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Introduction
The aim of this course is to define the notion of reinforced branching processes and give tools to study them, starting
with a crash course on continuous-time martingales.

Although reinforced branching processes are interesting objects in themselves, we will to motivate their definition
by looking at one particular case: the preferential attachment tree with fitnesses introduced by Bianconi and
Barabási as a model for complex networks. This model is a discrete-time random process on the set of rooted
trees, but if we embed this process in continuous time with the help of random exponential clocks, we obtain a
continuous-time process called a reinforced branching process.

Reinforced branching processes can be seen as population processes with immortal particles. They are a par-
ticular case of the more general Crump-Mode-Jägers processes for which tools are available, especially when they
admit a Malthusian parameter. We will show how to apply these methods, but will then focus on the case when
there is no Malthusian parameter.

In this latter case, a phenomenon called condensation occurs: in terms of networks, it means that there exists a
small set of nodes (typically sublinear in the size of the network) such that the sum of the degrees of these nodes
is linear in the size of the network. If there exists one node having linear degree in terms of the size of the network,
we say that the winner takes it all or that there is extensive condensation.

Our aim is to understand under what condition there is condensation, and whether this is extensive or non-
extensive condensation. We will briefly introduce the main tools to study reinforced branching processes: martin-
gales, Crump-Mode-Jägers processes, random point processes.

1 A crash course on continuous time martingales
As understood from its title, this section does not aim at being a complete course on martingales. We refer the
reader to standard textbooks in which the whole theory is available: for example,

D. Williams: Probability with Martingales. Cambridge University Press, 1991.

1.1 Definitions and first properties
Let (Ω,F ,P) a probability space.

Definition 1.1: A continuous time process (Mt)t≥0 is a martingale for the filtration (Ft)t≥0 if and only if, for all
t ≥ 0,

(i) Mt is Ft-measurable;

(ii) Mt is integrable; and

(iii) for all s < t, E[Mt|Fs] = Ms.

Definition 1.2: Replacing (iii) in the above definition by

• for all s < t, E[Mt|Fs] ≤Ms gives the definition of a super-martingale.

• for all s < t, E[Mt|Fs] ≥Ms gives the definition of a sub-martingale.

Example 1.1: The Yule tree (cf. Figure 1)
Let us consider the stochastic process (Yt)t≥0 defined as follows. At time zero, there is one particle in the system:

Y0 = 1. Each particle dies and gives birth to two new particles after an exponentially distributed random time,
independently from the other particles. Let us denote by Yt the number of particles alive at time t.

Can you find (mt)t≥0 a function such that Mt := m−1
t Yt is a martingale?
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time

Figure 1 – A realisation of the Yule tree

time

Figure 2 – A realisation of the multi-type branching process defined by the initial

composition t(0, 1) and the replacement matrix R =
(

2 0
1 1

)
.
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Example 1.2: Multi-type branching process (cf. Figure 2)
A multi-type branching process is the embedding in continuous time of a Pólya urn. It is defined by an initial

composition U(0) = t(α, β) and a replacement matrix

R =
(
a b
c d

)
.

The vector composition of the urn at time t is given by U(t) = t(Xt, Yt), where Xt is the number of red balls and
Yt the number of black balls at time t in the urn. Each ball in the urn will split after an exponentially distributed
random time into

• a+ 1 red balls and b black balls if it is a red ball;

• or c red balls and d+ 1 black balls if it is a black ball,

independently for the other balls.
Assume that the replacement matrix is balanced: a+ b = c+ d = S. What can you say about the total number

of balls in the urn at time t? Can you prove that Mt := e−tAU(t) is a vector valued martingale, where A = tR?

1.2 Doob’s inequalities
Proposition 1.3: Let (Mt)t≥0 a non-negative sub-martingale such that EM0 < +∞. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EMt

α

Corollary 1.4: Let (Mt)t≥0 be a square integrable martingale. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EM2
t

α2 .

1.3 Convergence of continuous time martingales
Definition 1.5: A sequence of random variables (Xt)n≥0 is bounded in Lp if and only if

sup
t≥0

E|Xt|p < +∞.

The sequence is uniformly integrable if and only if

lim
x→+∞

sup
t≥0

E[Xt1Xt>x]→ 0,

when x→ +∞.
Theorem 1.6

A martingale bounded in L2 converges in L2, meaning that there exists a random variable M∞ such that

lim
t→+∞

E[|Mt −M∞|2] = 0.

Theorem 1.7 (Doob’s Theorem)
Let (Mt)t≥0 be a sub-martingale such that

sup
t≥0

EXt1Xt≥0 < +∞.
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Then, Mt converges almost surely to an integrable random variable M∞.

Corollary 1.8: All non negative super-martingale (Mt)t≥0 converges almost surely to an integrable random variable
M∞ and

EM∞ ≤ lim inf
t→+∞

EMt.

Theorem 1.9
Let (Mt)t≥0 be a martingale. The three following propositions are equivalent:

(i) Mt converges in L1 to an integrable random variable M∞;

(ii) (Mt)t≥0 is bounded in L1 and there exists a random variable M∞ such that

E[M∞|Ft] = Mt (for all t ≥ 0);

(iii) (Mt)t≥0 is uniformly integrable.

Such a martingale is called regular. It implies in particular that, for all t ≥ 0, EMt = EM∞.

Corollary 1.10: Any martingale bounded in Lp (p > 1) converges in Lp.

2 The Bianconi and Barabási model for complex networks
2.1 Definition of the model
The Barabási and Albert model – The Barabási and Albert model [BA99] was originally introduced in order
to try and explain the emergence of power-law degree distributions in complex networks such as the internet, the
www or social networks. It is indeed observed that many of those real-life networks verify the following heuristic:
the proportion of nodes of degree k is close to k−ρ where ρ > 0 (when k is large). Graphs verifying this property
are called scale-free graphs, and among them, the Barabási and Albert model has the advantage to be dynamic.

The Barabási and Albert model is defined as a Markov chain on the space of rooted trees. We denote it by
(BAn)n≥1 and define it recursively as follows (see Figure 3):

• BA1 is composed of one root-node linked to a root half-edge;

• given BAn, pick a node at random among the nodes of BAn, with probability proportional to its degree, and
attach a new node to this randomly chosen graph; the obtained graph is BAn+1.

The intuition behind this model is that old nodes will have larger and larger degrees while recently added nodes
will have small degrees. This model is a reinforcement model since nodes that already have a large degree are more
likely to attract new links.

Many results are known about the Barabási and Albert model (diameter, height, profile, insertion depth, etc);
but since this is not the main object of the course, let us just mention its scale-free property:
Theorem 2.1 (Scale-free property)

For all n ≥ 0, we denote by Dk(n) the number of nodes of degree k in BAn. We have the following asymptotic
result:

lim
n→∞

Dk(n)
n

∼ k−3 when k →∞.

Remark: Note that with the above definition, the Barabási and Albert graph is actually a tree, which is sometimes
called the preferential attachment tree. Of course, a tree is obviously not a realistic model for complex networks
since they typically contain cycles (in a social network, for example, two of your friends are quite likely to be friends
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Figure 3 – Barabási and Albert model: To build BAn+1 from BAn, each node is
weighted by its degree, we pick a node with probability proportional to its weight, and

add a child to this randomly chosen node.
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Figure 4 – Bianconi and Barabási model: To build BBn+1 from BBn, each node is
weighted by its degree times its fitness, we pick a node with probability proportional

to its weight, and add a child to this randomly chosen node.

too). It is thus usual to consider a generalisation of the model above in which you connect every new node with
two (or even more) of the old nodes (chosen with probability proportional to their degree).

The Bianconi and Barabási model – The Bianconi and Barabási model [BB01] is a generalisation of the
Barabási and Albert model. The idea behind it is to take into account the intrinsic quality of the nodes and not
only their age into the network: a recent but popular node should be able to increase its degree quickly and compete
with older but less popular nodes. This notion of intrinsic quality is modelled by i.i.d. random fitnesses (Xn)n≥1.

The model is defined as follows: let (Xn)n≥1 a sequence of i.i.d. random variables of distribution µ being
supported on [0, 1]. Given the random fitnesses, we build the random graph as follows (see Figure 4):

• BB1 is composed of a root-node of fitness X1 and a root half-edge linked to this node;

• given BBn, pick a node in BBn with probability proportional to its degree times its fitness, add a new node of
fitness Xn+1 to the graph and link it to the randomly chosen node. The obtained tree is BBn+1.

One can prove that for some fitness distributions µ, the Bianconi and Barabási tree is scale-free. When they
introduced this model, Bianconi and Barabási also made the conjecture that the winner takes it all, i.e. they claimed
that there exists a positive constant c such that

lim inf
n→∞

maxi=1..n deg(i)
n

≥ c > 0,

where deg(i) is the degree of the ith node (in order of addition into the graph).

5



2X2

4X1

X6

Figure 5 – Bianconi and Barabási model embedded in continuous time: each half
edge is equipped with an exponential clock of parameter the fitness of the node it is
linked to. All the exponential clocks are independent from each other. When a clock
rings, we add a new child with a new random fitness (here X11) to the node linked
to the corresponding half-edge (and thus add two new half-edges to the graph).

The main objective of this mini-course is to show how one can try to prove or disprove this conjecture. The
method chosen relies on the embedding in continuous time of the BB model. This continuous time analogue is what
we call a reinforced branching process. We will define the general model and show how one can study it with the
help of martingale theory.

2.2 Embedding into continuous time
It is sometimes convenient to embed the Bianconi and Barabási model into continuous time: we will actually focus
on this continuous-time version for our study. Let us consider the following continuous time model (see Figure 5):

• at time t = 0, the graph G0 is composed of a unique node of fitness X1 to which is linked a half edge;

• given the graph Gt, we equip each of the half-edges present in Gt with an exponential clock of parameter equal
to the fitness of the node it is linked to. Let us denote by τ the (random) time we have to wait starting at time
t before one of the clock rings. For all t ≤ s < t + τ , we let Gs = Gt. The graph Gt+τ is obtained by adding
a child with a new random fitness (of distribution µ) to the node linked to the half-edge whose exponential
clock rang at time t+ τ .

Thanks to the choice of the exponential distribution (see Exercise 5.1), one can check that if we denote by (σn)n≥1
the sequence of random times at which a clock rings, then we can couple this continuous-time process with the
Bianconi and Barabási model such that

(Gσn)n≥1 = (BBn)n≥1 almost surely.

The main advantage of the embedding in continuous time is that the evolution of the degree of a given node
(given its time of birth) is independent from the rest of the graph: as an example, the degree of the root of the
tree is a Yule process of rate X1, and thus behaves as eX1tξ1 (almost surely when t goes to infinity), where ξ1 is an
exponential of parameter 1 random variable (see Exercise 5.2)

The main disadvantage is that it is hard to get good estimates of the random times (σn)n≥1, or equivalently of
the number of nodes in the tree at time t.

One can see that the continuous-time model can be seen as a population process in which

• particles correspond to the half-edge of the graph:

– each particle reproduces at rate equal to its fitness,
– when it reproduces, it creates a new particle inheriting the same fitness and a new particle having a new

fitness drawn according to the fitness distribution µ;
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Figure 6 – a realisation of the reinforced branching process: the dots correspond to
selection events, the crosses to mutations.

• particles are grouped into families: a family correspond to the set of half-edges linked to a given node (note
that particles in the same family share the same fitness).

Note that in this population process framework, the degrees correspond to the sizes of the families, and thus, the
largest degree is the the size of the largest family. This process is what we call a reinforced branching process.

2.3 A more general model: reinforced branching processes
A reinforced branching process is a population process (X (t))t≥0 that depends on three parameters: the fitness
distribution µ, being a distribution on [0, 1], the mutation probability β ∈ [0, 1] and the selection probability
γ ∈ [0, 1].

Each particle in the population has a fitness, and the population is partitioned into families such that all
particle in one family share the same fitness. At time t = 0, the population consists of one family composed of one
individual of fitness X1 ∼ µ. We denote by N(t) the number of particles in the population at time t and by M(t)
the number of families in the population at time t. We number the families from the eldest to the youngest and for
all 1 ≤ n ≤ M(t), we denote by Zn(t) the size of the nth family at time t, by Xn its fitness and by τn the time of
birth of the oldest particle of the family (by definition τn is increasing in n)

At time t, each family triggers a birth event at rate equal to its size times its fitness. When a birth event
happens:

• either a new particle is added to the family that triggered the birth event (we call this particle a selectant) –
this happens with probability γ;

• or a new family is founded by adding one particle of random fitness XM(t)+1 to the population (we call this
particle a mutant) – this happens with probability β.

Note that the probability that both a selectant and a mutant are born at a given birth event is β + γ − 1 ≥ 0; the
probability that only a selectant is born is 1− β and the probability that only a mutant is born is 1− γ.

We are interested in the empirical fitness distribution, being the random measure given by

Ξt := 1
N(t)

M(t)∑
n=1

Zn(t) δXn ,

where δx is the Dirac mass in x, for all x ∈ R (see Figure 6). Does the empirical fitness distribution converges when
t goes to infinity? If yes, what is its limit?

Note that if we take β = γ = 1, we get the Bianconi and Barabási model. Other particular cases are worth
mentioning:
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Example 2.1: Branching process with selection and mutation.
This model is a stochastic house-of-cards model in a similar vein as Kingman’s model (which is deterministic

and much easier to analyse, see [Kin78, DM13]). We start with a single individual with a genetic fitness chosen
according to µ. Individuals never die and give birth to new individuals with a rate equal to their genetic fitness.
When a new individual is born it is a mutant with probability β, in which case it gets a fitness drawn independently
of everything else from µ. If the new individual is not a mutant, it inherits the fitness of its parent. Note that when
a new individual is born its parent is chosen from the individuals in the population with a probability proportional
to their fitness. In other words the different reproduction rates cause the selection effect. The number of families
M(t) corresponds to the number of mutants in the population at time t.

The model corresponds to the parameter choice γ = 1−β in our framework. Observe that a mutation causes the
complete loss of genetic information in the affected individual’s ancestry, pictorially speaking ‘the genetic house of
cards collapses’. This is why the term house-of-cards model is used for this process, see [HDRT15] for a discussion
of the relevance of these models in the theory of evolution.

Example 2.2: Generalised Pólya urns.
A class of generalised Pólya urns also falls into our framework, with general parameters β, γ > 0 and µ as

above. It can be described as an urn containing balls of different colours. Every colour has a given activity chosen
independently according to µ. At time zero, the urn contains one ball of colour 1. At every time step, a ball is
drawn at random from the urn with probability proportional to its activity. Then the drawn ball is put back into
the urn together with one or two new balls, at most one ball of the same and one of a new colour. A ball with the
same colour is chosen with probability γ, and a ball of a new colour with probability β. New colours are chosen
independently according to µ. To embed the urn model into our framework we again look at the times of birth
events. Observe that Ξt is now the empirical distribution of activities in the urn at time t.

Such generalised Pólya urns have apparently not been studied so far in full generality. Janson [Jan04] is looking
at the case where µ is finitely supported. A related model has been studied by Chung et al. [CHJ03] who draw
balls depending in a non-linear way on the distribution of colours in the urn, and by Collevecchio et al. [CCL13]
who allow for a time-dependent replacement rule. Their main focus is on the question whether there can be an
unbounded number of balls of more than one colour, and if not which colour eventually dominates. In our setup all
colours will have an unbounded number of balls.

3 Condensation
3.1 Our process as a Crump-Mode-Jägers process
We show here how the reinforced branching process falls into the Crump-Mode-Jägers framework and how Nerman’s
asymptotic results [Ner81] translate in our particular case.

Poisson point process – Given a positive measure ξ on R, we define the Poisson point process of intensity ξ
as the unique random measure

∑∞
i=1 δPi (where the Pi are real random variables) such that,

- for all borelian set B, the random variable PPPξ(B) is Poisson distributed of parameter ξ(B);

- for all disjoint borelian sets B1, . . . , Br (for all integers r), the random variables PPPξ(B1), . . . , PPPξ(Br) are
independent random variables

The reinforced branching process is defined by a sequence (Xn, Yn,Πn) of independent random variables such
that
• Xn is a µ-distributed random variable in [0, 1],

• given Xn the process Yn = (Yn(t))t≥0 is an independent Yule process with rate γXn,

• given Xn and Yn the process Πn = (Πn(t))t≥0 is an inhomogeneous Poisson process with intensity measure
given by

β + γ − 1
γ

δYn(t) + (1− γ)XnYn(t) dt (∀t ≥ 0).

8



Recall that Yn determines the birth of family members of the nth family relative to the foundation time of the
family, and Πn the birth times of mutant offspring from this family. For greater generality we enrich this triple
(X,Y,Π) by a fourth component Φ = (Φ(t))t≥0, a càdlàg process taking values in N assigning some kind of score
to the family t time units after its foundation. In all our examples (below) Φ is a function of (X,Y,Π) but this does
not have to be the case. We use the convention that Φ(t) = 0 if t < 0.

We let τ1 = 0 and

τn = inf{t > τn−1 : ∃m ∈ {1, . . . , n− 1} with ∆Πm(t− τm) = 1}.

Note that τn corresponds to the time of birth of the nth family. We then define

ZΦ(t) =
∑

n : τn<t
Φn(t− τn),

the score of the population at time t. Here are the main examples of interest to us.

(1) Let

Φ(1)
n (t) =

{
Yn(t), if t ≥ 0
0, otherwise.

Then Φ(1)
n (t− τn) = Zn(t) is the size of the nth family at time t and hence ZΦ(1)(t) = N(t).

(2) Let Φ(2)
n (t) = 1 if t ≥ 0 and zero otherwise. Then ZΦ(2)(t) = M(t) is the total number of families in the system

at time t.

(3) Let a > 0 and

Φ(a)
n (t) =

{
Yn(t), if 0 ≤ t < a,

0, otherwise.

Then ZΦ(a)(t) is the number of individuals in families younger than a at time t.

(4) Let 0 < x < 1 and

Φ(x)
n (t) =

{
Yn(t), if Xn ≥ 1− x and t ≥ 0
0, otherwise.

Then ZΦ(x)(t) = N(t) Ξt[1 − x, 1] and together with (1) this can be used to identify the limit of the empirical
fitness distribution of particles.

(5) Let k ∈ N and

Φn(t) =
{

1, if t ≥ 0 and Yn(t) = k,

0, otherwise.

Then ZΦ(t) is the number of families of size k at time t. In the Barabási and Bianconi tree this refers to the
number of vertices of degree k and will allow the calculation of the empirical degree distribution.

The main result of this section is a convergence theorem under the following main assumption.

Assumption 1: Existence of a Malthusian parameter There exists an λ? > γ, called the Malthusian param-
eter, such that

1 =
∫ ∞

0
e−λ

?s EΠ(ds).

We shall see below what this condition means in terms of the model parameters β, γ and µ. We also formulate
an assumption on the process Φ.
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Assumption 2: Regularity of Φ The function t 7→ E[Φ(t)] is almost everywhere continuous and there exists
h : [0,∞)→ (0,∞) integrable, bounded and non-increasing such that

E
[

sup
t≥0

e−λ
?tΦ(t)
h(t)

]
<∞.

Theorem 3.1
Under Assumptions 1 and 2, there exists a positive random variable W , not depending on Φ, such that

lim
t→∞

e−λ
?tZΦ

t = W mΦ
∞ almost surely,

where

mΦ
∞ =

∫∞
0 e−λ

?tEΦ(t) dt∫∞
0 te−λ?t EΠ(dt)

.

We now look at the consequences of Theorem 3.1. We first express Assumption 1 explicitly in terms of the
model parameters β, γ and µ. We have, for any λ? ≥ γ,∫ ∞

0
e−λ

?s EΠ(ds) =
∫
dµ(x)

{
β + γ − 1

γ

∫ ∞
0

e−λ
?s deγxs + (1− γ)x

∫ ∞
0

e−λ
?seγxs ds

}
= β

∫
x

∫ ∞
0

e−λ
?s+γxs ds dµ(x)

= β

∫
x

λ? − γx
dµ(x).

This is decreasing in λ? and going to zero as λ? →∞. As λ? ↓ γ it converges to

β

γ

∫
x

1− x dµ(x),

which has to be at least one for a Malthusian parameter to exists. Hence Assumption 1 translates to

β

γ

∫
x

1− x dµ(x) > 1,

or, equivalently,
β

β + γ

∫
dµ(x)
1− x > 1. (1)

When (1) holds, the Malthusian parameter λ? is defined by the equation

β

∫
x

λ? − γx
dµ(x) = 1. (2)

3.2 The Maulthusian case
Let us now look at the examples of scores Φ listed earlier and harvest the results. Until the end of this section, we
assume that (1) holds and that there exists a Malthusian parameter.

(1) Almost surely,
lim
t→∞

e−λ
?tN(t) = WmΦ(1)

∞ .

To confirm this result we check that Assumption 2 holds for Φ(1): using Doob’s maximal inequality and
Exercise 5.2, we have

E
[

sup
t≥0

e−γXtΦ(1)(t)
]

= E
[

sup
s≥0

e−sYs
]
≤ 2 sup

s≥0

√
E[e−2sY 2

s ] <∞.
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We see that the right hand side is strictly positive showing that the number of individuals has purely exponential
growth. For later comparison we calculate the numerator of mΦ(1)

∞ , i.e. the score dependent quantity. We get∫
dµ(x)

∫ ∞
0

e−λ
?tEΦ(1)(t) dt =

∫
dµ(x)
λ? − γx

= β + γ

λ?β
.

(2) Almost surely,
lim
t→∞

e−λ
?tM(t) = WmΦ(2)

∞ .

To compare with (1) we calculate the score dependent numerator ofmΦ(2)

∞ . We get
∫∞

0 e−λ
?t dt = 1/λ?. Therefore,

we get that limM(t)/N(t) = β/β+γ, almost surely when t goes to infinity, as expected by the law of large numbers.

(3) We see that the proportion of individuals in families born less than a time units ago is asymptotically equal to

λ?β

β + γ

∫
dµ(x)

∫ a

0
e−λ

?t+γxt dt.

This limit goes to one as a goes to ∞, which shows that most individuals come from recently established
families.

(4) Almost surely,

lim
t→∞

Ξt[1− x, 1] = λ?β

β + γ

∫ 1

1−x

1
λ? − γx

dµ(x).

In other words, in the bulk driven phase, the empirical fitness distribution converges to a deterministic proba-
bility distribution which is absolutely continuous with respect to µ and has density

β

β + γ

λ?

λ? − γx
.

Example (5) in treated in Exercise 5.3. A somewhat similar application of general branching processes to the
study of preferential attachment networks (without fitness but with a nonlinear attachment rule) is carried out in
Rudas et al. [RTV07].

3.3 Condensation
We have seen in Section 3.2 that when a Malthusian parameter exists, then one can obtain limit theorems for
different measurable quantities of the system such as the number of families or of particles in the system, or the
empirical fitness distribution, or the distribution of family sizes. This chapter is devoted to the study of reinforced
branching processes which do not admit a Malthusian parameter. We will see that reinforced branching processes
with no Malthusian parameter exhibit condensation, meaning that the empirical fitness distribution converges to
the sum of an absolute continuous part, called the bulk, and a Dirac mass in the essential supremum of the support
of the fitness distribution, called the condensate.

Recall the definition of the empirical fitness distribution:

Ξt = 1
N(t)

M(t)∑
n=1

Zn(t) δXn .

Theorem 3.2
Assume that

β

β + γ

∫ 1

0

dµ(x)
1− x < 1, (cond)

and let λ? := γ. Then

11



1.
∫
x dΞt(x)→ λ?/β+γ almost surely when t goes to infinity;

2. Ξt → π almost surely weakly when t goes to infinity, where

dπ(x) = β

β + γ

1
1− x dµ(x) +$(β, γ)δ1,

with
$(β, γ) = 1− β

β + γ

∫ 1

0

dµ(x)
1− x > 0.

Remark: Theorem 3.2(i) implies that
lim
t→∞

1
t

logN(t) = γ.

Moreover in the empirical fitness distribution we see the phenomenon of condensation, as a positive fraction of
individuals are pushed toward the extreme fitness value.

The proof we develop here uses Theorem 3.1: the idea is to couple the branching process with a branching process
admitting a Malthusian parameter and apply Theorem 3.1 to the latter. The two coupled branching processes are
continuous-time branching processes, but the coupling only relates their discrete-time versions.

The coupling of the processes (lower bound).
We look at the reinforced brancing process with fitness distribution µ at the time (σn) of the birth events and

abbreviate Ξ̂n := Ξσn .
Fix ε > 0. We define a discrete-time branching process whose empirical fitness distribution Ξ̂(ε)

n has the property
that for all n ≥ 0, (Ξ̂n, Ξ̂(ε)

n ) ∈ S, where S is the subset of the set of pairs of counting measures on [0, 1] defined by

S :=
{

(ν, µ) : ν
(
[0, 1]

)
= µ

(
[0, 1]

)
and ν

(
[a, b]

)
≥ µ

(
[a, b]

)
for all a, b ∈ [0, 1− ε)

}
.

Let (Un)n≥1 be a sequence of i.i.d. random variables uniformly distributed on [0, 1]. At time zero, the new process
contains one particle of fitness X11X1<1−ε + 1X1≥1−ε and thus (Ξ̂0, Ξ̂(ε)

0 ) ∈ S.
Assume now that, (Ξ̂n, Ξ̂(ε)

n ) ∈ S. We construct the new process at time n+ 1 as follows:

• if a mutant of fitness f is born at time n+ 1 (in the original process), then we add in the (new) process a new
particle of fitness x1{x < 1− ε}+ 1{x ≥ 1− ε} born at time n+ 1;

• if a selectant of fitness larger than 1 − ε is born at time n + 1 in the original process, then we add a new
particle of fitness 1 born at time n+ 1;

• if a selectant of fitness x < 1− ε is born at time n+ 1 in the original process, then if

Un+1 ≤

(
Ξ̂(ε)
n ({x})∫ 1

0 udΞ̂(ε)
n (u)

)(
Ξ̂n({x})∫ 1

0 udΞ̂n(u)

)−1

,

we add a particle of fitness f born at time n+ 1, otherwise, add a particle of fitness 1.

By construction, (Ξ̂n+1, Ξ̂(ε)
n+1) ∈ S. It is now easy to check that the new process is the discrete-time version of the

reinforced branching process with fitness distribution µε := 1[0,1−ε)µ + µ(1 − ε, 1)δ1, and falls into the framework
of Section 3.2. Since

β

β + γ

∫ 1

0

dµε(x)
1− x =∞,

12



the new process admits a Malthusian parameter λε and λε ↓ γ as ε→ 0. We thus deduce that, for all 0 ≤ a, b < 1−ε,
we have

lim
n→∞

Ξ̂(ε)
n

(
[a, b]

)
= lim
t→∞

Ξ̂(ε)
t

(
[a, b]

)
= β

β + γ

∫ b

a

λε
λε − γx

dµ(x)

almost surely. For all 0 ≤ a, b < 1 and 0 < ε < 1− b, we thus have

lim inf
t→∞

Ξt
(
[a, b]

)
= lim inf

n→∞
Ξ̂n
(
[a, b]

)
≥ lim
n→∞

Ξ̂(ε)
n

(
[a, b]

)
= β

β + γ

∫ b

a

λε
λε − γx

dµ(x).

Letting ε tend to 0 concludes the proof of the lower bound.

The coupling of the processes (upper bound).
Fix ε > 0, and let (Ξ[ε]

t )t≥0 be the reinforced branching process of fitness distribution

µ[ε] = 1[0,1−ε)µ+ µ(1− ε, 1)δ1−ε,

and Ξ̂[ε]
n = Ξ[ε]

σn its discrete-time version. Denote by X [ε]
n the i.i.d. sequence of fitnesses in this reinforced branching

process and by λ[ε] the Malthusian parameter.
We construct a coupling of Ξ̂n and Ξ̂[ε]

n such that (Ξ̂[ε]
n , Ξ̂n, ) ∈ S. Let (Vn)n≥1 be a sequence of i.i.d. random

variables uniformly distributed on [0, 1] and (Wn,W
′
n)n≥1 be independent sequences of i.i.d. random variables of

distribution 1(1−ε,1]µ/µ(1−ε,1).
We construct Ξ̂n from Ξ̂[ε]

n . At time zero, Ξ̂0 = δX1 , where X1 = X [ε]
1 1{X [ε]

1 < 1− ε}+W11{X [ε]
1 = 1− ε} and

hence (Ξ̂[ε]
0 , Ξ̂0) ∈ S.

Assume now that (Ξ̂[ε]
n , Ξ̂n) ∈ S. We define Ξ̂n+1 as follows:

• if a mutant of fitness x is born at time n+ 1 in the ε-truncated process, then

Ξ̂n+1 = Ξ̂n + δx1{x < 1− ε}+Wn+11{x = 1− ε};

• if a selectant of fitness 1− ε is born at time n+ 1 in the ε-truncated process, let

Ξ̂n+1 = Ξ̂n + δW ′n+1

• if a selectant of fitness x < 1− ε is born at time n+ 1 in the ε-truncated process, then if

Vn+1 ≤
Ξn
(
{x}
)∫ 1

0 udΞ̂n(u)

(
Ξ̂[ε]
n

(
{x}
)∫ 1

0 udΞ̂[ε]
n (u)

)−1

,

then Ξn+1 = Ξn + δx, otherwise, Ξn+1 = Ξn + δW ′n+1
.

By construction, (Ξ̂n+1, Ξ̂(ε)
n+1) ∈ S, and it is easy to check that (Ξ̂n)n≥0 has indeed the same law as the empirical

fitness distribution of the original reinforced branching process.
We get that, for all 0 < a < b < 1− ε,

lim sup
n→∞

Ξ̂n(a, b) ≤ lim
n→∞

Ξ̂[ε]
n (a, b) = β

β + γ

∫ b

a

λ[ε]

λ[ε] − γx
dµ[ε](x).

Observing that µ[ε] → µ weakly and λ[ε] → γ, as ε ↓ 0, is enough to conclude the proof of the lower bound and
hence of Theorem 3.2.
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4 The size of the largest family
In this section we follow [DMM] and study asymptotics for the features (like size or fitness) of the largest family
in the system at time t. Such results require regularity assumptions on µ at the upper end. We assume here that
w(µ) <∞ and then, without loss of generality, w(µ) = 1. We further assume that µ has a regularly varying tail in
one, meaning that

µ(1− xε, 1)
µ(1− ε, 1) → xα, for all x > 0 as ε→ 0,

or equivalently

µ(1− ε, 1) = εα`(ε), (RV)

for a slowly varying function ` and some α > 1 (see [BGT89]). This corresponds to the most common type of
behaviour of µ at its tip that allows a condensation phase.

We introduce the random times T (t), t > 0, as

T (t) := inf
{
s ≥ 0 : M(s) ≥ n(t)

}
where n(t) :=

⌈
1

µ(1− t−1, 1)

⌉
.

Our intuition is that

• the largest families of the population at time t are born around time T (t);

• T (t) grows like 1/λ? logn(t) ∼ α
λ? log t;

• the largest families at time t have fitness Xn with 1−Xn of order 1/t and size of order eγ(t−T (t)).

To confirm our intuition we consider the point process

Γt =
M(t)∑
n=1

δ
(
τn − T (t), t(1−Xn), e−γ(t−T (t))Zn(t)

)
,

where δ(x) is the Dirac mass in x.
Theorem 4.1 (Poisson limit)

Under assumption (RV), the point process (Γt)t≥0 converges vaguely on the space [−∞,∞] × [0,∞] × (0,∞]
to the Poisson point process Πζ with intensity measure

dζ(s, x, z) = αxα−1λ?eλ
?se−zeγ(s+x)

eγ(s+x) ds dx dz.

We give here some quick definitions that help understanding Theorem 4.1:

• A point process is a random measure of the form
∑∞
i=1 δPi , where the Pi’s are some random elements of R3.

• The Poisson point process of intensity ζ on R3 is characterised by the following properties:

– for all Borel set B, PPPζ(B) =
∫
B
dPPPζ is Poisson distributed of parameter ζ(B);

– for all disjoints Borel sets B1, . . . , Br, the random variables PPPζ(Bi) are independent.

• Vague convergence means that for all compact set K of [−∞,∞]× [0,∞]× (0,∞],∫
K

dΓt →
∫
K

dPPPζ .
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Remark: Note the compactifications at ±∞ in Theorem 4.1. As the limiting point process has a continuous
density, Theorem 4.1 implies that all mass of Γt that asymptotically accumulates at infinity in one of the first two
components, must escape at zero in the last component, meaning that the only way points can disappear in the
limit is because the corresponding family size is small relative to the normalisation.

Remark: As there is no scaling in the first component of Γt, the limit theorem focuses on a time window of
constant width around T (t). The theorem shows that this is wide enough to capture the largest family at time t.
However, it turns out that in the condensation phase this is not wide enough to capture all families that contribute
to the condensate. This is why important questions on the emergence of the condensate remain open.

Corollary 4.2 (Limits of family characteristics): Let V (t) be the fitness and S(t) the birth time of the family of
maximal size at time t. There exist random variables U, V, Z such that, in distribution as t→∞,

(i) e−γ(t−T (t)) maxn∈N Zn(t)→ Z,

(ii) t(1− V (t))→ V,

(iii) S(t)− T (t)→ U.

Remark: The birth time of the family of maximal size at time t is of asymptotic order T (t) + O(1) and hence
of leading order α/λ? log t. This answers a question of Borgs et al. [BCDR] about the rate at which new nodes with
higher fitness become the leading influence in the population. We prove Corollary 4.2 and give further details of
the limit laws in Exercise 5.4.

A further problem that can be solved using Theorem 4.1 is about that emergence of the condensate, i.e. how
the condensate manifests itself at large finite times. Following the discussion of Bose-Einstein condensation in van
den Berg et al. [vdBLP86] two alternative scenarios are possible:

• For the largest family, the proportion of individuals belonging to this family in the overall population at time t
is asymptotically positive. This phenomenon of macroscopic occupancy arises in condensation of the free Bose
gas below a critical temperature (see [vdBLP86]).

• No individual family makes an asymptotically positive contribution. Instead, it is a collective effort of a
growing number of families to form the condensate. This phenomenon is called non-extensive condensation.
van den Berg et al. [vdBLP86] have shown that this occurs in the free Bose gas for an intermediate temperature
range.

The following theorem ensures that the second scenario prevails:
Theorem 4.3 (The winner does not take it all)

Under assumption (RV) the size of the largest family is negligible relative to the overall population size, i.e.

lim
t→∞

maxn∈{1,...,M(t)} Zn(t)
N(t) = 0, in probability.

Remark: Theorem 4.3 means that asymptotically no single family contributes a positive proportion of the total
mass, hence if there is condensation it is always non-extensive. This means in the context of Example 2 that no
vertex attracts a positive fraction of the edges in the network. This is at odds with the informal description of
condensation in the preferential attachment networks by Bianconi and Barabasi [BB01], who are stating that ‘the
fittest node [is] acquiring a finite fraction of the links, independent of the size of the network.’ It is also at odds
with more recent work of Godrèche and Luck [GL10] who use a non rigorous analysis on assumptions based on
simulations to conclude that asymptotically there is even an unbounded number of macroscopic families. However
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the phenomenon we investigate here is too subtle to be reliably captured by non-rigorous techniques. In the context
of Example 3 our theorem states that the proportion of balls of any colour goes to zero, uniformly over all colours.

Sketch of Theorem 4.3. Subject to a cut-off argument we have in view of Theorem 4.1,

e−γ(t−T (t))
M(t)∑
n=1

Zn(t) =
∫
z dΓt(s, x, z) ∼

∫
z dΠζ(s, x, z) as t→∞,

where Πζ is the Poisson random measure with intensity measure ζ. We calculate

ζ (R× (0,∞)× (a, b)) =
Γ(α+ 1)Γ(1 + λ?

γ )
(λ?)α

(
a−

λ?

γ − b−
λ?

γ
)
,

and hence, as λ? ≥ γ, we get∫
z dζ(s, x, z) =

Γ(α+ 1)Γ(1 + λ?

γ )
(λ?)α

∫ ∞
0

λ?

γ
z−λ

?/γ dz =∞.

From this we conclude that

e−γ(t−T (t))
M(t)∑
n=1

Zn(t)→∞,

while e−γ(t−T (t)) maxn≤M(t) Zn(t) converges in distribution and hence remains finite.

5 Exercises
Exercise 5.1: The exponential law
Recall that a random variable X follows the exponential distribution of parameter a > 0 if and only if, for all x ≥ 0,

P(X ≥ x) =
∫ ∞
x

ae−ax dx.

Let X,X1, . . . , Xn be i.i.d. random variables exponentially distributed of parameter 1.

(a) What is the distribution of mini=1..nXi?

(b) What is the probability that mini=1..nXi = X1?

(c) Show that for all 0 ≤ x < y,
P(X ≥ y |X ≥ x) = P(X ≥ y − x).

(We say the the exponential distribution “lacks memory”.)

Exercise 5.2: The Yule process
Recall that the Yule process of parameter η is characterised as follows: Let τ be an exponential random variable
of parameter η, then Y (t) = 1 for all t < τ , and for all t ≥ τ , Yt = Y (1)

t−τ + Y (2)
t−τ where Y (1) and Y (2) are two

independent copies of Y .
Let (Yt : t ≥ 0) be a Yule process with rate η.

(a) Let a > 0 and show that (Yat : t ≥ 0) is a Yule process with rate aη.

(b) Show that (e−ηtYt : t ≥ 0) is a martingale.
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(c) Infer that there exists a random variable ξ such that, almost surely,

lim
t→∞

e−ηtYt = ξ.

(d) Show that ξ is exponentially distributed with parameter one.

(e) Show that supt≥0 Ee−2ηtY 2
t <∞.

Exercise 5.3: Scale-free property of the BB tree.
Let us denote by

Θt := 1
M(t)

M(t)∑
n=1

δZn(t)

is the empirical distribution of degrees in the Bianconi and Barabási continuous time tree at time t.

(a) Show that under Assumption 1 we have

lim
t→∞

Θt = ν almost surely,

where

ν(k) =
∫ 1

0

λ?

kx+ λ?

k−1∏
i=1

ix

ix+ λ?
dµ(x).

(b) Show that λ? ∈ (1, 2) and that ν is a probability measure

(c) Show that ν(k) = k−(1+λ?)+o(1) and hence the power law exponent ranges between the values 2 and 3, which is
sometimes referred to as the supercritical regime.

Exercise 5.4: Size of the largest family.
Show that, in distribution as t→∞,

e−γ(t−T (t)) max
n∈N

Zn(t)→W−
γ
λ? ,

where W is exponentially distributed with parameter Γ(α+ 1)Γ(1 + λ?

γ )(λ?)−α
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