
A STROLL AROUND RANDOM INFINITE 
QUADRANGULATIONS OF THE PLANE

Alessandra Caraceni

December 9th 2015 ALEA in Europe Young Researchers' Workshop



“What does a large random 
planar map look like?



“What does a large random 
planar map look like?

J.-F. Le Gall

N. CurienI. Kortchemski

W. T. Tutte

L. Addario Berry

O. Angel

O. SchrammJ. Bettinelli
G. Miermont J. Bouttier

P. Di Francesco

E. Guitter

P. Chassaing

B. Durhuus G. Schaeffer

B. Haas

L. Ménard
T. Duquesne

S. Janson

S. Stefánsson

M. Krikun

J.-F. MarckertB. Stufler



“What does a large random 
planar map look like?planar map

J.-F. Le Gall

N. CurienI. Kortchemski

W. T. Tutte

L. Addario Berry

O. Angel

O. SchrammJ. Bettinelli
G. Miermont J. Bouttier

P. Di Francesco

E. Guitter

P. Chassaing

B. Durhuus G. Schaeffer

B. Haas

L. Ménard
T. Duquesne

S. Janson

S. Stefánsson

M. Krikun

J.-F. MarckertB. Stufler



WHAT IS A PLANAR MAP?



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
m

ul
tip

le
ed

ge
s

loops



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.

face

m
ul

tip
le

ed
ge

s
loops



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.

face

m
ul

tip
le

ed
ge

s
loops

degree6



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
m

ul
tip

le 
ed

ge
s

loops
(up to orientation-preserving homeomorphisms of the sphere)



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
m

ul
tip

le 
ed

ge
s

loops
(up to orientation-preserving homeomorphisms of the sphere)



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
m

ul
tip

le 
ed

ge
s

loops
(up to orientation-preserving homeomorphisms of the sphere)



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
(up to orientation-preserving homeomorphisms of the sphere)

A map may have plenty of symmetries!



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
(up to orientation-preserving homeomorphisms of the sphere)

A map may have plenty of symmetries!
We consider rooted maps as a way to “kill” them.

root edge

origin



WHAT IS A PLANAR MAP?

A (multi)graph endowed with a 
cellular embedding in the two-

dimensional sphere.
(up to orientation-preserving homeomorphisms of the sphere)

A map may have plenty of symmetries!
We consider rooted maps as a way to “kill” them.

root edge

origin
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simple boundary
dissection

a
rooted

sim
pletriangulation

a quadrangulation

a triangulation of the pentagon

LARGE = of size approaching infinity

When do we consider two maps to be similar? When are they different?

We need to consider DISTANCES on sets of maps.
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random plane trees with
n vertices
scale by n1/2

random rooted
quadrangulations
maps with n faces

scale by n1/4

The CRT

The Brownian Map

random dissections

outerplanar maps
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limn→∞[Qn]1 

Fix a positive integer r and consider 
the (rooted) map induced by vertices 

within graph distance r from the 
root vertex. 

Keep r fixed and sample maps 
of increasing size. 

Send n to infinity. 

The UIPQ Q∞ is an infinite
random quadrangulation such

that for each r we have
[Q∞]r ~ limn→∞[Qn]r.

Q∞ limn→∞[Qn]1 
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THE UIHPQ

➤ What does the UIHPQ look like? 
➤ How do distances to the root evolve along the (infinite) boundary? 
➤ Can we construct an analogue with a simple boundary? 
➤ How would it relate to the UIPQ?  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THE UNIFORM INFINITE POSITIVE TREED BRIDGE

➤ The UIHPQ can be constructed as encoded by a random infinite treed bridge
B∞,which comprises

➤ a random bridge b=(Xi)i∈Z (representing distances from the root vertex as read
along the boundary of the UIHPQ)

➤ a sequence of random positive labelled trees (T(i))i∈DS(b), where T(i) has root label
Xi, and the trees are conditionally independent given the bridge

➤ The two halves of the bridge (Xi)i≥0 and (Xi)i≤0 have the same law up to time-reversal,
i.e. that of a Markov chain issued from 0, with transition probabilities given by

➤ The scaling limit of the process (Xi)i≥0 is a Bessel process of dimension 5 issued
from 0.

P(n,n-1)= n
2(n+2)

P(n,n+1)= n+4
2(n+2)

(n-1/2 X[nt])t∈R (Zt)t∈R
n⟶∞

(Zt)i≥0 (Z-t)i≥0 Bessel-5
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THE PENCIL DECOMPOSITION

➤ The UIHPQ has a leftmost and a rightmost geodesic rays,
which induce a decomposition into 3 (random) submaps Ml,
Mc and Mr. Ml and Mr contain no geodesic rays except for their
“right” and “left” boundaries.

➤ The three random variables Ml, Mc and Mr are independent,
and each can be constructed as the image of a certain random
treed bridge via the BDFG bijection.
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➤ The UIHPQ has a leftmost and a rightmost geodesic rays, 
which induce a decomposition into 3 (random) submaps Ml, 
Mc and Mr. Ml and Mr contain no geodesic rays except for their 
“right” and “left” boundaries. 

➤ The three random variables Ml, Mc and Mr are independent, 
and each can be constructed as the image of a certain random 
treed bridge via the BDFG bijection.

THE PENCIL DECOMPOSITION

➤ The leftmost and rightmost geodesic rays (almost surely)
meet an infinite number of times.

➤ Do they also meet the boundary an infinite number of times,  
or do they eventually leave it?



“Thank You.


