
Bulletin of Mathematical Biology manuscript No.
(will be inserted by the editor)

Modelling cell migration and adhesion during development

Robin N. Thompson1,2?, Christian A. Yates1, Ruth E. Baker1

1 Centre for Mathematical Biology, Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford

OX1 3LB, UK.

2 Present address: Theoretical and Computational Epidemiology Group, Department of Plant Sciences,

University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.

Received: May 14, 2012 / Revised version: Sep 20, 2012

Abstract Cell-cell adhesion is essential for biological development: cells migrate to their target

sites, where cell-cell adhesion enables them to aggregate and form tissues. Here, we extend analysis

of the model of cell migration proposed by Anguige and Schmeiser (2009), that incorporates both

cell-cell adhesion and volume filling. The stochastic space-jump model is compared to two deter-

ministic counterparts (a system of stochastic mean equations and a nonlinear partial differential

equation), and it is shown that the results of the deterministic systems are, in general, qualitatively

similar to the mean behaviour of multiple stochastic simulations. However, individual stochastic

simulations can give rise to behaviour that varies significantly from that of the mean. In particu-

lar, individual simulations might admit cell clustering when the mean behaviour does not. We also

investigate the potential of this model to display behaviour predicted by the differential adhesion

hypothesis by incorporating a second cell species, and present a novel approach for implementing

models of cell migration on a growing domain.
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1 Introduction

Cell migration and adhesion are vital during biological development: cells migrate to their target

sites, and cell-cell adhesion enables them to aggregate and form cohesive tissues. Further, cell

distributions can be controlled by differing expression levels of cell adhesion molecules (Alberts

et al. (1994); Foty and Steinberg (2005)).

Models of cell migration generally come in two complementary forms: stochastic, individual-

based or deterministic, population-based (Erban and Othmer (2004)). Simulations of stochastic

models often require more computational work, but do include the randomness that is often preva-

lent in biological systems. Population-based models, which usually involve systems of partial differ-

ential equations (PDEs), generally not only require less computational work to obtain a numerical

solution, but one can also use many tools from PDE analysis to explore their behaviour. Fur-

ther, population-level readouts are sometimes more useful: for example, a surgeon is interested

in the population-level behaviour of a tumour (particularly, how fast it will grow), rather than

the movements of individual cells. Whilst models of cell-cell adhesion considered previously have

predominantly been discrete, individual-based (Khain et al. (2011); Simpson et al. (2010b)), there

are relatively few continuum, population-based models (Armstrong et al. (2006), Anguige and

Schmeiser (2009)). Linking both discrete and continuous models of cell-cell adhesion, as we do

here, is even less common (Simpson et al. (2010a)).

There are several types of individual-based model. One of the most commonly used is the

space-jump model, where each cell moves around in space on a lattice, jumping from its cur-

rent compartment to a neighbouring one (Baker et al. (2010); Berg (1993); Othmer and Stevens

(1997); Othmer et al. (1988)). Other models include velocity-jump models (Berg (1975); Othmer

et al. (1988)), where each cell repeatedly jumps between different velocities. Both of these types

of individual-based model have been connected to population-based models (Erban and Othmer

(2004); Othmer and Hillen (2011); Othmer and Stevens (1997)).

The Keller-Segel model (Keller and Segel (1971a); Murray (2002); Patlak (1953)) is a commonly

used population-based model for cell migration and adhesion due to chemotaxis. Various biological
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phenomena, including the movement of Escherichia coli (Brenner et al. (1998); Keller and Segel

(1971b)) and Dictyostelium discoideum (Keller and Segel (1970); Othmer and Schaap (1998)),

have been represented using the Keller-Segel model, despite the fact that at the mesoscopic cell

level these systems behave in different ways. This further motivates the need for individual-based

models: to incorporate biologically accurate descriptions of individual cell motion.

In this paper, we consider a stochastic model for cell migration on a fixed, one-dimensional

lattice, that incorporates volume filling as well as cell-cell adhesion. In Section 2.2, the corre-

sponding set of deterministic stochastic mean equations (SMEs) for the average cell density in

each compartment of the lattice are considered, as is a deterministic nonlinear PDE describing

the evolution of cell density across the domain. These systems were initially proposed by Anguige

and Schmeiser (2009), and the deterministic versions have been extended to include chemotaxis by

Anguige (2011).

We look, in Section 3, at cases where the behaviour of the stochastic system is both similar to,

and very different from, the behaviour of the deterministic systems. We then extend the stochastic

model to include two cell species in Section 4, and explore whether it can display behaviour

predicted by the differential adhesion hypothesis (Foty and Steinberg (2005)), which attributes the

sorting of different cell species, starting with a random mix of each species, to differing adhesion

properties of the various species. Whilst several models have been proposed to describe cell-cell

adhesion (such as those by Palsson and Othmer (2000), Simpson et al. (2010b) and Armstrong et al.

(2006)), we show that various cell sorting behaviours can occur in a simple model, via adhesion

both between cells of the same species and cells of different species.

In Section 5, we implement the stochastic model and its deterministic counterparts on a growing

domain, which occurs, for example, during the development of vertebrate embryos (Landman et al.

(2003)). Whilst there is a range of literature about models of biological systems that include domain

growth, particularly continuum models (Crampin et al. (1999); Maini and Solursh (1991); Mooney

and Nagorcka (1985)), including both cell migration and stochastic domain growth is comparatively

rare (Woolley et al. (2011)), and has not, to our knowledge, been considered for models of cell-cell
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adhesion. We find problems with the previously used compartment-splitting approach to domain

growth (Baker et al. (2010)) in cases where there is a wide variation in cell density across the

domain, and present a novel approach for domain growth in this paper.

2 Modelling cell-cell adhesion on fixed domains

2.1 The stochastic model

The discrete model considered will be a mesoscale, individual-based model, that incorporates both

cell-cell adhesion and volume filling. Cells move on a one-dimensional lattice x ∈ [0, 1] with k lattice

points, where each lattice point is assumed to be the midpoint of a compartment in which cells

sit. In order to make later implementation of domain growth more straightforward, we define hi

as the distance between lattice points i− 1 and i (for i between 2 and k), h1 as twice the distance

between the left-most lattice point and the left edge of our domain, and hk+1 as twice the distance

between lattice point k and the right edge of the domain.

Initially, we assume that lattice points are equally spaced, so that hi = h = 1/k, for i between 1

and k+ 1. We also assume no-flux boundary conditions, and no cell proliferation or death, so that

the total number of cells is constant (as is the total cell density, summed over all compartments,

since lattice points are equally spaced and the domain is fixed).

Let the vector n = (n1, n2, . . . , nk) represent the number of cells in each compartment, and

let T±
i (n) be the transition rates for a cell moving right (+) or left (−) from compartment i to

compartment i ± 1 (we assume nearest neighbour transitions only), so that, on average, the net

flux of cells from compartment i to i+ 1, say, is

niT
+
i − ni+1T

−
i+1.

In this model, for i = 2, 3, . . . , k − 1, we take

T+
i (n) = d

h2

(
1− αni−1

S

) (
1− ni+1

S

)
,

T−
i (n) = d

h2

(
1− ni−1

S

) (
1− αni+1

S

)
,
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with

T+
1 (n) = d

h2

(
1− αn1

S

) (
1− n2

S

)
,

T−
1 (n) = 0,

T+
k (n) = 0,

T−
k (n) = d

h2

(
1− nk−1

S

) (
1− αnk

S

)
,

as proposed by Anguige and Schmeiser (2009), where α ∈ [0, 1] is the constant adhesion coefficient

and d is a constant that can be adjusted so that adhesion occurs on biologically relevant timescales.

We propose this model as a possible explanation of cell clustering behaviour seen in experi-

mental systems. The model could represent, for example, a two-dimensional process, where each

compartment represents a thin vertical strip (that is one cell width wide). For simplicity, we assume

that cells can only move vertically or horizontally (a common assumption in Cartesian lattice-based

models). A cell that sits in compartment i exerts a force on cells which are immediately adjacent

to it in compartments i − 1 and i + 1. Consequently, ignoring any vertical transitions (since this

does not change the compartment in which the cell concerned sits), a cell can move horizontally

either left or right. The probability of a cell moving to the right from compartment (vertical strip)

i to i + 1 is reduced if there is a cell immediately on the left of the original cell by the adhesive

force: this is the case with probability ni−1/S if there are ni−1 cells in compartment i − 1 (since

we do not know exactly where in the compartment the cells sit). The cell cannot move to the

right if there is a cell already there (this has probability ni+1/S). This motivates the transition

probabilities above. Other, more complex, forms of the transition probabilities above are possible

in order to explain cell-cell adhesion, but ours are chosen for their simplicity.

In order for direct comparison with the results of Anguige and Schmeiser to be possible, we

set d to unity in this work. Since α ∈ [0, 1], the probability of a particle jumping to the right is

reduced if there are many particles to the left (and vice versa), thus representing adhesion (with α

determining the strength of adhesion). S ∈ N is the carrying capacity of a compartment: it limits

the number of cells in each compartment at any time, and represents volume filling. We simulate

the model using the Gillespie stochastic simulation algorithm (Gillespie (1977)).
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2.2 The deterministic models

SMEs describing the mean cell density in each compartment (where 〈ρi〉(t) = 〈ni〉(t)/S denotes

the mean cell density in compartment i at time t, and we assume that the carrying capacity of

each compartment, S, is proportional to its length) can be derived by conditioning on the state of

the stochastic system at time t and considering its state at some short time later, t+ δt (a master

equation formulation, as in Baker et al. (2010)). In the derivation, we assume that the variance of

the density of cells in each compartment (and corresponding covariances between compartments)

is negligible, so that, for example, 〈ninj〉 = 〈ni〉〈nj〉. Other forms of the variances and covariances

could be assumed (Bolker and Pacala (1997)), but we verify our assertion by noting that the

behaviour of the SMEs closely matches the average behaviour of the stochastic system under this

choice (see Section 3).

Note that we could also arrive at the system of SMEs by consideration of the net flux of cells

between compartments (as in Anguige and Schmeiser (2009)), noting that

d〈ρj〉
dt = T+

j−1(ρ)〈ρj−1〉+ T−
j+1(ρ)〈ρj+1〉 −

(
T+

j (ρ) + T−
j (ρ)

)
〈ρj〉,

where the vector ρ = (〈ρ1〉, 〈ρ2〉, . . . , 〈ρk〉), and applying similar moment closure assumptions of

the form 〈ρiρj〉 = 〈ρi〉〈ρj〉. In either case we obtain

d〈ρj〉
dt = 1

h2

(
〈ρj+1〉(1− α〈ρj+2〉) + 〈ρj−1〉(1− α〈ρj−2〉)− 〈ρj〉 [(1− 〈ρj+1〉)(1− α〈ρj−1〉)

+〈ρj+1〉(1− α〈ρj+2〉) + 〈ρj−1〉(1− α〈ρj−2〉) + (1− 〈ρj−1〉)(1− α〈ρj+1〉)]
)
, (1)

for j = 3, 4, . . . , k− 2 (where similar equations can be derived in compartments 1, 2, k− 1 and k).

Taking the continuum limit in space (letting the linear dimension of each compartment, h, tend

to zero) in the SMEs leads us to the PDE of Anguige and Schmeiser (2009) for the evolution of

cell density across our domain,

∂ρ

∂t
= ∂

∂x

(
D(ρ)∂ρ

∂x

)
, (2)

with

∂ρ

∂x
= 0,
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at x = 0 and x = 1, and

D(ρ) = 3α
(
ρ− 2

3

)2
+ 1− 4α

3 .

Thus we have a continuous, deterministic population-level model of cell density in the form of a

nonlinear diffusion equation with diffusivity D(ρ).

3 Comparison of the stochastic and deterministic models

We consider the behaviour of our model with initial cell numbers given by

ni(0) = Se−2xi sin2(4πxi), (3)

where xi is the x co-ordinate of the ith lattice point, so that we can examine the behaviour of our

models with varying initial cell densities across the domain. These initial conditions were used by

Anguige and Schmeiser (2009).

We can approximate a solution to both the PDE (2) and to the system of SMEs (1) using finite

difference methods (Morton and Mayers (2005)). We find that, for α < 0.75, the stochastic system

approaches a homogeneous steady state (data not shown). This convergence to steady state in the

low α regime occurs independently of the initial conditions that we choose, and independently of

the number of compartments on the domain. We also notice that the numerical solution of the

PDE and SMEs matches the average behaviour of the stochastic system closely.

For α > 0.75, however, we find that the diffusivity, D(ρ), becomes negative for certain cell

densities. In this α regime, we find that the stochastic system can admit cell clustering. However, as

noted by Anguige and Schmeiser (2009), due to the ill-posedness of the PDE we cannot numerically

approximate its solution. We can, however, numerically approximate the solution of the SMEs, and

we find that this matches the average behaviour of the stochastic system (see Figure 1). We display

the data in our images at the given times for comparison with the paper by Anguige and Schmeiser

(2009).

If we increase the total number of compartments (varying h and S appropriately), and reduce

the initial number of cells in each compartment by the same factor (so that the density of cells
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Fig. 1 Average of 100 stochastic simulations (blue) with S = 100, initial cell density given by (3), and

numerical solution of the corresponding SMEs (red), with 100 compartments and α = 0.95.

remains the same across the domain), we find that, whereas we might expect the system to dis-

play similar behaviour, it instead admits different types of cell clustering (with the appearance of

multiple peaks possible). This lack of convergence appears to be related to the ill-posedness of the

PDE: in the low α regime, where the PDE is well-posed, the behaviour of the system is identical

for varying numbers of compartments (if the initial cell density is maintained when the number

of compartments is varied, as described above). This also suggests that the volume filling aspect

of our model (determined by the carrying capacity of an individual compartment, S) is vital in

controlling the type of cell clustering that we see, with the type of clustering dependent on the

number of compartments, k.

Whilst the results of the deterministic systems are equivalent to the average behaviour of the

stochastic system, individual simulations, under certain conditions, can give qualitatively different

behaviour. In particular, in the high α regime, starting with homogeneous initial conditions, we

find that an individual stochastic simulation can admit cell clustering whereas the deterministic

systems remain at this homogeneous steady state. Linear stability analysis of the deterministic
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Fig. 2 Individual stochastic simulation (blue) with S = 100, initial homogeneous cell density of 0.3, and

numerical solution of the corresponding SMEs (red), with 100 compartments and α = 0.95.

systems indicates that the steady state is unstable (Anguige and Schmeiser (2009)). This supports

our observations, since small perturbations are inherently present in the stochastic simulations

(but not in the averaged behaviour).

We note that, after cell clusters are established in the system, the number of peaks stays fixed

over very long timescales. For example, for an individual simulation, with an initial homogeneous

cell density of 0.6, we note that there are three peaks in the system at t = 50, t = 100, and t = 200.

We find that different types of cell clustering can be admitted from the same homogeneous

initial conditions. For 100 simulations with α = 0.95, 100 compartments and initial cell density of

0.3 everywhere, we find that at t = 0.2 we have no peaks in five cases, one peak in 53 cases, two

peaks in 41 cases, and three peaks once. For an example of a simulation where two peaks appeared,

see Figure 2.

We also find that varying the magnitude of the initial homogenous cell density affects the

percentage of simulations in which we see cell clustering at some pre-determined time later (see

Figure 3). We see that multiple peaks are most likely when we start with a high initial homogeneous
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Fig. 3 Proportion of simulations where peaks occur at t = 0.2 in the stochastic system for homogeneous

initial cell density varying from 0.2 to 0.7, for α = 0.95. Proportions have been calculated from 100

simulations for each initial cell density.

density. If the initial cell density is below a critical level, then no cell clustering will occur. If we

increase the initial cell density, more peaks are likely. We also notice from Figure 3 that the number

of peaks appearing is variable for the same initial conditions. This further indicates that stochastic

effects are important in determining the qualitative behaviour of our system. For an example of a

simulation with eight peaks appearing by t = 0.2, see Figure 4.

We notice that when we see cell clustering in the stochastic system and in the behaviour of the

stochastic mean equations, the PDE is ill-posed. Further, in our exploration of other systems, when

the PDE is not ill-posed we do not see cell clustering. For example, if the transition probabilities

are constant, the PDE corresponding to the individual-based model is the diffusion equation, and

the system approaches a homogeneous steady state irrespective of the initial conditions. Similar
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Fig. 4 Individual stochastic simulation (blue) with S = 100, initial homogeneous cell density of 0.6, and

numerical solution of the corresponding SMEs (red), with 100 compartments and α = 0.95.

behaviour can be found if the transition probabilities from Section 2.1 are changed so that cells

adhere to other cells in the same compartment, as we illustrate in the discussion.

Whilst cell clustering is a common feature of biological systems, such behaviour often occurs in

systems where multiple cell species interact (Steinberg (1962a,b,c)). This leads us to consider the

incorporation of two cell species in our model.

4 Two cell species

We investigate the potential of this model to display behaviour predicted by the differential adhe-

sion hypothesis of Foty and Steinberg (2005) by introducing a second cell species, where the vector

m = (m1,m2, . . . ,mk) represents the number of cells of the second species in each compartment.
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We modify the transition rates so that

TN+
i (n,m) = 1

h2

(
1− α11

ni−1

S

) (
1− α12

mi−1

S

) (
1− ni+1 +mi+1

S

)
,

TN−
i (n,m) = 1

h2

(
1− ni−1 +mi−1

S

) (
1− α12

mi+1

S

) (
1− α11

ni+1

S

)
,

TM+
i (n,m) = 1

h2

(
1− α22

mi−1

S

) (
1− α21

ni−1

S

) (
1− ni+1 +mi+1

S

)
,

TM−
i (n,m) = 1

h2

(
1− ni−1 +mi−1

S

) (
1− α21

ni+1

S

) (
1− α22

mi+1

S

)
. (4)

According to these transition rates, cells of each type can move into a neighbouring compartment if

that compartment is not full, but at a reduced rate if there are lots of cells of either type in the other

neighbouring compartment (with the reduced rate being governed by different adhesion coefficients

for each neighbouring cell type). Adhesion coefficients αij represent the adhesion of species i to

species j, so that α11 represents the adhesion of cell species 1 to itself, with α22 representing the

adhesion of species 2 to itself. In this work, we shall set α12 equal to α21, so that the interspecies

adhesion coefficients are equal.

Foty and Steinberg (2005) assert that cell species rearrange to form the most thermodynamically

stable configuration. In particular, for two cell species, m and n, if wmm, wnn, and wmn are the

work done in the formation of adhesion bonds per unit area between speciesm andm, n and n, and

m and n, respectively, then different rearrangements will be reached depending on their relative

values.

Here, we expect the configuration reached to be dependent on the adhesion coefficients in a

similar fashion. Whilst we might expect slightly different behaviour from that observed experi-

mentally by Foty and Steinberg (2005) because of the one-dimensional nature of the model and

also the volume filling aspect (with multiple cells clustering in each compartment, rather than lots

of cells side-by-side), we find that various rearrangements are possible dependent on the adhesion

parameters.

Armstrong et al. (2006) showed that their continuous model was capable of replicating exper-

imental cell sorting, ending in various possible configurations, including complete sorting, engulf-

ment, and mixing. We find that these three configurations are also possible in our system, and
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Fig. 5 Individual stochastic simulations of the two species model with transition probabilities given by

equations (4), with S = 100, and initial homogeneous cell density 0.4 of both type 1 (blue) and type 2

(red). Left: Complete sorting; α11 = 0.1, α22 = 0.9 and α12 = α21 = 0.0. Middle: Engulfment; α11 = 0.1,

α22 = 0.9 and α12 = α21 = 0.2. Right: Mixing; α11 = 0.1, α22 = 0.9 and α12 = α21 = 0.6.

example simulations are shown in Figure 5. The type of clustering established by t = 5 did not

change by t = 100 (data not shown).

We find that if the interspecies adhesion parameters are large, or the intraspecies adhesion

parameters are small, then mixing occurs. The engulfment of species 1 by species 2 occurs if the

interspecies adhesion parameters are small, with α11 large and α22 small (and vice versa for the

engulfment of species 2 by species 1). Complete sorting occurs if either both interspecies adhesion

coefficients are small and both intraspecies adhesion coefficients are large, or if the interspecies

adhesion coefficients are zero and at least one of the intraspecies adhesion coefficients is large.

During morphogenesis, embryos change size, with cell migration taking place on top of this in

order to form components of the body. Consequently, whilst the incorporation of two cell species is

important, an equally important consideration when modelling biological development is domain

growth.



14 Robin N. Thompson et al.

5 Domain growth

In order to incorporate domain growth into our model, we include a growth event as an alternative

to cell movement in the Gillespie stochastic simulation algorithm. In some earlier models, such

as that of Baker et al. (2010), a growth event involves the splitting of a compartment (chosen

at random) into two new compartments (both of the same linear dimension as the original com-

partment), with the cells in the original compartment divided (according to some distribution)

between the two new compartments. However, a compartment split then instantaneously reduces

the density of cells at that point on the domain drastically, which seems an unlikely consequence of

growth in a biological system. In a model that admits cell clustering, this type of growth can lead

to unrealistic features such as instantaneous peak splitting. We therefore present a novel approach.

Whilst we only consider the case of an exponentially growing domain, where each compartment

grows at average rate rS (where S is the current carrying capacity of the compartment concerned),

the method can be adapted for systems where compartment growth rates are dependent on the

density of cells in each compartment, which might be more biologically realistic (Lieberman and

Glaser (1981)).

In our approach, a growth event involves increasing the linear dimension of a compartment

(chosen at random) by the extent of a single cell (increasing the carrying capacity of the compart-

ment by one). A growth event in this way only decreases the density of cells in the compartment

concerned slightly. When the compartments become large, the distance that cells have to jump

between lattice points is also large, which is unrealistic. Therefore, when a compartment carrying

capacity reaches a pre-defined threshold, the compartment splits into two new compartments, each

with carrying capacity half of this threshold (thus ensuring that the cell density at any point on

our domain does not change by a large amount during any growth event, since, for example, a

compartment containing 80 cells and carrying capacity 200 will split into two compartments that

contain 40 cells and have carrying capacity 100, so that cell density is conserved at 0.4).

Hence, if we start with k0 compartments each with initial carrying capacity C0, at any growth

event we choose a compartment (at random, with the probability of choosing a certain compartment
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proportional to its current carrying capacity) to increase in carrying capacity by one cell. When

any compartment reaches carrying capacity 2C0, say, then it splits into two compartments, each

with carrying capacity C0, and the cells in the original compartment are split evenly between the

new compartments (if there are an odd number of cells in the parent compartment, then one of

the new compartments, chosen uniformly at random, will contain an extra cell). We assume that

the size of each compartment is proportional to its carrying capacity (so that the domain size can

increase whilst the number of compartments stays constant, as in Figure 6).

We must modify the transition rates in Section 2.1, in order to consider a domain with unequal

compartment sizes (since, if the distance between lattice points is larger, we expect the probability

of a cell jumping between the lattice points to be reduced). Motivated by the discretisation of a

PDE on a non-uniform domain (see Appendix A), we use transition rates

T+
i (n) = 1

hi+1hi+ 1
2

(
1− αni−1

Si−1

) (
1− ni+1

Si+1

)
,

T−
i (n) = 1

hihi+ 1
2

(
1− ni−1

Si−1

) (
1− αni+1

Si+1

)
,

for i = 2, 3, . . . , k − 1 (with similar expressions for i = 1 and i = k) where Si(t) is the carrying

capacity of compartment i at time t and hi is defined as in Section 2.1 (with hi+ 1
2
defined to be

the mean of hi and hi+1). We note that the linear dimension of a single cell is 1/k0C0, so that

hi =
1
2 (Si−1 + Si)

k0C0
,

for i = 2, 3, . . . , k (with similar expressions for i = 1 and i = k + 1).

We can also derive SMEs for both 〈Si〉(t) and 〈ni〉(t) using a master equation formulation

approach as in the stationary domain case (Baker et al. (2010)). The SMEs are valid up to the

time of the first compartment split (see Figure 6).

We find that, in the low α regime, the system approaches a state with cells equally distributed

across the domain, but in the high α regime, cell clustering can occur, as in the stationary do-

main case. Numerical simulations indicate that the probability of peaks appearing is decreased by

increasing rate of domain growth. We observe that, over short timescales, for small growth rates

cell clusters can still form, but for large growth rates they cannot. For intermediate growth rates,
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Fig. 6 Individual stochastic simulation with domain growth incorporated, with 100 compartments (each

with initial carrying capacity C0 = 100) initially, α = 0.95, growth rate r = 2 and initial distribution of

cells given by (3). The red line is the solution of the corresponding SMEs, and the green dot indicates

the size of the domain of the stochastic system. None of the compartments reach the critical carrying

capacity of 200 (at which the compartment concerned would be split into two compartments) by t = 0.2;

consequently, there are still 100 compartments in each of the displayed figures.

cell clusters form initially but are destroyed eventually (since the domain grows exponentially), as

shown in Figure 7.

6 Discussion

Cell migration and adhesion are important in various areas of biology, and especially important

during development. Mathematical modelling provides a framework where hypotheses can be tested

and refined, and experimentally verifiable predictions can be made.

We have considered a stochastic model of cell migration, that incorporates both cell-cell adhe-

sion and volume filling, and also two corresponding deterministic systems in the form of a set of

SMEs and a nonlinear diffusion equation. We find that, for low values of the adhesion parameter,
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Fig. 7 Individual stochastic simulation with domain growth incorporated with 100 compartments (each

with initial carrying capacity C0 = 100) initially, α = 0.8, growth rate r = 8 and initial homogeneous cell

density equal to 0.6. The green dot indicates the size of the domain.

α, numerical solutions of the deterministic systems match the behaviour of the stochastic system

closely, and a homogeneous steady state is reached. For large values of α, on the other hand, the

PDE becomes ill-posed, and gives nonsensical solutions for cell densities where the diffusivity, D(ρ),

becomes negative. This means that we are unable to model biological systems where cell clustering

occurs using this PDE model. The numerical solution of the SMEs, however, matches the average

behaviour of the stochastic system, and various types of cell clustering can occur (for example,

different numbers of peaks).

We note, however, that whilst the SMEs depict the average behaviour of the stochastic system,

individual stochastic simulations can vary dramatically from the behaviour predicted by the SMEs.

In particular, cell clustering could occur in one realisation of the stochastic system when it does
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not in the SMEs. We also noticed that different types of cell clustering may occur from the same

initial conditions in the stochastic system.

It is possible to consider a system in which cells adhere to other cells in the same compartment,

so that the transition probabilities are given by

T+
i (n) = d

h2

(
1− αni

S

) (
1− ni+1

S

)
,

T−
i (n) = d

h2

(
1− ni−1

S

) (
1− αni

S

)
.

This system leads to a similar PDE, but with diffusivity

D(ρ) = αρ2 − 2αρ+ 1.

In this case, the diffusivity does not become negative for any cell densities with α ∈ [0, 1], and

the solutions of the system of SMEs and the PDE, as well as simulations of the stochastic model,

show that the system tends to the homogeneous steady state. Consequently, this model cannot

explain the cell clustering observed in biological systems, and we instead considered the transition

probabilities of Section 2.1, initially considered by Anguige and Schmeiser (2009).

Recognising that cell-cell adhesion often occurs in systems where multiple cell species interact,

we then incorporated a second cell species into our stochastic system, and found that various

qualitatively-different behaviours were possible (such as the engulfment of one species by another,

complete cell sorting, and the retention of random mixing long-term) depending on the different

adhesion parameters (both intra- and inter- species). This is consistent with the behaviour observed

by Armstrong et al. (2006).

Whilst the incorporation of multiple cell species into our model is important, it is also important

to consider domain growth when modelling biological development. A new method for incorporating

domain growth via the incremental increase of carrying capacities of individual compartments was

proposed here. SMEs can again be derived, and they match the behaviour of the stochastic system

short-term. We find that domain growth decreases the chance of cell clustering occurring, with

the peaks that do form being stretched and shortened by the growth. Peak splitting, which is an
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artefact of some other stochastic growth simulation techniques if used with models that admit cell

clustering (Baker et al. (2010)), does not occur.

This work suggests areas for further investigation, so that we can fully understand the mecha-

nisms underlying cell migration and adhesion, particularly during biological development. A sen-

sible next step might be the extension of our model to two or three spatial dimensions, or the

incorporation of more cell species. Further theoretical work might then include considering differ-

ent transition probabilities: a broad framework for this has been developed by Penington et al.

(2011).
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A Transition probabilities on a non-uniform domain

When the domain has unequal compartment sizes, the distance that cells jump between neigh-

bouring compartments varies. If this distance is large, then the transition rate between the com-

partments concerned should be reduced.

We note that, if we consider a stochastic system with transition probabilities of the form

T±
i = D/h2,

where diffusivity D is constant, we can derive the PDE

∂ρ

∂t
= − ∂

∂x

(
−D∂ρ

∂x

)
, (5)

as discussed by Baker et al. (2010).
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If we consider approximating a solution to this PDE on a non-uniform domain (Morton and

Mayers (2005)), we obtain

nk+1
i − nk

i

∆t
= 2D
hi+1(hi+1 + hi+2)ni+1 +

(
−2D

hi(hi + hi+1) + −2D
hi+1(hi + hi+1)

)
ni +

2D
hi(hi−1 + hi)

ni−1,

where the his are defined as in Section 2.1. Assuming that the number of cells evolves according

to

∂ni

∂t
= T−

i+1ni+1 + T+
i−1ni−1 − (T−

i + T+
i )ni,

we deduce that

T+
i = 2D

hi+1(hi + hi+1) ,

with a similar expression obtainable for T−
i . For ease of notation, we define

hi+ 1
2

= 1
2(hi + hi+1).

The above consideration motivates the pre-factor in our transition rates on a non-uniform domain,

for i = 2, 3, . . . , k − 1 (where the cell density in compartment i is ni/Si), given by

T+
i (n) = d

hi+1hi+ 1
2

(
1− αni−1

Si−1

) (
1− ni+1

Si+1

)
,

T−
i (n) = d

hihi+ 1
2

(
1− ni−1

Si−1

) (
1− αni+1

Si+1

)
,

with similar expressions derived for i = 1 and i = k. Strictly speaking, we have assumed that the

compartment edges are halfway between the lattice points.
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