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Abstract

We obtain a Fokker-Planck equation describing experimental data on the collective motion of

locusts. The noise is of internal origin and due to the discrete character and finite number of

constituents. The stationary probability distribution shows a rich phenomenology including the

non-monotonic behavior of several order/disorder transition indicators in noise intensity. This

complex behavior arises as the system’s response to the amount of randomness in it. Its coun-

terintuitive character challenges the standard interpretation of noise induced transitions and calls

for an extension of its phenomenology in order to include certain classes of biologically motivated

models. Our results suggest that the collective switches of the group’s direction of motion might

be due to a random ergodic effect and as such they are inherent to group formation.

PACS numbers: 87.23.Cc, 05.40.-a, 05.65.+b, 87.10.Mn
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Emergence can be defined as the appearance of rich structures on a large scale resulting

from a multiplicity of simple interactions at a considerably smaller scale. Collective ani-

mal motion is a paradigmatic example of such an emergent phenomenon. Depending on

the species, there may exist different hierarchical levels that determine how collective dis-

placements are realized. For example, in primate groups, an individual’s dominance status

can affect its role in initializing collective movement. In the case of swarming locusts no

such hierarchies are present; the ability of each individual to guide the band appears to be

distributed relatively evenly throughout the insect group. Herein we will concentrate on

groups of wingless locust nymphs which form marching bands rather than flying swarms [1].

The onset of collective motion in locusts was experimentally demonstrated in [1], where it

was shown that sufficiently large insect densities placed in a ring-shaped arena gave rise to

a coherent displacement of the band. Low densities were characterized by random dispersal

of the individuals, while for intermediate densities the coherent motion was interrupted by

sudden changes of direction (hereafter referred to as “switches”). This phenomenology was

partially rationalized by means of an adapted model based on that of Czirók et al. [2], who

formulate a paradigmatic model for collective animal behavior in one dimension. In their

original model the position, xi, and velocity, ui, of locust i are evolved using the following

two rules, identical for each individual, i = 1, . . . , N ,

xi(t+ 1) = xi(t) + v0ui(t),

ui(t+ 1) = G(ūi) + ξi,

where N is the total number of locusts. Here ūi is the mean of the nondimensionalised

velocities of locusts within a certain radius, R, of the position, xi, of locust i. The function

G is such that G(u) = (1 + K)−1[u + K sgn(u)] for a positive constant K, where sgn(u)

denotes the sign of u. The role of G is to adjust the average nondimensionalised velocity

perceived by each particle towards unity. v0 is a constant associated with the chosen time

scale and ξi is a random number drawn from the uniform distribution in [−η/2, η/2]. The

adapted version of the model used in [1] to model the movements of locust nymphs in a

quasi-one-dimensional arena takes the form

dxi
dt

= ui, dui = [G(ūi)− ui]dt+ β1dWi, for i = 1, . . . , N, (1)

where dWi denotes the increments of independent Wiener processes, β1 is a positive constant

describing the amplitude of the noise and the function G is as above.
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A biologically motivated refinement of the model described by Eq. (1) was given in

[3], where it was demonstrated that individual locusts increase the randomness of their

movements in response to a loss of group alignment. This behavior is the result of a particular

multiplicative form of the noise term (see Eq. (2)), as opposed to the additive noise in Eq.

(1); this characteristic was shown to increase the coherence of the group motion and to

reduce the frequency of direction switches [3]. The key point in the analysis performed

in [3] was the estimation of coefficients of an effective Fokker-Planck equation (FPE) [4],

which is written in terms of a macroscopic (low-dimensional) observable [5], the average

velocity of the marching group, derived directly from the experimental data. In the present

work we approximate the drift and diffusion coefficients of the effective FPE by analytical

functions. This permits a more thorough analysis and fosters further understanding of

collective dynamics of locusts. In addition we compare our results with those of Eq. (1),

and discuss the disparities between the two models.

The model. Coarse-grained analysis [4] allows us to obtain an effective FPE describing

the collective behavior of the locusts at the macroscopic level. By using this coarse-graining

technique (see [3]) we were able to extract the coefficients of the assumed underlying FPE

describing the alignment of the locusts from the experimental data presented in [1]. This

approach enables us to reduce our system - comprising a large number of degrees of freedom

- to a single collective variable, u, (referred to variably, hereafter, as ‘alignment’ or ‘average

velocity’) which describes the system’s macroscopic behavior. The derived FPE has a simple

form and it can be expressed as

∂tP = −α2∂u

[(
u− u3

1− u2

)
P

]
+
β2

N
∂uu[(1− u2)P ], (2)

for the probability P (u, t)dudt of finding the system with an average velocity in the interval

(u, u+ du) during the time interval (t, t+ dt); note that the experimental situation in [1] is

quasi-one-dimensional, allowing the use of a one-dimensional FPE [3].

The derived FPE (2) describing the alignment is a reasonably accurate approximation

to the unknown FPE assumed to underly the motion of the locusts, which captures their

experimental swarming behavior. It should be noted that this technique is only appropriate

if the system being studied is amenable to this sort of reduction.

For asymptotically large values of N , α−1
2 (in equation (2)) denotes the order of mag-

nitude of the relaxation time characterizing how long it takes the entire group to become
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ordered when starting from a disordered configuration, and Nβ−1
2 indicates the order of mag-

nitude of the characteristic time over which the fluctuations of the mean velocity develop.

For the range of experimentally considered locust numbers (5 ≤ N ≤ 40) the derived values

of α2 and β2 are approximately constant while we expect the presence of a boundary layer

for smaller values of N . Since our results in [3] are rather noisy our goal is to fit the order

of magnitude of the model parameters instead of attempting to obtain precise estimates.

Comparing the proposed analytical coefficients of Eq. (2) to those derived in [3], from the

experimental data in [1], we obtain β2/α2 = 2.4± 1.7. Employing the mean switching time

measurements in [3] we find α2 = (6.65± 2.63)10−4s−1 and β2 = (1.62± 0.52)10−3s−1.

The FPE corresponding to Eq. (1) can be obtained as a mean-field approximation,

∂tP = −α1∂u{[sgn(u)− u]P}+
β1

N
∂uuP, (3)

where α1 = K/(1 + K) and K is defined as for the function G in Eq. (1). The stationary

solution of the FPE (3) can be derived as follows:

Ps(u) =

√
α1N
2πβ1

exp
(
−α1N

2β1

)
1 + erf

(√
α1N
2β1

) exp

[
α1N

β1

(
|u| − 1

2
u2

)]
. (4)

The maxima of this stationary probability distribution (SPD) stay constant for all parameter

values. A straightforward inspection of this formula reveals that values of the two maxima

umax = ±1 and the minimum umin = 0 are independent of the parameter values.

In the absence of sources and sinks of probability, we can also derive the SPD of the

experimentally motivated FPE (2):

Ps(u) = N (1− u2)−1−Nα2/β2 exp

[
−Nα2/(2β2)

1− u2

]
, (5)

where N−1 =
∫ 1

−1
(1−u2)−1−Nα2/β2 exp [−Nα2/[2β2(1− u2)]] du is the inverse of the normal-

ization constant. This SPD is bounded, compactly supported in [−1, 1] and bimodal for all

values of the parameters.

Noise induced transitions have been studied traditionally by means of the dynamics of the

extrema of the SPD [6]. For the biologically motivated FPE (2) the SPD shows one minimum

always located at umin = 0, and two maxima at umax = ±
√
α2 + 2β2/N/

√
2α2 + 2β2/N ,

which exist for all parameter values. One immediately notes |umax| ∈ (1/
√

2, 1), a fact
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related to the shape of the “deterministic potential” (the potential in the absence of noise),

which is the negative integral of the drift coefficient,

V(u) = −
∫ u

0

α2

(
s− s3

1− s2

)
ds = −α2

[
u2 +

1

2
ln(1− u2)

]
. (6)

This potential is bistable with one maximum located at the origin and two minima at ±1/
√

2

independent of the parameter values. For increasing noise intensity the probability max-

ima of the SPD (5) (corresponding to the biologically motivated FPE (2)) separate from

the deterministic potential minima ±1/
√

2 and approach the boundary points ±1. These

facets of the SPD, when considered in the context of the classical theory of noise induced

transitions, imply that the system is becoming ordered [6]: the SPD maxima, representing

the states in which the system will most likely be found, are further apart and thus there

is a clearer differentiation among those states. However, the experimental evidence, based

on switching times which decrease as the noise magnitude increases, reveals that the sys-

tem becomes disordered [1]. This indicates that for complex systems the reduction of the

dynamics to the evolution of the extrema might not be adequate in some experimentally

motivated situations.

Barrier Height. Another indicator of order/disorder is the barrier height of the effective

potential. For the model given by Eq. (1) the barrier height decreases monotonically as the

noise intensity increases as can be seen from Eq. (7)

Veff(u) = −α1N

β1

(
|u| − 1

2
u2

)
, ∆Veff ≡ Veff(umin)− Veff(umax) =

α1N

2β1

, (7)

where Veff is the effective potential and ∆Veff the corresponding barrier height.

The effective potential for our revised model (Eq. (2)) is given as

Veff(u) ≡ − ln[Ps(u)] =
Nα2

2β2(1− u2)
+

(
1 +

Nα2

2β2

)
ln(1− u2), (8)

and the corresponding barrier height is

∆Veff ≡ Veff(umin)− Veff(umax) = −1− Nα2

2β2

+

(
1 +

Nα2

β2

)
ln

(
2 +

2β2

Nα2

)
. (9)

As a function of noise intensity the barrier height presents a minimum at [β2/(Nα2)]min ≈

0.76. This means that for β2/(Nα2) < [β2/(Nα2)]min (sub-threshold) the barrier height di-

minishes for stronger noise, but for β2/(Nα2) > [β2/(Nα2)]min (super-threshold) it increases

as the noise strength grows. Indeed, ∆Veff ≈ [ln(2)−1/2](Nα2/β2) when Nα2/β2 →∞ and
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(a) (b)

(c) (d)

FIG. 1: Panels (a) and (b) show the profile of the SPD, Ps(u), from Eq. (5) plotted against the

normalized mean velocity u for a varying noise intensity β2/(Nα2) from two angles. Panel (c)

displays the second moment of the revised model, centered at the origin, S0, versus noise strength

β2/(Nα2) and panel (d) shows the second moment at a maximum, Sm, versus noise strength

β2/(Nα2). The minima are attained for β2/(Nα2) ≈ 0.27 (S0) and for β2/(Nα2) ≈ 0.12 (Sm).

∆Veff ≈ − ln(Nα2/β2) when Nα2/β2 → 0. This suggests that, while increased noise causes

the system to become more disordered for sub-threshold noise intensities, super-threshold

intensities might cause the system to become more ordered as the noise grows. In short,

the ‘barrier height’ order parameter shows a clear non-monotonicity when considered as a

function of noise strength. This looks like a counterintuitive reentrant behavior where the

noise can have an ordering effect for supercritical intensities [6]. Although this behavior

is interesting in itself, it is not biologically relevant, as it requires a number of individuals

N ≈ 3 beyond the model validity. Both characteristics of the SPD (5) of our refined model,

displacement of the location of the maxima and non-monotonic variation of the barrier

height, can be seen in Fig. 1 (a)-(b).
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Mean Switching Time. We can further explore the model properties by considering the

mean switching time, T (u), defined as the first time, on average, that the alignment of the

system, u, initialized such that −1 < u < 0, reaches the origin (u = 0). For our revised

model the moments of the switching time distribution are given, recursively, by the solution

of the equation

α2

(
u− u3

1− u2

)
∂uTn +

β2

N
(1− u2)∂uuTn = −nTn−1, (10)

where Tn is the nth moment, correspondingly, T ≡ T1 is the mean switching time and T0 ≡ 1.

The boundary conditions T (0) = 0 and T ′(−1) = 0 represent zero probability flux through

u = −1. Eq. (10) is directly derived from the FPE using methods from [7]. The solution to

this equation for n = 1 is

T (u) =
N

β2

∫ 0

u

exp

[
Nα2/(2β2)

1− v2

]
(1−v2)Nα2/β2

∫ v

−1

exp

[
−Nα2/(2β2)

1− w2

]
(1−w2)−1−Nα2/β2dwdv.

This expression appears complicated, but one can derive its asymptotic expansion for large

values of Nα2/β2 (which implies large N as α2 and β2 are approximately constant). It has

the simple form T
(
−1/
√

2
)
≈
√

2π
α2

(
2√
e

)Nα2/β2

, which reveals a pure exponential growth in

the inverse noise intensity Nα2/β2 for asymptotically large values. Further moments of the

switching time distribution can be calculated from Eq. (10) for n > 1. In the limit N →∞

one finds the relation Tn = n!T n. This relationship implies in turn that the switching process

is a Poisson process.

We can also compute the first passage time for the model Eq. (1). In this case we solve the

equation α1[sgn(u)−u]∂uT+ β1

N
∂uuT = −1, subject to the boundary conditions T (0) = 0 and

T ′(−∞) = 0, where the latter condition is the analogue of the previous zero flux condition

adapted for an SPD with infinite support. We find

T (u) =

√
πN

2α1β1

∫ 0

u

exp

[
Nα1

2β1

(1 + v)2

]{
2− erfc

[√
α1N

2β1

(1 + v)

]}
dv,

which also behaves exponentially in N for large values of N but this time with an N de-

pendent prefactor (see Supplementary Information of [3]). The relation between these two

mean switching times (the model Eq. (1) and that of the revised model [3]) is extensively

discussed in [3], so we will not reproduce the discussion here.

Now we compare the theoretical results with the exponential fitting we have performed

on experimental data from [1] for both the first and second moments of the switching time
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distribution. The data is insufficient for us to reliably obtain any moments higher than the

second. For the mean switching time T and second moment T2 we found

T = (970± 120) exp[(0.045± 0.007)N ] s,
√
T2/2 = (1300± 190) exp[(0.041± 0.008)N ] s.

According to the relation Tn = n!T n, for the moments of the exponential distribution,

these two values should be the same if the switching process were Poisson. Note that the

exponential growth is the same for both (within errors), while the prefactor is larger for the

second moment. This suggests that the switching process is Poisson for large N , that is, the

probability distribution for the switching events is P = T−1 exp(−t/T ). For small values of

N the behavior is more stochastic, as signalled by the larger prefactor of the second moment

(when N is small the prefactor dominates over the exponential). If the switching process is

Poisson this has a series of consequences concerning predictability: the standard deviation

being equal to the mean implies a 100% error in predictions. Furthermore, switching events

are uncorrelated, the most probable time for switching is t = 0, and the distribution tail

falls off exponentially for long times. This allows for a higher probability of rare events

than would be allowed by a Gaussian tail. All these factors imply that switching events

are almost unpredictable from a practical viewpoint. This also implies that the switching

process is Markovian, as predicted by the FPE. This can be seen from the double-welled FPE

(2) in the large N limit. After a short time the system relaxes to one potential minimum

where it stays an exponentially long time until the switch happens. Since practically all

switches start at the minimum this erases the memory and the Markov property is recovered.

The verification of this theoretical prediction with the experimental data suggests that no

important correlations have been suppressed in the coarse-grained computation in [3], and

that this method, and the FPE (2), are suitable to describe the locust dynamics exhibited

by the experimental data.

Second Moments. Another indicator of the stochastic properties of the system is the

second moment. The second moment measures the spread of the mean velocity, u, with

respect to some reference value. We consider two variants, one centered at the origin S0 ≡∫ 1

−1
u2Ps(u)du, and one centered at one of the maxima of the probability distribution Sm ≡∫ 1

−1
(u − umax)2Ps(u)du. Of course, the value of Sm is the same for both maxima as a

consequence of the symmetry of the system. These integrals have been computed numerically

and are represented in Fig. 1(c), centered at the origin, and 1(d) centered at a maximum.
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Both show non-monotonic behavior in noise intensity, but attain their minima for different

values of the noise amplitude. This non-monotonic behavior, as well as the behavior of the

effective barrier height, are not reflected in the relationship between mean switching time and

the size of the noise parameter (Nα2/β2): the mean switching time grows monotonically with

noise amplitude. For comparison we note that both moments S0 and Sm grow monotonically

with the inverse noise intensity in the model given by Eq. (1); in this case they are

S0 = 1 +
β1

α1N
+

√
2β1

πα1N
exp

(
−α1N

2β1

)
1 + erf

(√
α1N
2β1

) , Sm = 2 +
β1

α1N
+

√
2β1

πα1N
exp

(
−α1N

2β1

)
1 + erf

(√
α1N
2β1

) . (11)

There is another feature of the second moments of the revised model [3], other than the

non-monotonic behavior, that reveals new characteristics of the collective motion of locusts

not reflected by the model Eq. (1). In this model a reduction in the number of individuals

increases the values of both second moments. In the stronger-noise situation the proba-

bility distribution tails grow, which implies that there are more individuals with a higher

(absolute value) velocity. In our case the probability is compactly supported in [−1, 1], as a

consequence of the biological fact that the propagation cannot be better than perfect. For

realistic values of the parameters the system is in the weak noise regime (see Fig. 1(c)).

This means that the second moment centered at the origin decreases for a decreasing num-

ber of locusts, exactly the opposite trend to that of the model Eq. (1). The reason is that

the probability of finding the system in the neighborhood of u = 0 grows considerably for

stronger noise (as reflected by the decreasing barrier height), largely compensating for the

drift of the maxima towards the boundaries of the support of the SPD. The experimentally

derived value of β2/Nα2 = 0.12 ± 0.08 for N = 20 agrees with the minimizing value of the

second moment centered at a maximum, β2/Nα2 ≈ 0.12 (see Fig. 1(d)). This implies that

its behavior is not very sensitive to small changes in the number of locusts.

Conclusions. We have seen that the FPE derived from the coarse-grained analysis of ex-

perimental data on the movement of locusts shows an interesting phenomenology. Different

indicators of order/disorder may vary non-monotonically with noise intensity, possibly in a

contradictory manner. These findings reveal that these indicators might not be suitable for

the biologically motivated models studied in this paper. We have also shown that the di-

rection switches are independently distributed for large numbers of individuals. This makes

them almost unpredictable from a practical viewpoint. It seems that directional switches
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are produced by an accumulation of errors (made by the locusts when trying to adapt their

velocity to that of their neighbors) that ordinarily interfere and cancel each other out but,

for exponentially long times, have the possibility of accumulating and producing a switch.

According to the results presented here, specifically the finding of the Poissonian charac-

ter of the switching events, it seems possible that directional switches are produced as a

consequence of the ergodic random evolution of the system. We note the similarity of this

process with Ising model ergodic magnetization changes [8]. Indeed, the model of Eq. (1)

can be thought of as an Ising model with moving spins. It seems that the ergodic nature

of the finite size Ising model is preserved despite introducing movement of the spins. More

importantly it seems that this is a plausible explanation, in the absence of external stimuli,

of the sudden changes of direction observed in animal groups.
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