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I. A MINIMAL MODEL CAPTURES THE ONSET OF COLLECTIVE MOTION

IN LOCUSTS

II. THE EQUATION-FREE METHOD FOR ESTIMATING FOKKER-PLANCK

COEFFICIENTS

Although we may expect that a process can be modelled by an SDE, the drift and diffusion

terms are often unknown, so that an accurate quantitative model of the behaviour cannot

be specified. For example, in the locust data we expect that the behaviour of the alignment,

z(t), can be modelled by a discretised SDE [1] of the form:

z(t + dt)− z(t) = F (z(t))dt+
√

2D(z(t))dW (t), 0 ≤ t ≤ T, (S.1)

where W (t) is a standard Wiener process (i.e. dW (t) = W (t + dt) −W (t) ∼
√
dtN(0, 1)).

This expectation comes from the qualitative similarity between the switching behaviour seen

in the time-courses of experimental alignment data and SDEs such as equation (13) of the

main text.

In order to estimate the coefficients of the SDE assumed to underlie the data, we appeal to

an adaptation of the equation-free technique [2, 3]: the ‘Fokker-Planck coefficient estimation

approach’ [4]. In order to approximate the drift term, F (z), note that the mean of the second

term on the right of equation (S.1),
√

2D(z(t))dW , (averaged over many realisations of this

quantity for the same value of z) is zero since dW ∼
√
dtN(0, 1). For a particular value of

z, this, in combination with equation (S.1), implies that F (z) can be found as

F (z) = lim
δt→0

〈

z(t + δt)− z(t)

δt

〉

, (S.2)

where 〈〉 represents the average over many instances of the data, beginning with a particular

value of z, where δt is a small-time increment.

Similarly, in order to estimate the unknown diffusion term D(z) we can consider a rear-

rangement of equation (S.1) as follows:

[z(t + δt)− z(t)]2 = F 2δt2 + 2F
√
2DdWδt+ 2DdW 2. (S.3)

Upon averaging this quantity over many replicates for the same value of z, dividing through
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by 2δt and taking the limit as δt → 0 we find that

D(z) =
1

2
lim
δt→0

〈

[z(t + δt)− z(t)]2

δt

〉

. (S.4)

The equation-free technique was originally designed to allow coarse-graining from microscale

models to macroscale models. As such, when attempting to calculate the quantities F (z)

and D(z), the domain of values of z for which we wish to calculate the coefficients is first

discretised into a set of grid points. For a particular value of z, corresponding to a particular

grid point in the discretised domain, the microscale model is simply initialised with the

correct value of z and run for a short period of time in order to calculate z(t + δt). This

process can be repeated arbitrarily many times, until good estimates for F (z) and D(z) are

found for that particular value of z. This process of moving from the microscale model to

the macroscale model is known as ‘lifting’ in the equation-free terminology. When lifting,

care must be taken to ensure that the higher moments of the alignment distribution do not

adversely affect the approximation [2].

When considering the experimental data, it is not possible to simply initialise the locusts

with a particular alignment value, z(t), and run the experiment for a short period of time to

calculate z(t+ δt). Instead we must use the time-course data that we have and wait for the

locusts’ alignment to fall into a particular grid site of the z domain. We can then find the

alignment value a short period of time, δt, later and calculate a realisation of z(t+δt)−z(t),

which can be utilised for calculating F (z) and D(z) according to equations (S.2) and (S.4),

respectively. Consequently, we cannot guarantee that we will have sufficiently many (or

indeed any) realisations over which to average the coefficient approximations for a particular

value of z. In experiments in which the locusts exhibit coherent switching behaviour we will

find that the approximation to the drift and diffusion coefficients are poor at the extreme-

high and -low alignment values, which are rarely found in the experimental data, since it is

very rare to find absolutely all locusts moving in the same direction.

In order to further justify the use of the Fokker-Planck coefficient estimation approach

to approximate the drift and diffusion coefficients of an SDE underlying the experimental

data, we test the technique on the known SDE of the model. Recall the SDE (13) of the

main text for alignment, z:

ż = −2r1z +
r3

2
z(1− z2) +

2√
N

√

(

r1 +
2r2 + r3

4
(1− z2)

)

η(t). (S.5)
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Figure S1 ((a) and (b)) demonstrates the results of the application of the coefficient esti-

mation technique in order to estimate the drift and diffusion coefficients of the SDE on a

discrete grid of 20 points from z = −1, . . . , 1. The agreement with the known values of the

drift (a) and diffusion (b) coefficients is excellent.

We also tested the efficacy of the coefficient estimation technique on the individual-based

model (equations (1)-(3) in the main text) in order to determine whether we could derive

the coefficients of an assumed underlying SDE. The results are presented in Fig. S1 ((c) and

(d)). Again the approximation to both coefficients is good. The approximation is poorest

at the extreme values of alignment and in the low values of alignment where the simulation

spends least time (see the stationary probability distribution in Fig. 3 of the main text) and

hence we have fewer realisations of the quantities given in equations (S.2) and (S.4) over

which to average.

For both the individual-based model and the SDE it would have been possible to find

more accurate values of the drift and diffusion coefficients at the discrete alignment values

which are visited less often by initialising our simulation with those particular values of

alignment and running the simulation for the required short period of time as in the tra-

ditional equation-free technique. However, since we are not at liberty to do this for the

experimental data, it makes sense to use the same technique we will use in that situation

on the simulation data in order to show that it is just as effective.

III. DRIFT AND DIFFUSION COEFFICIENTS DERIVED FROM THE DATA

Figure S2 displays the equation-free estimation of the drift and diffusion coefficients, de-

scribed above, applied to experimental data for a range of locust numbers from 5 ((a) and

(b)) to 40 ((s) and (t)). When calculating the coefficients we assume that the diffusion coef-

ficient is an even function about z = 0 and that the drift coefficient is an odd function about

z = 0, so that we may average the values obtained over positive and negative alignments to

obtain symmetric drift and diffusion coefficients. The assumption is justified by arguing that

the derived FPE (equation (9) of the main text) for P (z, t) should be the same as that for

P (−z, t), due to the symmetry of the system. Consequently we must have F (z) = −F (−z)

and D(z) = D(−z). For low population numbers (N < 10) we divide the alignment variable,

z, into N + 1 grid points. However, at high population numbers (N ≥ 10) this would result
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FIG. S1. Applying the coefficient estimation technique to simulated data generated from ((a) and

(b)) a known SDE (equation (S.5)) and ((c) and (d)) the underlying IBM (equations (1)-(3) of the

main text). The estimated drift ((a) and (c)) and diffusion ((b) and (d)) coefficients are compared

to the coefficients in the SDE (equation (13) of the main text). The blue curve is the approximation

found by using the coefficient estimation technique and the red curve is the actual coefficient in

the SDE. Clearly the agreement is good in both cases. In each case we take N = 20. For the

coefficient estimation approach, in both cases, we take δt = 1 for estimating the drift coefficient

and δt = 0.1 for estimating the diffusion coefficient. For the SDE we ran the simulations until

each alignment value (of the N + 1 = 21 grid points) had been reached at least 100,000 times.

For the individual-based model we ran the simulation for a total of 10,000,000 time units. In both

scenarios we take reaction rates, r1 = 0.0225, r2 = 0.0453, r3 = 0.1664, which correspond to the

rates derived from fitting our analytical expressions for drift and diffusion to the averaged data.

in a very noisy estimate for the coefficients, since more grid points mean that the system

spends less time at each point. We therefore take 11 grid points for N ≥ 10.

The drift coefficient is generally cubic in shape and the diffusion coefficient takes the

shape of a concave polynomial of even order. As described in the main text, this shape
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is consistent with that given by the IBM (equations (1)-(3) of the main text). The drift

coefficient has a pair of non-zero turning points (corresponding to steady states in the purely

deterministic system), and these are modified by the noise term with a strength given by the

diffusion coefficient. There is more noise in the middle of the domain, where the diffusion

coefficient is maximal. This pushes the system away from areas in which there is a large

amount of noise, so that the steady states given by the analogous deterministic equation

may not be the area in which the system is most likely to reside.

IV. EXPERIMENTALLY DERIVED STATIONARY PROBABILITY DISTRIBU-

TIONS

In Fig. S3, for each value of N , an approximate SPD is obtained by appropriately binning

the data to form a histogram. This is compared with our analytical prediction using the

fitted reaction rates given in Table I.
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FIG. S2. The drift coefficients and the diffusion coefficients (respectively) assumed to underlie

the experimental data for a range of different locust numbers: (a) and (b) 5 locusts, (c) and (d) 6

locusts, (e) and (f) 7 locusts, (g) and (h) 10 locusts, (i) and (j) 15 locusts, (k) and (l) 20 locusts, (m)

and (n) 25 locusts, (o) and (p) 30 locusts, (q) and (r) 35 locusts, (s) and (t) 40 locusts. The first

figure of each pair represents the approximation of the drift coefficient and the second represents

the approximation of the diffusion coefficient. The x-axis of each plot is the alignment, z. When

calculating the drift coefficient the time interval, δt, was 4 frames (0.8 seconds), whereas for the

diffusion coefficient we used a single frame (0.2 seconds).
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FIG. S3. Experimentally observed stationary probability distributions (blue bars) compared to an-

alytically predicted distributions with fitted parameters (red lines) and averaged fitted parameters

(black lines) for different numbers of locusts. See Table I and Fig. 1 of the main text for reaction

rates.
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