experiment under
consideration indicates the internal character of these fluctu-
ations. Noise induced alignment seems, in this case, to be an
intrinsic characteristic of collective coherent motion.

The paper is organized as follows: we start by providing an
analytical result for mean switching times of the SPP model
with global interactions and compare this to its equation-free
approximation in the case of local interactions. After demon-
strating that coarse-graining works well for our model simula-
tions we adopt a similar FPE coefficient estimation approach
to the experimental locust data in order to find the drift and
diffusion coefficients of the assumed underlying FPE. This
analysis illuminates similarities and important differences be-
tween the model and the experimental data and allows us to
better understand directional switching in both cases. We
conclude by proposing a new, modified model which repro-
duces the experimental observations more accurately than the
previously used SPP models.

The self-propelled particle (SPP) model

We consider a group of N ‘locusts’. Each locust adjusts its
behavior according to the behavior of its neighbors which can
be found less than a distance R (the interaction radius) from
it. A locust’s behavior is described by its position, xi ≡ xi(t),
and velocity, ui ≡ ui(t), i = 1, . . . , N , which evolve according
to the model adapted from Czirók et al (13):

∆xi = ui∆t, [1]

∆ui =
n

G
“

ūloc
i

”

− ui(t)
o

∆t + ∆Qη
“

ūloc
i

”

, [2]

where ∆t is the time step between successive position and ve-
locity updates. ∆Q is a random variable uniformly distributed

in [−
√

∆t ω/2,
√

∆t ω/2] with mean 0 and variance ∆tω2/12,
where ω is the (constant) system noise amplitude.

ūloc
i =

1

ni(t)

X

j∈JR

i

uj(t) [3]

is the mean of the velocities of the particles local to (inside
the interaction radius of) particle i, where J R

i ≡ J R
i (t) is

the set of all j ∈ {1, 2, . . . , N} such that |xi(t) − xj(t)| < R
(i.e. the set of particles (including particle i itself) located
within the interaction radius, R, of particle i at time t) and
ni(t) = |J R

i (t)| (i.e. the number of particles located within
the interaction radius of particle i at time t). The function
G : R → R is chosen to be

G(z) =
1

1 + β
{z + βsign(z)}, [4]

where β is a positive constant. Notice that we give a slightly
more general form of G than in (13). Finally η is a function
of the local mean velocity, ūloc

i , which can be varied to change
the behavior of the model. We consider motion in a domain
of constant length L with periodic boundary conditions, di-
rectly motivated by the experiments described in (10), where
locusts march in a ring-shaped arena. Note that in this one-
dimensional geometry we allow the particles to cross through
each other.

In (10) and (13) the function η is chosen to be one. Simi-
larly we will choose η ≡ 1 in our initial model and later revise
this choice after analysis of the experimental data. Let us
note that the model in (13) is a special case of model [1] – [2]
where β = ∆t = 1 and η ≡ 1 throughout.

A toy model with globally interacting particles

To illustrate our coarse-graining technique we will first study
a modification of the model [1] – [2] where all particles inter-
act with each other. The advantage of this model is that we
can obtain the coarse-grained equations explicitly: we know
that the assumptions, made later to justify coarse-graining,
hold exactly and hence we can validate the approach. More-
over, we can obtain analytical results for this model, as shown
below. We thus replace the local average [3] in formula [2] by
the global average,

U(t) =
1

N

N
X

j=1

uj(t),

to obtain:

∆ui =
˘

G (U(t)) − ui(t)
¯

∆t + ∆Q, [5]

for i = 1, 2, . . . , N, where η ≡ 1 for simplicity and the march-
ing group comprises all N individuals. Note that this toy
model is the original model with the domain length, L, equal
to 2R. Equations [5] are now only one-way coupled with equa-
tions [1] (i.e. the positions of the locusts do not affect the ve-
locities, but the velocities do affect the positions). Assuming
that the number of locusts in the marching group is fixed and
equal to N , this toy locust problem can be described by the
system of N equations [5].

A quantity of interest is the mean switching time between
different directions of motion of the group (left or right) for
which, in this special case of global interaction, we can find an
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explicit formula. Adding equations [5] and dividing through
by N and invoking the central limit theorem

∆U ≈
˘

G(U) − U
¯

∆t +
ω√
12N

∆W, [6]

where ∆W is the normal random variable with mean 0 and
variance ∆t (i.e. the standard Brownian process). Assum-
ing the approximation in [6] to be exact, let fN (U, t) be the
probability distribution function of the random variable U .
Given initial condition fN (U, 0), the distribution fN (U, t) can
be computed (as in (15)) as a solution of the FPE,

∂fN

∂t
=

∂

∂U

„

ω2

24N

∂fN

∂U
−

˘

G (U) − U
¯

fN

«

. [7]

Notice that, apart from the small approximation due to the
application of the central limit theorem, this is an exact equa-
tion for the coarse-grained observable U . The steady solution
of [7] is given by

fNst(U) = C exp [−φN (U)] , [8]

where C is a normalization constant and the potential, φN (U),
can be computed as

φN (U) =
12Nβ

ω2(1 + β)

ˆ

U2 − 2|U |
˜

. [9]

The potential is symmetric with respect to U = 0. It has two
global minima at U± = ±1. Supplementary Fig. 1 (a) shows
the stationary probability distribution (SPD), fNst(U), given
by [8] and (b) shows the potential, φN (U), given by [9], both
plotted as solid lines.
The mean switching time can be computed (as in (15)) as a
function of N ,

T1 =
24N

ω2

Z 0

−1

exp [φN (U)]

Z U

−∞

exp [−φN (ξ)] dξdU. [10]

The function T1(N) is plotted (full line) in supplementary
Fig. 1 (c), with approximations to the variation of the mean
switching time with N (squares) given by stochastically sim-
ulating the model. There is quantitative agreement between
the simulations and the theoretical formula [10]. There is no
doubt, in the case of global interaction, that the dependence of

mean switching time on the number of particles in the system
is exponential. It can be approximated (see SI) as

T1 ≈
s

πω2(1 + β)3

12Nβ3
exp

»

12Nβ

ω2(1 + β)

–

. [11]

Computer-assisted methodology

We now return to the original model [1] – [2] with finite inter-
action radius. Unlike in the case of the toy global interaction
model, we are unable to derive an explicit, closed-form equa-
tion for the coarse-grained observable U , i.e. the analogue
of equation [7]. However, we hypothesis that such a closed
equation,

∂fN

∂t
=

∂2 (D(U)fN )

∂U2
− ∂ (F (U)fN )

∂U
, [12]

exists, where D(U) and F (U) are the diffusion and drift coef-
ficients respectively. Using an equation-free approach (16,17)
we are still able to approximate quantities such as the mean
switching time by designing and performing short computa-
tional experiments to estimate, on demand, the drift and dif-
fusion coefficients of the unavailable, coarse-grained FPE [12]
for the mean velocity, U , of the locusts. Following (16,18) we
approximate

F (U) ≈
fi

U(t + δt) − U(t)

δt

fl

, [13]

D(U) ≈ 1

2

fi

[U(t + δt) − U(t)]2

δt

fl

, [14]

where 〈·〉 represents an ensemble average over several, consis-
tently initialized, short replica simulations with the detailed
model [1] – [2]. δt is a small number of time steps of the pro-
cess (typically between one and five) dictated by the timescale
on which the coarse-grained equation [12] becomes valid. We
can then use the drift and diffusion coefficients to approxi-
mate, via quadrature, the potential:

φ(U) = −
Z U

0

F (s)

D(s)
ds + ln(D(U)) [15]

and hence the SPD of the underlying FPE (using Eq. [8]).
The equation-free approach involves initializing the parti-

cles consistently (which is called ‘lifting’ in the equation-free
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Fig. 1. Equation-free analysis of the local interaction model. L = 90, R = 5, β = 1, ω = 2.6 and N = 30 ((a) and (b) only). (a) Estimation of the diffusion

coefficient of the unavailable FPE for the coarse variable, U . (b) Two approximations of the SPD. The histogram represents a sample of the alignments (taken every 50 time

steps) from one long simulation. The curve represents the equation-free estimation to the SPD. (c) Mean switching time as a function of the number of locusts, N , derived

using the equation-free technique (crosses with dashed best fit line) and from simulation (squares with full best fit line).
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terminology (17)), so that their velocities give a specific value
of alignment, U . We perform a large number of replica simu-
lations (typically 1000) allowing each one to evolve for a short
time period δt. This provides representative averages for the
drift and diffusion coefficients of FPE [12] using formulae [13]
and [14] respectively. After we have found the values of these
desired quantities at the first alignment we repeat the process
on an evenly spaced grid of possible alignments. Applying this
technique in the case of global interaction gives an excellent
fit to the analytical solutions, as expected (see supplementary
Fig. 1 (a) and (b)).

In the more biologically realistic ‘local’ model, [1] – [2], we
found that slightly smoother results were obtained by initial-
izing particles with both a prescribed alignment and a velocity
variance which, in long simulations, was observed to be consis-
tent with the particular alignment value. The diffusion coeffi-
cient of a specific case (N = 30) of the local model is shown in
Fig. 1(a) to be approximately constant, while the drift coeffi-
cient has a characteristic antisymmetric cubic shape, indica-
tive of the symmetric double-welled potential (see SI). Such
an effective potential is consistent with most particle veloci-
ties being aligned (in one direction or in the other) most of
the time, with occasional switches between directions whose
frequency depends on the height of the potential barrier be-
tween the wells relative to their depth. This is corroborated
by the approximations to the SPDs given in Fig. 1(b). The
histogram represents the proportion of time the mean veloc-
ity of the particles spends at each allowed value bin during
a long-time simulation, while the curve is the equation-free
approximation to the SPD.

For a range of N we used the short-burst equation-free
derived potential to estimate the mean switching time using
a modified version of Eq. [10]:

T1 =

Z U+

U−

1

D(ξ)
exp [φ(U)]

Z U

−∞

exp [−φ(ξ)] dξdU, [16]

where U− and U+ are the mean velocities at which the two
minima of the potential occur. We also established the re-
lationship between mean switching time and N by counting
the switches during a long simulation for the same range of
N . The two methods give similar, apparently exponential,
relationships (see Fig. 1(c)).

Experimental data

Locusts exhibit dynamic directional switching over a range of
different densities. In previously reported experiments (10)
we recorded the directional alignment of groups of between 5
and 100 locusts for 8 hours. The ring-shaped arena (an an-
nulus with outer radius 40 cm and inner radius 17.5 cm (see
SI)) in which the locusts were placed is analogous to the one-
dimensional domain with periodic boundary conditions used
in the SPP model. We can thus use similar techniques to
analyze the experimental data as we did with the long-term
simulations. However, the equation-free approach (involving
many consistent initializations of the velocity - and even pos-
sibly of the variance of the velocity - of live locusts) is not
practical in an experimental setting. Instead, we use a similar
systematic FPE coefficient estimation approach from obser-
vations of the velocities of the locusts over a long period of
time (an ‘equilibrium run’). During the first two hours of the
experiments the activity of the locusts changed significantly,
while in the latter six hours activity tended to be relatively
consistent. We thus amalgamated, for each number of locusts
up to 40, the observations of the locusts’ velocities over sev-
eral experiments after the first two hours of each experiment.
We collected instances of the same alignment, U(t) and the
alignment, U(t + δt), a short time, δt, later and used these in
equations [13] and [14] to estimate the drift and diffusion co-
efficients of the underlying FPE. Although experiments were
carried out for numbers of locusts above 40 there were too
few switches in the six hour interval to provide a meaningful
estimate of drift and diffusion coefficients.
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Fig. 2. Analysis of the experimental data. N = 30 ((a), and (b) only). The diffusion coefficient (a) and drift coefficient (b) estimated using [13] with δt = 4 seconds,

and [14] with δt = 0.2 seconds, respectively. The rationale behind these choices of δt is explained in the supporting information (SI). (c) Variation of the mean switching

time with the number of locusts, calculated using the estimated potentials and Eq. [16] (crosses with dashed best fit line) and by counting the number of direction switches

(squares with full best fit line). Note the log scale on the y-axis.

Fig. 2(a) and (b) show the estimated drift and diffusion
coefficients of the alignment for the experiment with 30 lo-
custs. The drift coefficient in Fig. 2(b), although noisy, still
has a roughly cubic shape consistent with that estimated for
the SPP model. Unlike the SPP model, however, the diffu-
sion coefficient appears to have a quadratic shape, with its
maximum at zero alignment. The potential (see SI), although
not perfectly symmetric, is still double-welled, indicating the
tendency of the particles to exhibit collective motion in one
direction or the other.

We used Eq. [16] to calculate, for different N , the mean
switching times from the potentials constructed by system-
atic estimation. We also found the mean switching time di-
rectly by taking the total time of the experiment and di-
viding it by the number of switches made. Both methods
give an approximately exponential relationship between mean
switching time and N (see Fig. 2(c)). This implies that the
more locusts there are, the less often they switch and, as the
number of locusts becomes sufficiently large, there are effec-
tively no switches over the duration of a day’s marching (∼ 8
hours). There are quantitative differences between the re-
sults obtained by direct estimation of number of switches and
the result of the coarse-grained approach. Two key sources
may contribute to this: (i) The assumption that there ex-
ists a coarse-grained FPE for the average velocity, U , is valid
only approximately. Such a discrepancy was already observed
when we substituted the toy model [5] by model [1] – [2] (see
Fig. 1(c)). In the case of the toy model [5] we know that there

exists a closed FPE [7] and the results are exact, (see supple-
mentary Fig. 1 (c)). On the other hand, in the original model
[1] – [2] the coarse-grained equation was not readily available
and our computations revealed that it is valid only approxi-
mately. (ii) For the experiments there is also a second source
of error since, unlike the computational model, we cannot ob-
tain unlimited time series data. The length of the time series
is limited by experimental restrictions. Binning the available
time series as a histogram does not yield a symmetric SPD,
which suggests that these time series are not long enough (see
SI).

The fact that the diffusion coefficient increases when group
alignment is low indicates that the locusts might respond
to low group alignment by increasing the noisiness of their
motion. To test this hypothesis we refined the SPP model
[1] – [2]. Instead of taking the function η(ūloc

i ) (multiplying
the uniform random variable, ∆Q, in the velocity update Eq.
[2]) to be unity, we chose it to be a nontrivial function of the
local mean velocity, ūloc

i , specifically,

η
“

ūloc
i

”

=
3

2

(

1 −
„

ūloc
i

|ūloc
i |max

«2
)

, [17]

where |ūloc
i |max is the maximum of the absolute value of the

mean local velocity; for this choice η(ūloc
i ) does not become

negative. We specifically chose this functional form for η in
order to obtain a quadratic shaped diffusion. The factor 3/2
is chosen to make the overall size of the noise in the original
and revised models the same (see SI).
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(c)

Fig. 3. Analysis of the revised model. L = 90, R = 5, β = 1, ω = 2.6, |ūloc
i |max = 1.5 and N = 30 ((a) and (b) only). The interaction radius was chosen

to be consistent with (10) and the noise was chosen so as to mimic the relationship between locust number and mean switching time given by the experimental data. (a)

The diffusion coefficient of the revised model mimics the quadratic shape of the actual diffusion coefficient for the locusts, peaking at approximately zero alignment. (b) The

potential has two deep wells giving further favourable comparison to the experimental data. (c) Comparison of the exponential relationship between the number of locusts and

mean switching time, given by the revised model (squares with full best fit line) and the experimental data (crosses with dashed best fit line). Note the log scale on the y-axis.

In Fig. 3(a) the quadratic nature of the effective diffusion
coefficient is recovered by the refined model. Qualitatively,
the potential of the new model compares favorably with the
potential of the actual experimental locust data (see SI). A
further useful validation of the revised model is that the mean
switching time is significantly increased for all values of N in
comparison to the original model (compare the simulation-
derived mean switching times (squares with the full best fit
lines) in Fig. 1(c) to Fig. 3(c)). A higher diffusion coefficient
at lower alignments suggests that the locusts ‘prefer’ to be in
a highly aligned state: when the locusts leave this state they
increase the randomness of their movements and consequently
a new aligned state is arrived at more quickly. The effect of
this altered diffusion coefficient on the evolution of the coarse
variable, U , is evidenced in Fig. 4. The transitions between
ordered states in the original model are very sharp (see Fig.
4(a)), whereas the transitions for the experimental data are

relatively noisy (See Fig. 4(b)). The noisiness of the transi-
tions appears to be replicated well by the revised model (see
Fig. 4(c)). In general it can be seen that the marching band
switches direction more frequently in the original model than
the revised model.

Discussion

Our analysis of self-propelled particle models and of ani-
mal movement data has revealed a number of novel features.
Firstly we established that the mean switching time increases
exponentially with the number of particles/locusts. As lo-
cust density increases the turning rate of the group rapidly
decreases. This observation has implications regarding at-
tempts to control the locusts’ motion: at high densities it
becomes increasingly difficult to influence a group’s direction.
Secondly we used the systematic Fokker-Planck equation coef-
ficient estimation approach on experimental data. Our results
indicated that the individuals move more randomly in locust
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Fig. 4. Typical evolution of the average velocity, U , for (a) the original model, (b) the actual locust data and (c) the revised model. N = 30, L = 90, R = 5, β = 1,

ω = 3.9 ((a) and (c) only) and |ūloc
i |max = 1.5 ((c) only). In (a) and (c) we have used an altered value of ω and a rescaled time axis in order to better illustrate the

similarities and differences between the models and the data.
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groups with low alignment. This appears to enable the group
to find (and remain in) a highly aligned state more easily.

One of the most useful aspects of our agent-based ap-
proach is that it enhances our ability to speculate about the
behavior of individual locusts from group level information:
we alter individual behavioral rules and use self-propelled par-
ticle models to test the effect that these alterations have on
the coarse variable, U . This enables us to verify the validity
of these individual-scale alterations. We thus used our ex-
perimental observations to guide our modelling, changing the
noise term for the individual locusts so that it becomes larger
when the alignment is smaller. It should be noted that the
randomness in the model does not necessarily mean that the
locusts are making random choices. It could be that there ex-
ist underlying small scale individual interactions that manifest
themselves as noise in the individual motion of the locusts at
the level of our experimental observation. We found the rela-
tionship between group number and mean switching time to
again be exponential, but with longer mean switching times
than in our previous model.

It would be interesting to consider whether recent find-
ings about cannibalistic interactions between marching locusts
(19) can provide rationalization for the observation of appar-
ently increased individual randomness in response to a loss of
alignment at the group level: given the risk of exposing the
rear of the abdomen to oncoming insects (19), there may be
selection pressure on an individual to minimize the time spent

in the disordered phase. A longer inter-switch time might also
be selected for in an evolutionary scenario since it allows the
locusts to remain in a coherent group for longer periods, po-
tentially increasing harvesting efficiency and reducing preda-
tion (7, 20–22). Noise in response to lost alignment may be
an example of a general property of organisation of collective
motion. Another example is found in traffic jam models where
one way of avoiding ‘phantom traffic jams’ is to introduce ad-
ditional noise to traffic motion (23–25).

We have provided evidence that our revised model is more
biologically justifiable than our original model; new functional
forms such as [17] may be useful in the formulation of other
self-propelled particle models characterizing collective animal
behavior. Our findings provide strong evidence for the seem-
ingly unexpected phenomenon of randomness contributing to
the creation of coherent behavior at the collective level.
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