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Abstract

Diffusive transport is a universal phenomenon, throughout both biological and physical sciences,

and models of diffusion are routinely used to interrogate diffusion-driven processes. However,

most models neglect to take into account the role of volume exclusion, which can significantly alter

diffusive transport, particularly within biological systems where the diffusing particles might occupy

a significant fraction of the available space. In this work we use a random walk approach to provide

a means to reconcile models that incorporate crowding effects on different spatial scales. Our work

demonstrates that coarse-grained models incorporating simplified descriptions of excluded volume

can be used in many circumstances, but that care must be taken in pushing the coarse-graining

process too far.
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I. INTRODUCTION

Throughout the physical and biological sciences, diffusive transport is ubiquitous, and it

takes places on a wide range of spatial and temporal scales. For example, in biology diffusion

is a key transport process that regulates events and interactions on levels ranging from those

describing the behaviours of ions and subcellular macromolecules, to those of cells, tissues

and organisms [1]. Less well understood, however, is how volume-exclusion-driven crowding

impacts upon these diffusive transport processes, despite the inherent fact that all diffusing

particles exclude other particles from occupying the same region in space [2, 3].

The majority of models of diffusive processes neglect to take into account the excluded

volume effects that arise as a result of the non-zero volume of the diffusing particles. The

predominant models describing diffusive transport over a range of spatial scales, and with

varying excluded volume fractions, are ‘diffusion’ partial differential equation (PDE) models

with a constant diffusion coefficient [4–6], and random-walk-based models of point parti-

cles [7, 8], both of which entirely neglect the impact of volume exclusion. Other models

include phenomenological descriptions of volume exclusion effects by imposing that, for ex-

ample, the diffusion coefficients of PDE models or the ‘jump rates’ associated with random

walk models depend locally on the particle density [9–13]. However, these phenomenological

descriptions are usually chosen on an ad hoc basis, and the ramifications of choosing one

description over another rarely explored in detail.

In this work we employ the framework of a lattice-based random walk to explore how

volume exclusion may be taken into account at different spatial scales, and describe how to

define the jump rates of the random walkers so as to provide a consistent description of the

effects of volume exclusion across spatial scales. An additional advantage of our approach

is that it provides for significant time savings in the computational simulation of volume

excluding individual-particle-level models of diffusive transport.

II. MODELLING DIFFUSIVE TRANSPORT ON DIFFERENT SCALES

For simplicity, we consider a one-dimensional, lattice-based random walk model of dif-

fusive transport in which the motile particles have length h. We work with the domain

x ∈ [0, L], where L = Nh for some N ∈ N, so that the domain can hold at most N par-
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ticles. We impose a uniform lattice consisting of K compartments on the domain, so that

the length of each compartment is L/K, and we work only with choices of K for which

m = L/(Kh) is a positive integer. This means that N = Km and at most m particles

fit into each of the K compartments [9, 14–16]. We model diffusion as a series of jumps

between compartments, and impose zero-flux boundary conditions on the domain (so that

particle number is conserved).

m = 2

m = 4

m = 1

FIG. 1. Representation of particle positions within compartments of different capacity. Shaded

cells represent particles, and white cells represent unused capacity. As m increases, the spatial

resolution coarsens, and this work reconciles the descriptions at these different scales.

We move between different levels of spatial resolution by varying the compartment ca-

pacity, m: smaller values of m resolve changes in particle density on a finer spatial scale

than larger values. The two limiting cases are: full exclusion, m = 1, so that compartments

contain at most one particle (and the position of the particle is fixed); and no exclusion,

m → ∞, so there is no limit on the number of particles per compartment. In this work,

we shall term the m = 1 case ‘accurate’, in the sense that no assumptions are made on the

positions of particles with each compartment.

The common, phenomenological approach taken in the literature is to define the jump

rates between compartments as

T±j =
D

m2h2

[
1− f (m)

(
n
(m)
j±1

)]
, j = 1, . . . , K, (1)

where n
(m)
j is the number of particles in compartment j when each compartment has capac-

ity m [17]. The function f (m) describes the effects of volume exclusion, effectively specifying

the proportion of jumps that ‘fail’ due to crowding [18]. The scaling of the jump rate with

the square of the compartment size (mh) can be justified from mean first passage time ap-

proaches [19]. Effects such as adhesion are often included by assuming the T±j to also be

a function of n
(m)
j and n

(m)
j±1 [9, 12]. In practice, the diffusion coefficient D may itself be a

function of the length scale characterizing the transport process, especially at the smallest
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scales [20]. However, when modelling a range of biophysical phenomena, it is appropriate to

approximate the diffusion coefficient as constant [21]. The implicit assumption in our frame-

work is that the combined effects of other, non-modelled, macromolecules and/or obstacles

in the environment are encapsulated in the constant diffusion coefficient, D.

Typically, these models on different scales are interrogated either by: (i) using repeated

simulation of the random walk models to estimate summary statistics of interest; (ii) deriving

and solving ordinary differential equations (ODEs) for the expected particle number per

compartment; or (iii) deriving PDE models in the limit h→ 0 and using standard analytical

and numerical techniques for PDEs to explore model behaviours. However, to the best of

our knowledge, there has been little exploration of the effects of choosing different functional

forms for f (m) on various summary statistics of the random walk models as the compartment

capacity, m, varies. As such, one of the aims of this work is to understand how the mean

and variance of particle numbers changes as we move across spatial scales (by varying m)

and to provide a systematic derivation of coarse-grained (m > 1) models from the accurate

(m = 1) model.

Sensible choices of f (m) require: (i) the volume exclusion function to be zero when the

compartment is empty, f (m)(0) = 0; and (ii) the volume exclusion function to be unity when

the compartment is at capacity, f (m)(m) = 1. One of the goals of this work is to elucidate

functional forms for f (m) that give rise to behaviours that are conserved across spatial scales.

We do this by considering equations for mean and variance of particle numbers.

Mean particle numbers. The evolution of mean particle number in the jth compart-

ment when the transition probabilities are as in Eq. (1) is given by the ordinary differential

equation [22]

dM
(m)
j

dt
=

D

m2h2

[
−M (m)

j +
〈
n
(m)
j f (m)

(
n
(m)
j+1

)〉
+ M

(m)
j−1 −

〈
n
(m)
j−1f

(m)
(
n
(m)
j

)〉]
+

D

m2h2

[
−M (m)

j +
〈
n
(m)
j f (m)(n

(m)
j−1)

〉
+ M

(m)
j+1 −

〈
n
(m)
j+1f

(m)(n
(m)
j )

〉]
, (2)

for 2 ≤ j ≤ K − 1, where 〈·〉 denotes the expectation and M
(m)
j =

〈
n
(m)
j

〉
. Similar expres-

sions apply for the boundary compartments, j = 1, K.
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The case m = 1. Here at most one particle can occupy each compartment, the conditions

stated above are enough to fully define f (1), and we have [23]

dM
(1)
j

dt
=
D

h2

(
M

(1)
j−1 − 2M

(1)
j +M

(1)
j+1

)
, (3)

for 2 ≤ j ≤ K − 1. Similar expressions apply for the boundary compartments, j = 1, K.

Eq. (3) is a semi-discrete diffusion equation and, in the limit h → 0, it gives rise to the

diffusion equation with constant diffusion coefficient, D.

The case m =∞. Letting m→∞ entails the limit of zero volume exclusion. To analyse

the evolution of mean particle number we represent the compartment size as h̃ = L/K so

that, similar to the m = 1, case we have

dM
(∞)
j

dt
=
D

h̃2

(
M

(∞)
j−1 − 2M

(∞)
j +M

(∞)
j+1

)
, (4)

for 2 ≤ j ≤ K − 1. Similar expressions apply for the boundary compartments, j = 1, K. As

for the m = 1 case, Eq. (4) is a semi-discrete diffusion equation and, in the limit h̃ → 0, it

gives rise to the diffusion equation with constant diffusion coefficient, D.

The case 1 < m < ∞. To ensure the model is consistent across spatial scales, it is

appropriate to confine choices for f (m) for 1 < m <∞ to those that also give rise to a semi-

discrete diffusion equation with constant diffusion coefficient for mean particle numbers.

The only choice for f (m) is then

f (m)
(
n
(m)
j

)
=
n
(m)
j

m
, (5)

which gives, as anticipated,

dM
(m)
j

dt
=

D

m2h2

(
M

(m)
j−1 − 2M

(m)
j +M

(m)
j+1

)
, (6)

for 2 ≤ j ≤ K − 1. Similar expressions apply for the boundary compartments, j = 1, K.

Variance of particle numbers. For the choice of volume exclusion function given in

Eq. (5) we can also obtain equations for the evolution of the variance of particle numbers:

dV
(m)
j

dt
=

D

m2h2

[
2

(
m− 1

m

)
V

(m)
j,j−1 − 4V

(m)
j + 2

(
m− 1

m

)
V

(m)
j,j+1

]

+
D

m2h2

[
M

(m)
j−1

(
1−

M
(m)
j

m

)
+M

(m)
j

(
1−

M
(m)
j−1

m

)
+M

(m)
j

(
1−

M
(m)
j+1

m

)
+M

(m)
j+1

(
1−

M
(m)
j

m

)]
,(7)
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for 2 ≤ j ≤ K − 1, where V
(m)
j is the variance of particle numbers in compartment j, and

V
(m)
j,k is the covariance of particle numbers in compartments j and k:

dV
(m)
j−1,j

dt
=

D

m2h2

[(
2

m
− 4

)
V

(m)
j−1,j + V

(m)
j + V

(m)
j−1 + V

(m)
j−2,j + V

(m)
j−1,j+1 −M

(m)
j−1

(
1−

M
(m)
j

m

)
−M (m)

j

(
1−

M
(m)
j−1

m

)]
;

dV
(m)
j,k

dt
=

D

m2h2

[
−4V

(m)
j,k + V

(m)
j−1,k + V

(m)
j+1,k + V

(m)
j,k−1 + V

(m)
j,k+1

]
for 1 < j < k − 1 < K, 1 < k + 1 < j < K.(8)

Similar expressions can be found for the boundary compartments, j = 1, K.

III. CONSISTENCY OF THE CHOICE OF VOLUME EXCLUSION FUNCTION

We consider the m = 1 case to represent the most ‘accurate’ model of volume exclusion

effects for an on-lattice model of diffusion as it implies, simply, that one particle cannot over-

lap with another. When coarse-graining this model, to consider random walk models with

compartment capacities m > 1, our aim is that the mean and variance of particle numbers

in each compartment are conserved. In what follows, we will sum the mean and variance

of compartment occupancy of the accurate, m = 1, model over groups of m contiguous

compartments to explore how accurate we can expect the coarse-grained model to be.

To this end, we will define

S
(m)
j (t) =

jm∑
i=(j−1)m+1

n
(1)
i (t), (9)

with µ
(m)
j (t) the mean of S

(m)
j (t), and v

(m)
j (t) its variance. We wish to establish the relation-

ship between: (i) µ
(m)
j (t) and M

(m)
j (t); and (ii) v

(m)
j (t) and V

(m)
j (t).

Steady state values. Eqs. (6)-(8), together with the additional constraint that the

sum of all variance and covariance terms must be zero (since N is constant), gives the

steady states

M̂
(m)
i =

N

K
, (10)

V̂
(m)
i =

N(K − 1)

K
(
K − 1

m

) (1− N

mK

)
, (11)

V̂
(m)
i,j =

−N
K
(
K − 1

m

) (1− N

mK

)
, i 6= j, (12)
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where 1 ≤ i, j ≤ K and circumflexes are used to denote steady state values. It is then simple

to check that

µ̂
(m)
j = M̂

(m)
j , (13)

v̂
(m)
j = V̂

(m)
j , (14)

i.e. the steady state means and variances are conserved through the process of coarse-

graining.

Time evolution. To obtain an expression for the evolution of µ
(m)
j , we note

dµ
(m)
j

dt
=

jm∑
i=(j−1)m+1

dM
(1)
i

dt

=
D

h2

jm∑
i=(j−1)m+1

(
M

(1)
i−1 − 2M

(1)
i +M

(1)
i+1

)
=
D

h2

(
M

(1)
(j−1)m −M

(1)
(j−1)m+1 −M

(1)
jm +M

(1)
jm+1

)
.

(15)

We compare this to the coarse-grained model, Eq. (6), which we re-state here for convenience:

dM
(m)
j

dt
=

D

m2h2

(
M

(m)
j−1 − 2M

(m)
j +M

(m)
j+1

)
.

To relate Eqs. (6) and (15), and understand when we expect the coarse-grained model to

replicate the dynamics of the accurate, m = 1, model, we need to establish a relationship

between the M
(1)
j (j = 1, . . . , N) and the M

(m)
j (j = 1, . . . , K).

A natural choice for the coarse-graining would be to assume M
(1)
i ≈ M

(m)
j /m for i =

(j − 1)m + 1, . . . , jm. However, Eq. (15) would then give rise to a diffusion equation with

constant diffusion coefficient m times larger than expected in the limit h→ 0. This means

that our coarse-grained model does not require the stringent condition that particles in a

compartment of size m are uniformly distributed throughout that compartment.

Instead, consistency between the accurate (m = 1) and the coarse-grained (m > 1)

models arises from assuming particles in the m > 1 compartments are distributed, on

average, according to a linear interpolation between m > 1 neighbouring compartments

rather than being uniformly distributed throughout the compartment:

M
(1)
jm =

1

m

(
1

2

m+ 1

m
µ
(m)
j +

1

2

m− 1

m
µ
(m)
j+1

)
, (16)

M
(1)
jm+1 =

1

m

(
1

2

m− 1

m
µ
(m)
j +

1

2

m+ 1

m
µ
(m)
j+1

)
, (17)
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as shown in Fig. 2, with similar values for M
(1)
(j−1)m and M

(1)
(j−1)m+1. As a result we have

dµ
(m)
j

dt
=

D

m2h2

(
µ
(m)
j−1 − 2µ

(m)
j + µ

(m)
j+1

)
, (18)

and evolution of the mean particle numbers in the coarse-grained system matches that of

the accurate model.

m = 1

m = 4

FIG. 2. Schematic of the interpolation process for m = 4.

The entries of the covariances matrix
{
V

(1)
i,j

}
cannot be interpolated in the same way,

since its entries are positive on the diagonal and negative everywhere else. However, we can

use similar reasoning to argue that the variances v
(m)
j and V

(m)
j will also match, as presented

in the Supplemental Material.

IV. NUMERICAL INVESTIGATIONS

We now present numerical results to corroborate our findings. We consider the domain

x ∈ [0, 1] with h = 1/128 and D = 103/1282. The initial condition is n
(1)
j (0) = 1, for

j = 1, . . . , 16, and n
(1)
j (0) = 0 otherwise, and attempts by particles to jump left out of

compartment 1 or right out of compartment 128 are aborted.

We compare results from 5000 realisations of the random walk model with m = 1 with

5000 realisations of the same model with m = 8 in Fig. 3 [25]. The mean values predicted

using both the m = 8 and PDE models are in excellent agreement with those predicted

from the accurate m = 1 model. In addition, we see good agreement between the variances

of the m = 1 and m = 8 models. Finally, we note that an additional advantage of the

coarse-grained model is that generating realisations of the discrete random walk model with

m > 1 can be achieved in 1/m2 of the time required by the m = 1 case, since the jump rates

will be m2 times smaller and so far fewer jumps will need to be simulated.

To compute the error in the coarse-graining process, we solved the ODEs for both the

means and variances, Eqs. (6) and (7), over a range of values of m [26]. Results for m >

1 were compared against results with m = 1 using the histogram distance error (HDE)
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FIG. 3. Comparing the mean (a) and variance (b) of particle numbers for the m = 1 and m = 8

cases at t = 1, with K = 128/m. Dark grey bars: results from simulation of the random walk

model with m = 1, light grey bars: results from numerical solution of Eq. (6)/Eq. (7) with m = 8.

Black dashed line in (a): solution of the limiting diffusion equation.

metric [27]: HDE = 1
2

∑K
k=1 |ek− pk|, where ek is the normalised value of the kth aggregated

compartment of the m = 1 model and pk is the normalised value of the kth compartment

of the m > 1 model. Figure 4 demonstrates evolution of the error between the models with

different values of m between t = 0 and t = 1. The HDE remains low in all cases observed,

even though the initial condition does not satisfy the requirement that the densities in the

m = 1 case can be interpolated onto the coarse (m > 1) lattice.
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FIG. 4. HDEs for the means (a) and variances (b) in particle numbers as m is varied [25].

V. CONCLUSIONS

In this work we have used an on-lattice random walk approach to reconcile models of

diffusive transport that incorporate the effects of excluded volume across spatial scales. Our

work demonstrates that coarse-grained models incorporating simplified descriptions of ex-

cluded volume can be used in many circumstances, and these simplified models engender

significantly lower computational costs than their accurate counterparts. These compu-

tational savings will be especially valuable for models in two or three spatial dimensions.

However, care must be taken in pushing the coarse-graining process too far. For example,

there is a delicate trade off between the initial conditions of the model and the size of m.

Future work will be directed towards hybrid approaches, in which a detailed description

of the spatial dynamics can be retained where necessary, and the computational savings

associated with the coarse-grained model taken advantage of where possible. In addition, we
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