Encouraging students to write mathematics properly

Kevin Houston
University of Leeds
k.houston@leeds.ac.uk

www.kevinhouston.net

Outline

■ The problem.
\square My solution(s).

- The way forward.

The problem

Example

Year 1 question: Is $\{1,2,3,4,5,6,7\}$ under multiplication $\bmod 8$ a group?
Student answer: not closed. set contains 0.

■ 'But you are a lecturer, you know what I meant'.
■ 'l've got the correct answer. There it is - see, underlined - at the bottom of the page.'

Does it matter?

Given $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\begin{gathered}
\left|a_{n}-L\right|<\epsilon \text { for all } n>N . \\
\forall \epsilon>0 \exists N \in \mathbb{N}\left(n>N \Longrightarrow\left|a_{n}-L\right|<\epsilon\right) . \\
\exists N \in \mathbb{N} \forall \epsilon>0\left(n>N \Longrightarrow\left|a_{n}-L\right|<\epsilon\right) .
\end{gathered}
$$

Writing mathematics well

It is important to write mathematics correctly.
■ Students should be getting credit for showing their intelligence, not hoping that the reader/marker is intelligent enough to work out what is intended.
■ Sorting through a jumble of symbols and half-baked, poorly expressed ideas will annoy an examiner or referee. Not a good recipe for obtaining a degree (or at postgraduate level, getting a paper accepted).

- Writing well in any subject is a useful skill to possess. It is highly prized by employers.
- Bonus: Clarifies to you the material you are writing about. (If I can't explain an idea in writing, then I don't understand it.)

Writing mathematics

■ Forces thinking.
■ Fantastic skill to have.
\square Marking is a joy.

Myth:

Learning mathematics teaches

- critical thinking and

■ logical thinking

Myth 2

Just tell them to write properly.
'Tell students to write their work so that someone else can understand it'.

If only it were that simple.

My approach

■ Teach thinking.
\square Teach writing.

Thinking and writing

To write clearly, students need to think clearly.
To think clearly, students need to write clearly.

Reasons

- A good university education prepares a student for life.
- Writing well is an extremely useful skill.

■ Students choose mathematics as they do not like writing essays.
■ Low hanging fruit: Small effort gives major boost for student.

Vivaldi

Vivaldi talk. What lecturers provide and what students register.
https://youtu.be/c4cL5 HbI_ww?t=9m

Context: Mathematics at the University of Leeds

■ 186 intake on BSc/MMath Mathematics.
■ Standard offer AAA.

- About 60\% have A level FM.

■ In 2015/16, we parent 898 UG students.
■ In sem 2 of 2015/16 we had a total of 1296 students on our modules.

How to write mathematics

How to write mathematics booklet.
Chapters 3 and 4 of my book.
Copies of samples on my website.
http://www.kevinhouston.net/httlam.html

What the students are told

■ Write in sentences. This advice has precedence over all others. This can really change the way you present your work.

- Use punctuation. That means a capital letter at the start of sentences and a full stop at the end. Doing this makes your work so much clearer.

What the students are told

■ Use grammar correctly.
■ Common error: 'Mathematics is highly symbolic so if I just provide some mathematical symbols I'm doing maths.' This is wrong. Symbols are merely shorthand for certain concepts; they need to be incorporated into sentences for there to be any meaning.

What the students are told

Others:

■ Readers are not psychic. Explain what you are doing.

- Explain your assertions

■ Use of symbols
■ Expressing yourself clearly

My favourite

Curse of the implication symbol.
I can understand why students use the implication symbol:

It makes a proof or the answer to an exercise look mathematical.

I ban its use (during welcome lectures!) until implications have been explained.

Another example

Find, in the form $y=m x+c$, the invariant lines of the transformation with matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
m x+c
\end{array}\right]=\left[\begin{array}{c}
m x+c \\
x
\end{array}\right]} \\
& \Rightarrow x=m(m x+c)+c \\
& \Rightarrow\left(1-m^{2}\right) x=(m+1) c, \text { for all } x .
\end{aligned}
$$

Put $x=0$, then $(m+1) c=0 \Rightarrow m=-1$ or $c=0$.
Then $\left(1-m^{2}\right) x=0$, for all $x \Rightarrow m= \pm 1$.
So, $\quad m=-1$ or $m=1, c=0$
$\Rightarrow y=-x+c$ or $y=x$.

Another example

Find, in the form $y=m x+c$, the invariant lines of the transformation with matrix $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Solution

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
m x+c
\end{array}\right]=\left[\begin{array}{c}
m x+c \\
x
\end{array}\right]} \\
& \Rightarrow x=m(m x+c)+c \\
& \Rightarrow\left(1-m^{2}\right) x=(m+1) c, \text { for all } x .
\end{aligned}
$$

Put $x=0$, then $(m+1) c=0 \Rightarrow m=-1$ or $c=0$.
Then $\left(1-m^{2}\right) x=0$, for all $x \Rightarrow m= \pm 1$.
So, $\quad m=-1$ or $m=1, c=0$
$\Rightarrow y=-x+c$ or $y=x$.

Worked example

Worked example

In the book and booklet students are taken through the errors in the example and shown how to produce a better solution.
Videos of the example are available:
www.youtube.com/user/DrKevinHouston

Videos

Vivaldi - Concepts vs processes.
https://youtu.be/c4cL5HbI_ww?t=10m44s
Robinson - What really annoys me.
https://youtu.be/MvM5zIqASPc?t=4m10s

Weekly exercises

$■$ Weekly exercises in first year (for most modules).
■ Groups of 12 (used to be 6).
■ 7 marks for content, 3 marks for 'mathematical presentation'.
■ Open University: Good mathematical communication. (About 10\% in Level 1 but not all modules.)
■ Training for postgrad markers? Training for lecturers?

Weekly exercises

■ No tolerance of errors?
$■$ Plenty of feedback. HTTLAM/HTWM page number.
■ Too much feedback?
■ Do they read it?
■ Student resistance.
■ Students dispirited.

Other methods

Find the errors from Complex Analysis work.

http://www.kevinhouston.net/pdf/

complex-analysis-find-error.pdf

Conclusion

> They hate it at first but are grateful at the end.

Not very scientific.

Conclusion

■ Colleagues (broadly) in favour.
■ Can undermine.
■ Resistance to 'skills'.

The way forward

■ Low hanging fruit. Big difference. In practice and in research.
■ Chapters 3 and 4 are free on my websites.

- Leeds School of Maths.
- www.kevinhouston.net
- Contribute examples of good practice. Make Latex exercises available.
■ How to measure effect? Anecdotal evidence.

Thanks

Thanks for listening.

