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Introduction
Probability and theoretical Computer Science interact in many ways: from stochastic algorithms such as ethernet
to analysis of algorithms on average. This course aims at presenting two very classical objects in probability theory:
Markov chains and martingales through their applications in Computer Science. Our goal is not to give the complete
theory, but only to give definitions, basic results and numerous examples. Not all proofs will be developed.

Let us start with a story. John gets out of a bar in Manhattan and wants to go to his hotel. He his so drunk
though, that at each crossing, he does not remember where he comes from and choose one road out of the four at
random. The next crossing he visits thus only depends on where he is now and what will be his decision, but it
does not depend on the past. This is the heuristic of a Markov chain: the future only depends on the present and
not on the past. Random walks are the classical example of Markov chains, and we will prove in this course that,
John will almost surely reach his hotel in finite time – whereas a drunken fish in a 3D undersea Manhattan would
almost surely never find his hotel.

A martingale models a fair game: let us say you play heads-or-tails against you banker. Each time you toss a
coin, if its heads, you win one peso, if its tail, you loose one peso. If the coin is fair, your expected wealth after the
next toss is equal to your actual wealth. This is the heuristic definition of a martingale.

The course is divided into 4 sections: the two first ones concern discrete time Markov chains and martingales,
while the two last ones detail continuous time versions of both objects. The discrete time objects being less intricate,
we will study them in full detail. Instead of studying continuous time Markov chains in full generality, we will focus
on queuing processes, very useful in Computer Science and which study is more basic. In all sections, our aim will
be to state convergence results for the considered stochastic processes.

Prerequisites for this course are elementary probability: in particular conditional expectation, convergence of
sequences of random variables. It could also be useful to know about σ-algebras, even if a heuristic description
should be enough.

This course does not aim to be exhaustive. Many references are available to go further: one can for example
cite the following

[Norris] J. R. Norris: Markov Chains. Cambridge University Press, 1998.

[Williams] D. Williams: Probability with Martingales. Cambridge University Press, 1991.

[Steward] W. J. Steward: Probability, Markov Chains, Queues, and Simulation: The Mathemati-
cal Basis of Performance Modelling. Princeton University Press, 2009.
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Figure 1 – The simple random walk on Z.

1 Discrete time Markov chains
1.1 Definitions and first properties
Markov chains can be defined on any space: discrete or continuous. In this course, we will only treat with discrete
state spaces, but one has to keep in mind that Markov chains exists as well on R, for example. But in the following,
E will always be a discrete space.
Definition 1.1

A matrix P = (px,y)x,y∈E is a stochastic matrix if, for all x ∈ E,∑
y∈E

px,y = 1.

Definition 1.2
Let P be a stochastic matrix on E. A sequence (Xn)n≥1 of random variables taking value in E is a Markov
chain of initial law µ0 and transition matrix P if

(i) X0 has law µ0, and,

(ii) for all n ≥ 0, for all x ∈ E,

P(Xn+1 = x |Xn, . . . , X0) = P(Xn+1 = x |Xn) = pXn,x.

Proposition 1.3
Let (Xn)n≥1 be a Markov chain of initial law µ0 and transition matrix P . Then, for all n ≥ 0, for all
x0, . . . , xn ∈ E,

P(Xn = xn, Xn−1 = xn−1, . . . , X0 = x0) = µ(x0)px0,x1 . . . pxn−1,xn .

Example 1.1: The simple random walk on Z (cf. Figure 1).
Wild Bill Hickok plays heads or tails against his banker. His honesty is so much renowned that his banker allows

him an infinite credit: he will eventually pay his dept after arresting some wanted outlaw. At time 0, Bill owns x0
dollars. Each time Bill tosses a coin, he earns one dollar if its heads and looses one if its tails.

If we denote by Xn the number of dollars Wild Bill owns after he has tossed his nth coin, the sequence (Xn)n≥0
is a Markov chain on E = Z. Its initial law is µ0 = δx0 and its transition probabilities are defined as follows: for all
i ∈ Z,

pi,i+1 = 1/2
pi,i−1 = 1/2
pi,j = 0 for all j /∈ {i− 1, i+ 1}.

Example 1.2: Umbrellas management in England.
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Figure 2 – A realisation of the random BST from time 1 (on the left) to time 5 (on
the right).

I own n umbrellas (n is reasonably large because I live in England). At the beginning of the year, all my
umbrellas are at home. Every morning, I go from home to work and every evening from work to home. If it rains
when I leave home, and only if it rains, I take one umbrella with me. If it rains when I leave work, and only if it
rains, I take one umbrella with me. And each time I leave a building, it rains with probability p (independently).

If we denote by Xn the number of umbrella I have at home at the nth night of the year, then Xn is a Markov
chain on E = {0, . . . , n}. Can you find its probability transitions? For all i ∈ {1, . . . , n− 1}

pi,i−1 =
pi,i+1 =
pi,i =
pi,j = 0 if j /∈ {i− 1, i, i+ 1}

.

And don’t forget the extremal cases i = 0 and i = n.

Example 1.3: Ehrenfest’s urn
Snowy and Snoopy have fleas: in total, there are N fleas. Each day, a flea chosen at random amongst the N

fleas jumps from one dog to the other.
Let us denote by Xn the number of fleas on Snowy on the nth day. The sequence Xn is a Markov chain of

transition probabilities
pi,i−1 = i/N
pi,i+1 = 1− i/N
pi,j = 0 if j /∈ {i− 1, i+ 1}

Example 1.4: The Binary Search Tree (cf. Figure 2)
The random BST is defined as follows: At time 1, it is a single node. At each step, a leaf of the tree is picked

up uniformly at random and becomes an internal node with two leaves as children.
If we denote by Tn the random binary search tree at time n, then (Tn)n≥0 is a Markov chain on E, the space of

binary trees. Can you understand its transition probabilities?
Theorem 1.4 (Markov property)

Let (Xn) be a Markov chain of transition matrix P and initial law µ0. Then, for allm ≥ 1, (Xm+n |X0, . . . , Xm)n≥0
is a Markov chain of transition matrix P and initial law δXm

.

1.2 Stationary probability and reversibility
Definition 1.5

A probability measure π on E is a stationary probability of a Markov chain of transition matrix P if and
only if

πP = π,
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i.e. for all x ∈ E,
∑
y∈E

πypy,x = πx.

The existence of such a stationary probability is not guaranteed; it is for example interesting to prove that the
simple random walk on Z does not admit a stationary probability.

Example 1.5: Umbrellas management in England.
The probability transitions of the umbrellas management problem (cf. Example 1.2) are given by: for all

i ∈ {1, . . . , N − 1}

pi,i+1 = p(1− p) p0,1 = p pN,N−1 = p(1− p)
pi,i−1 = p(1− p) p0,0 = 1− p pN,N = 1− p(1− p)
pi,i = 1− 2p(1− p)
pi,j = 0 if j /∈ {i− 1, i, i+ 1}

Thus, to be a stationary probability of this Markov chain, π has to verify

π0 = p(1− p)π1 + (1− p)π0

πN = p(1− p)πN−1 + (1− p(1− p))πN
and, for all i ∈ {1, . . . , N − 1},

πi = p(1− p)πi−1 + (1− 2p(1− p))πi + p(1− p)πi+1.

It implies that
π0 = (1− p)π1 and πN = πN−1,

and, for all i ∈ {1, . . . , N − 1}, 2πi = πi−1 + πi+1, which implies

πi = 1
N − p

for all i ∈ {1, . . . , N} and π0 = 1− p
N − p

.

The unique stationary probability of this Markov chain is this almost uniform law on {0, . . . , N}.

Example 1.6: Ehrenfest’s urn.
To be a probability distribution on the Ehrenfest’s urn defined in Example 1.3, π has to verify:

π0 = 1
N
π1, πN = 1

N
πN−1,

and, for all i ∈ {1, . . . , N − 1},

πi =
(

1− i− 1
N

)
πi−1 + i+ 1

N
πi+1.

One can check that if, for all i ∈ {0, . . . , N},

πi = 1
2N

(
N

i

)
,

then, π is a stationary probability of the Ehrenfest’s urn.
Definition 1.6

A Markov chain of transition matrix P is reversible according to a probability measure π if and only if, for all
x, y ∈ E,

πxpx,y = πypy,x.
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Lemma 1.7
If a Markov chain is reversible according to a probability measure π, then π is an stationary probability of this
Markov chain.

Proof. Recall that π is invariant for a Markov chain of transition matrix P if and only if πP = π. Consider a
Markov chain of transition matrix P and assume it is reversible according to π. Then,∑

y∈E
πypy,x =

∑
y∈E

πxpx,y = πx,

which implies that π is invariant for the considered Markov chain.

If (Xn)n≥0 is a Markov chain reversible according to π and with initial distribution π, then, for all n ∈ N, the
random vectors (X0, . . . , Xn) and (Xn, . . . , X0) have the same law.

1.3 Recurrence and transience
Definition 1.8

An absorbing state of a Markov chain (Xn)n≥0 is a state x ∈ E such that px,x = 1.

Let (Xn)n≥0 be a Markov chain of initial law µ0 and of transition matrix P . For all n ≥ 1, let p(n)
x,y = P(Xn =

y|X0 = x) = Px(Xn = y). Then, the nth power of the transition matrix P is given by

Pn =
(
p(n)
x,y

)
x,y∈E

.

Definition 1.9
AMarkov chain of transition matrix P = (px,y)x,y∈E is irreducible if and only if, for all x, y ∈ E, the probability
that a Markov chain starting from x eventually reaches y is positive, i.e. if and only if, for all x, y ∈ E, there
exists n ≥ 0 such that p(n)

x,y > 0.

The examples of Markov chain introduced in Section 1 are all irreducible, except the Binary Search Tree markov
chain.

The reaching time of a state x ∈ E is defined and denoted as follows:

τx = inf{n ≥ 1 |Xn = x}.

Definition 1.10
Let (Xn)n≥0 be a Markov chain, a state x ∈ E is

• recurrent for this Markov chain if P(τx < +∞) = 1;

• transient for this Markov chain if P(τx = +∞) = 1.

A Markov chain is recurrent (resp. transient) if all its states are recurrent (resp. transient).

For all x ∈ E, let us denote by Nx =
∑
n≥01Xn=x the number of visits of the Markov chain (Xn)n≥0 at state x.

Proposition 1.11
Let (Xn)n≥0 be a Markov chain of transition matrix P . Then:

(i) If x ∈ E is transient, then Px(Nx < +∞) = 1,
∑
n≥0 p

(n)
x,x < +∞, and, conditioned on {X0 = x}, Nx is a

geometric random variable of parameter Px(Tx = +∞).
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(ii) If x is recurrent then Px(Nx = +∞) = 1 and
∑
n≥0 p

(n)
x,x = +∞.

(iii) If the Markov chain (Xn)n≥0 is irreducible, then it is either recurrent or transient. In the first case, for all
x ∈ E, P(Nx = +∞) = 1. In the second case, for all x ∈ E, P(Nx < +∞) = 1.

Proof. First of all, remark that
Px(τx = +∞) = Px(Nx = 1).

For all m ≥ 1, let us denote by τ (m)
x the time of the mth visit of the chain into x: τ (1)

x := τx, and

τ (m)
x := inf{i > τ (m−1)

x | Xi = x}.

Remark that, for all m ≥ 1,

Px(Nx > m) =
∑
s≥m

Px(Nx > m and τ (m)
x = s)

=
∑
s≥m

Px

 s∑
i=1

1Xi=x = m and Xs = x and
∑
i≥s+1

1Xi=x > 1


=
∑
s≥m

Px

(
s∑
i=1

1Xi=x = m and Xs = x

)
Px

∑
i≥1

1Xi=x > 1


= Px(Nx ≥ m)Px(Nx > 1).

Thus, if we denote by p := Px(τx = +∞) = Px(Nx = 1), we get, for all m ≥ 0,

Px(Nx > m) = (1− p)m.

it immediately implies that
Px(Nx = m) = p(1− p)m−1.

Finally, note that
ENx =

∑
i≥1

Px(Xi = x) =
∑
i≥1

p(i)
x,x.

(i) If x ∈ E is transient, then p > 0, and conditioned on {X0 = x}, Nx is geometrically distributed with
parameter p, which implies that its expectation is finite.

(ii) If x is recurrent, then p = 0, Px(Nx = +∞) = 1 and the expectation of Nx is infinite.
(iii) Let x and y in E. Note that since the chain is irreducible, there exist n1, n2 > 0 such that p(n1)

x,y > 0 and
p

(n2)
y,x > 0. In addition, for all n ≥ 0,

p(n+n1+n2)
y,y ≥ p(n2)

y,x p
n
x,xp

(n1)
x,y ,

which implies that the two series
∑
n≥1 p

(n)
x,x and

∑
n≥1 p

(n)
y,y have the same behaviour. Therefore, an irreducible

chain is either recurrent or transient.
If the chain is transient, then, for all x ∈ E,

P(Nx = +∞) =
∑
s≥0

P(τx = s)Px(Nx = +∞) = 0.

The recurrent case is more complicated and left to the reader.
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Example 1.7: The simple random walk on Z is recurrent (cf. Example 1.1)
For all n ≥ 0,

p
(2n)
0,0 =

(
2n
n

)
1

22n = Catn4−n,

with Catn = 1
n+1

(2n
n

)
. Recall that Catn ∼ n−3/24n when n→ +∞, thus,∑

n≥0
p

(n)
00 = +∞,

which implies, by Proposition 1.11 lemma that 0 is recurrent. Since the simple random walk is irreducible, we can
conclude that the whole chain is recurrent.

Remark: It can be proved that the simple random walk on Z2 is recurrent as well, but that the simple random
walk on Z3 is transient. In fact, for all d ≥ 3, the simple walk on Zd is transient.

Definition 1.12
Let (Xn)n≥0 be a Markov chain of transition matrix P . The period of a state x ∈ E is the gcd of {n >

0 | p(n)
x,x > 0}. A state is said to be aperiodic if its period is 1 and periodic otherwise. A Markov chain is

aperiodic if all its states are aperiodic.

Proposition 1.13
Let (Xn)n≥0 be a Markov chain of transition matrix P , then:

(i) If x ∈ E is aperiodic, the p(n)
x,x > 0 for all n large enough.

(ii) If (Xn)n≥0 is irreducible, it is aperiodic as soon as one of its states is aperiodic.

Proof. (i) Assume that x ∈ E is aperiodic. Met I = {n ≥ 1 | p(n)
x,x > 0}. Remark that I is stable by addition.

There exists K > 0, n1, . . . , nK > 0 and a1, . . . , aK ∈ Z such that ni ∈ I for all i ∈ {1, . . . ,K}, and

1 =
K∑
i=1

aini.

Let n1 =
∑
ai>0 aini and n2 = −

∑
ai<0 aini. We know that n1, n2 ∈ I and n1 − n2 = 1.

Let n ≥ n2
2, then, there exists q ≥ n2 and 0 ≤ r < n2 such that

n = qn2 + r = qn2 + r(n1 − n2) = (q − r)n2 + rn1,

which implies that any n ≥ n2 belongs to I.
(ii) Assume that x ∈ E is aperiodic, then, for all n large enough, p(n)

x,x > 0 For all y ∈ E, there exists n1, n2 ≥ 1
such that p(n1)

x,y > 0 and p(n2)
y,x > 0. Thus, for all n ≥ 1,

p(n+n1+n2)
y,y ≥ p(n2)

y,x p
(n)
x,xp

(n1)
x,y ,

which implies that, for all n large enough, p(n)
y,y > 0 and thus that y is also aperiodic.

Recall that τx = inf{n ≥ 1 |Xn = x}. For all x ∈ E, we define ν(x) = 1
ExTx

∈ [0, 1]. Remark that if (Xn)n≥0 is
an irreducible, transient Markov chain, then, for all x ∈ E, ν(x) = 0.
Definition 1.14

A recurrent state x of the Markov chain is positive recurrent if ν(x) > 0 and null recurrent if ν(x) = 0. A
Markov chain is called positive (resp. null) recurrent if all its states are positive (resp. null) recurrent.
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1.4 Ergodic theorems
An event A is almost sure for a Markov chain if, for all state x ∈ E, Px(A) = 1, i.e. if P(A) = 1 for any initial
distribution µ0.
Theorem 1.15

Let (Xn)n≥0 be an irreducible Markov chain on E.

(i) (Xn)n≥0 is either transient, either positive recurrent, or null recurrent.

(ii) If (Xn)n≥0 is transient or null recurrent, then, she has no invariant probability, and ν = 0.

(iii) For all x ∈ E, we have, almost surely when n tends to infinity,

1
n

n∑
m=0

1Xm=x → ν(x).

This result tells you the following: if you are able to exhibit an invariant probability for a Markov chain, then
this Markov chain is recurrent. It thus apply for example for the Ehrenfest urn (cf. Example 1.3) or for the
umbrellas Markov chain (cf. Example 1.2) which are thus both recurrent. Remark that knowing that a Markov
chain admits no invariant probability is not enough to conclude that it is not recurrent: the simple random walk
on Z, for example is recurrent but has no stationary distribution.
Theorem 1.16 (Ergodic Theorem)

Let (Xn)n≥0 be an irreducible, positive recurrent Markov chain on E, then:

1. ν is a probability distribution on E and is the unique invariant probability of (Xn)n≥0. We moreover have
that ν(x) > 0 for all x ∈ E.

2. For all function f : E → R such that f ≥ 0 or
∫
E
f(x)dν(x) < +∞, we have,

1
n

n∑
m=0

f(Xk)→
∫
E

f(x)dν(x).

3. If, in addition, (Xn)n≥0 is aperiodic, then Xn → ν in law when n tends to infinity, and thus, P(Xn = x)→
ν(x) for all x ∈ E when n tends to +∞.

Example 1.8: Ehrenfest’s urn.
The Ehrenfest urn is an irreducible positive recurrent chain on {1, . . . , N}? Therefore, Theorem 1.16 applies as

it can be seen on the following simulations: The figure below is the histogram of the number of fleas on Snoopy
from time 0 to time 100 (resp. 2000, resp. 5000), when N = 50, starting from Snoopy having 50 fleas on it at time
0. The blue curve is the stationary distribution of this Markov chain.
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Example 1.9: Umbrellas.
The umbrellas Markov chain described in Example 1.2 is an irreducible positive recurrent chain on {1, . . . , N}?

Therefore, Theorem 1.16 applies as it can be seen on the following simulations: The figure below is the histogram
of the number of umbrellas at home between days 1 and 200 (resp. 5000, resp. 10000), when N = 16. The red
curve is the uniform law on {0, . . . , N}.

Remark: One can prove that both for a transient and for a null recurrent irreducible Markov chain, limn→+∞ P(Xn =
x) = 0.

Corollary 1.17
An irreducible Markov chain on a finite space E is positive recurrent and thus, ν is its unique invariant
probability and Theorem 1.16 applies.

2 Discrete time martingales
2.1 Definitions and first properties
Let (Ω,F ,P) a probability space.
Definition 2.1

Let (Fn)n≥0 a filtration of Ω, i.e. an increasing family of sub σ-algebras of F . A sequence (Mn)n≥0 of random
variables is an Fn-martingale if, and only if, for all n ≥ 0,

(i) Mn is Fn measurable,

(ii) Mn is integrable, i.e. EMn < +∞, and

(iii) E[Mn+1|Fn] = Mn almost surely.

In most applications, the considered filtration is Fn = σ(M1, . . . ,Mn), i.e. contains all the information of the
martingale before time n. More generally, given a sequence (Xn)n≥0 of random variables, we call the filtration
(Fn = σ(X1, . . . , Xn))n≥0 its natural filtration.
Definition 2.2

If (iii) in Definition 2.1 is replaced by

• E[Mn+1|Fn] ≤Mn a.s., we get the definition of a super-martingale.

• E[Mn+1|Fn] ≥Mn a.s., we get the definition of a sub-martingale.

9



Z0 = 1

Z1 = 3

Z2 = 5

Z3 = 6

Figure 3 – A realisation of a Galton-Watson tree.

Proposition 2.3
Let (Mn)n≥0 be a Fn-martingale, then, for all n ≥ 0, EMn = EM0.

What can we say of the sequence (EMn)n≥0 for a super-martingale (resp. sub-martingale)?

Example 2.1: Simple random walk again
Let (Xn)n≥0 be a sequence of integrable i.i.d. random variables, such that EX1 = 0. Can you check that

Sn =
∑n
i=1 Xi is a martingale?

Example 2.2: Galton-Watson tree (cf. Figure 3)
A Galton-Watson tree is described as follows: The first generation is composed of a unique root. Each individual

of generation n gives birth to a random number ξ of individuals of generation n+ 1, independently from the rest of
the process. We denote by Zn the number of individuals in generation n: Z0 = 1 and, for all n ≥ 0,

Zn+1 =
Zn∑
i=1

ξ
(n)
i ,

where the (ξ(n)
i )i,n are i.i.d. copies of ξ.

Denote by m = Eξ, then,
Mn = m−nZn

is a martingale.

Example 2.3: The profile of the random Binary Search Tree (cf. Example 1.4)
This exercise is inspired by an article by Chauvin, Klein, Marckert and Rouault (2005): Martingales and Profile

of Binary Search Trees, in which martingales are used to get precise information about the shape of the random
BST.

Let Tn be the random BST at time n. For all n, k ∈ N, let us denote by Nk(n) the number of leaves of Tn that
are at distance k from the root (i.e. at height k in the tree). We denote by Pn(z) the profile polynomial of the BST
at time n, given by

Pn(z) :=
∑
k≥0

Uk(n)zn.

Remark that, if we denote by |`| the height of a leaf ` of a tree, then

Pn(z) =
∑
`∈Tn

z|`|.

Can you determine a sequence of rational functions Zn(z) such that (Mn := ZnPn)n≥0 is a martingale?
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Example 2.4: Pólya urn
A Pólya urn is a random process defined by two parameters: an initial composition vector t(α, β), and a

replacement matrix

R =
(
a b
c d

)
,

where α, β, a, b, c and d are integers.
We define the sequence of random vectors (U(n) = (Xn, Yn))n≥0 representing the composition of a two-colour

urn at time t, meaning that the urn contains Xn red balls and Yn black balls at time n: The urn contains initially
α red balls and β black balls. At each step, we pick up uniformly at random a ball in the urn. If the ball is red, we
replace it in the urn together with a additional red balls and b black balls. If it is black, we replace it in the urn
together with c red balls and d additional black balls.

Let us assume that the urn is balanced, meaning that a+ b = c+ d = S. It implies that the total number of the
urn at time n is Xn + Yn = α+ β + nS. Let

Zn =
(

1 + A

α+ β

)−1
. . .

(
1 + A

α+ β + (n− 1)S

)−1
,

where A =t R (we assume that all the matrices involved in Zn are indeed invertible). One can then prove that
(Mn := ZnU(n))n≥0 is a martingale on R2 for its natural filtration.

2.2 Stopping theorems
Definition 2.4

A stopping time with respect to a filtration (Fn)n≥0 is a random variable T such that, for all n ≥ 0, the event
{T ≤ n} is Fn-measurable.

Example 2.5: Back to Markov chains
Let (Xn)n≥0 be a Markov chain on a discrete space E. Let x ∈ E, then τx := inf{n ≥ 1 |Xn = x} is a stopping

time with respect to the natural filtration of (Xn)n≥0.
Lemma 2.5

For all martingale (Mn)n≥0, and for all stopping time T , the stopped process (MT
n := Mn∧T )n≥0 is a

martingale, (where ∧ denotes the minimum between its two terms).

This lemma is also true for sub-martingales and super-martingales.

Proof. For all n ≥ 1,
E[MT

n+1|Fn] = E[Mn+11T>n|Fn] + E[MT1T≤n|Fn].
Since {T > n} and {T ≤ n} are both Fn-measurable, we get

E[MT
n+1|Fn] = E[Mn+1|Fn]1T>n +MT1T≤n = Mn1T>n +MT1T≤n = MT

n .

Corollary 2.6
For all martingale (Mn)n≥0 and for all bounded stopping time T , EMT = EM0.

Definition 2.7
Given a stopping time T , we define its σ-algebra

FT := {A ∈ F | ∀n ≥ 0, A ∩ {T ≤ n} ∈ Fn}.

Of course, one has to check that FT is a σ-algebra. We omit this proof.
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Proposition 2.8
Let (Mn)n≥1 be a Fn martingale and T a finite stopping time. Then MT is FT -measurable.

Proposition 2.9
Let T and S two (Fn)-stopping times such that S ≤ T almost surely. Then FS ⊆ FS .

Theorem 2.10 (Doob’s stopping theorem)
Let (Mn)n≥0 be a martingale, let S and T two bounded stopping times such that, S ≤ T almost surely. Then,
almost surely,

E[MT |FS ] = MS .

Proof. It is enough to prove that, for all A ∈ FS ,E[MT1A] = E[MS1A]. Let A ∈ FS . Define

R = S1A + T1cA.

Remark that for all n ≥ 1,
{R ≤ n} = (A ∩ {S ≤ n}) ∪ (A ∩ {T ≤ n}) ∈ Fn.,

which implies that R is a bounded stopping time. We thus have EMR = EM0 = EMT . Since

EMT = E[MT1A +MT1cA]

EMR = E[MS1A +MT1cA],

we get
E[MT1A] = E[MS1A].

2.3 Doob’s inequalities
Proposition 2.11

Let (Mn)n≥0 a non-negative sub-martingale such that EM0 < +∞. Then, for all α > 0,

P(max
i≤n

Mi ≥ α) ≤ EMn

α

Proof. Let us denote A = {maxi≤nMi ≥ α}, and define, for all k ≥ 0,

Ak := {max
i<k

Mi < α ≤Mk}.

Then

E[Mn1A] =
n∑
k=0

E[1Ak
Mn] =

n∑
k=0

E [1AE[Mn|Fk]] ≥
n∑
k=0

E [1AMk] ≥ αP(A).

Thus,
P(A) ≤ 1

α
E[Mn1A] ≤ EMn,

since Mn is non-negative.

The following corollary is a consequence of the following fact: let (Mn)n≥0 be a martingale and φ be a convex
function. Then, (φ(Mn))n≥0 is a sub-martingale. Apply this propertu to the convex function (x 7→ x2) to get the
corollary:

12



Corollary 2.12
Let (Mn)n≥0 be a square integrable martingale. Then, for all α > 0,

P(max
i≤n

Mi ≥ α) ≤ EM2
n

α2 .

2.4 Convergence of martingales
Definition 2.13

A sequence of random variables (Xn)n≥0 is bounded in Lp if and only if

supE|Xn|p < +∞.

The sequence is uniformly integrable if and only if

lim
x→+∞

E[Xn1Xn>x]→ 0,

when x→ +∞.

Theorem 2.14
A martingale bounded in L2 converges in L2, meaning that there exists a random variable M∞ such that

lim
n→+∞

E[|Mn −M∞|2] = 0.

Example 2.6: Super-critical Galton-Watson process (cf. Example 2.2).
Let us recall that is Zn is the number of individuals composing the nth generation in a Galton-Watson process,

then Mn = m−nZn is a martingale. Let us prove that this martingale is bounded in L2:

E[Z2
n+1|Fn] = E

( Zn∑
i=1

ξ(i)
n

)2 ∣∣∣Fn
 = Z2

n(Eξ)2 + ZnVarξ.

It implies that
EZ2

n+1 = m2EZ2
n +mnVarξ,

and thus,
EM2

n+1 = EM2
n +m−n−2Varξ,

which implies that the martingale is bounded in L2 as soon as m > 1, i.e, as soon as the process is super-critical,
and assuming that ξ is square-integrable.
Theorem 2.15 (Doob’s Theorem)

Let (Mn)n≥0 be a sub-martingale such that

sup
n≥0

EXn1Xn≥0 < +∞.

Then, Mn converges almost surely to an integrable random variable M∞.

Corollary 2.16
Any martingale bounded in L1 converges almost surely to an integrable random variable.
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It is very important to note that, in the corollary above, even if the martingale is bounded in L1 and its almost
sure limit is integrable, there is, a priori, no convergence in L1!

The following cororllary is maybe the most useful in practise:
Corollary 2.17

Any non negative super-martingale converges almost surely to an integrable random variable M∞ and

EM∞ ≤ lim inf
n→+∞

EMn.

Proof. If (Mn)n≥0 is a super-martingale, then (−Mn)n≥0 is a sub-martingale. Moreover, it is a non-positive
sub-martingale, which implies that

sup
n≥0

EXn1Xn≥0 = 0 < +∞.

The Doob’s Theorem thus applies and (−Mn)n≥0 converges almost surely to an integrable random variable −M∞,
which concludes the proof. The last inequality is an application of Fatou’s lemma.

Example 2.7: Galton-Watson process (cf. Example 2.2).
Let us recall that is Zn is the number of individuals composing the nth generation in a Galton-Watson process,

then Mn = m−nZn is a martingale. It is non-negative and therefore converges almost surely to a random variable
M∞ by Corollary 4.11.

Exercise: calculate the probability of extinction of a Galton-Watson process.
Theorem 2.18

Let (Mn)n≥0 be a martingale. The three following propositions are equivalent:

(i) Mn converges in L1 to an integrable random variable M∞;

(ii) (Mn)n≥0 is bounded in L1 and there exists a random variable M∞ such that

E[M∞|Fn] = Mn (for all n ≥ 0);

(iii) (Mn)n≥0 is uniformly integrable.

Such a martingale is called regular. It implies in particular that, for all n ≥ 0, EMn = EM∞.

Corollary 2.19
Any martingale bounded in Lp (p > 1) converges almost surely and in Lp.

Proof. Let (Mn)n≥0 be a martingale bounded in Lp: then, for all x ≥ 0

E[|Mn|p] ≥ E[|Mn|p1Mn≥x] + E[|Mn|p1Mn>x] ≥ E[Mp
n1Mn≥x] ≥ xp−1E[Mn1Mn≥x].

Since (Mn)n≥0 is bounded in Lp, there exists a constant C > 0 such that

E[Mn1Mn≥x] ≤ C

xp−1 → 0

when x → +∞, because p > 1. Thus (Mn)n≥0 is uniformly-integrable and Theorem 2.18 applies: (Mn)n≥0 is
bounded in L1 and there exists a random variable M∞ such that

E[M∞|Fn] = Mn (for all n ≥ 0).

By Fatou’s lemma,
E[|Mn|p] ≤ lim inf

n→+∞
E|Mn|p < +∞,

and, by dominated convergence, Mn converges to M∞ in Lp.
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3 Continuous time Markov processes
The aim of this section is not to introduce Markov processes in full generality: we will only focus on jump Markov
processes and their main application to queuing theory.

3.1 Definitions
Let E be a discrete state space. Let (Zn)n≥0 and (Tn)n≥0 be two sequences of random variables such that 0 = T0 ≤
T2 ≤ . . ., Tn → +∞ when n→ +∞ and Zn ∈ E for all n ≥ 0.
Definition 3.1

The random function
Xt :=

∑
n≥0

Zn1[Tn,Tn+1[(t)

is called the random jump function associated to the sequences (Zn)n≥0 and (Tn)n≥0.

Definition 3.2
A random jump function (Xt)t≥0 is a jump Markov process if, for all 0 < s < t, for all n ≥ 0, for all
t0 < t1, . . . , tn < s, for all x0, x1, . . . , xn, x, y ∈ E,

P(Xt = y | Xt0 = x0, . . . , Xtn = xn and Xs = x) = P(Xt = y | Xs = x).

If, in addition, P (Xt = y | Xs = x) only depends on x, y and (t − s), then the jump Markov process is called
homogeneous.

In the following, we will only consider homogeneous jump Markov processes, and we will denote

Px,y(t− s) := P(Xt = y | Xs = x).

For all t ≥ 0, the matrix P (t) = (Px,y(t))x,y∈E is the transition matrix of the process (Xt)t≥0 at time t. We
denote by (µ(t)) the law of the random variable Xt, for all t ≥ 0.
Proposition 3.3

Let (Xt)t≥0 be a (homogeneous) Markov jump process on E, with initial law µ(0) = µ and transition matrix
(P (t))t≥0. Then, for all 0 < s < t,

(i) µ(t) = µ(t)P (t)

(ii) P (s+ t) = P (s)P (t) (semi-group condition)

Example 3.1: Poisson process.
A Poisson process (Nt)t≥0 is a Markov jump process on N, with transition matrix

Px,y(t) =


(λt)y−x

(y − x)!e
−λt if y ≥ x,

0 otherwise.

Example 3.2: Let (Tn)n≥0 be a Poisson point process on [0,+∞[ with intensity λ and let (Zn)n≥0 be a discrete
time Markov chain on E, of transition matrix P , independent of (Tn)n≥0. Then, the continuous time process

Xt :=
∑
n≥0

Zn1[Tn,Tn+1[

is a Markov jump process. Can you determine its transition matrix?
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The semi-group property tells us that the transition matrix (P (t))t≥0 is determined by its values for small t ≥ 0.
Said differently, it is determined by its derivative at 0:
Definition 3.4

Let (P (t))t≥0 be the transition matrix of a Markov jump process (Xt)t≥0. Then, there exists Q = (Qx,y)x,y∈E
called the generator of (Xt)t≥0, such that

(i) Qx,y ≥ 0 if x 6= y,

(ii) Qx,x = −
∑
y 6=xQx,y ≤ 0,

(iii) Px,y(h) = hQx,y + o(h) when h→ 0, if x 6= y,

(iv) Px,x(h) = 1 + hQx,x + o(h) when h→ 0.

One can see Qx,y as the rate with which the Markov jump process will jump from site x to site y.
Theorem 3.5

Markov property Let (Xt)t≥0 be a jump Markov process of generator Q. For all real t0, the process (Xt0+t)t≥0
is a Markov process of initial law δXt0

.

If we forget time and just focus on the successive positions of the process, we exhibit the underlying Markov
chain of the process. Let us denote by τn the time of the nth jump of the process: then, the discrete time process
Mn := Xτn

is a Markov chain and its transition matrix P = (pi,j)i,j∈E is given by

px,y =
{

Qx,y

qx
if i 6= j

0 if i = j
,

where qx := −Qx,x for all x ∈ E.

3.2 Ergodicity
A jump Markov process is irreducible as soon as its underlying Markov chain is irreducible. It implies that, for
all t > 0, for all x, y ∈ E, Px,y(t) > 0. A state x ∈ E is recurrent (resp. transient) for the Markov jump process
(Xt)t≥0 if it is recurrent (resp. transient) for its underlying Markov chain.
Theorem 3.6

Let (Xt)t≥0 be a Markov jump process, irreducible and recurrent, with generator Q = (Qx,y)x,y∈E and transition
matrix (P (t))t≥0. Then, there exists a unique measure (up to a constant factor) π such that πQ = 0 and
πP (t) = π for all t ≥ 0.

Definition 3.7
For all x ∈ E, we denote by τx := inf{t > 0 | Xt = x}. A state x ∈ E is positive recurrent (resp. null
recurrent) for (Xt)t≥0 if x is recurrent and if Exτx < +∞ (resp. Exτx = +∞)

Theorem 3.8
Let (Xt)t≥0 be a Markov jump process, irreducible and recurrent. Then, the following assumptions are equiva-
lent:

(i) x ∈ E is positive recurrent,

(ii) all states are positive recurrent,

(iii) there exists a unique invariant probability distribution π.
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post office

queue

till

Figure 4 – The M/M/1 queue.

If these assumptions are verified, then, for all x ∈ E,

Exτx = 1
πxqx

.

Theorem 3.9
Let (Xt)t≥0 be a Markov jump process, irreducible and positive recurrent. Denote by π its invariant probability.
Then, for all bounded function f : E → R, almost surely, when t→ +∞,

1
t

∫ t

0
f(Xs)ds→

∑
x∈E

f(x)πx.

Proposition 3.10
Let (Xt)t≥0 be a Markov jump process, irreducible and positive recurrent. Denote by π its invariant probability.
Then, for all probability distribution µ on E, for all x ∈ E, asymptotically when t→ +∞,

(µP (t))x → πx.

3.3 Queues
The example we will study in the whole section it the queuing theory. It is very important in computer science,
since it permits to model routers activity.

The idea is the following: in my post office, there are N tills. People enter the post office according to a
Poisson process of rate λ, meaning that the interval between a client and the next one is exponentially distributed
with parameter λ, independently from the rest of the process. The time needed to serve a client is exponentially
distributed with parameter µ, independently from the rest of the process.

When a client enters the post office: either all tills are occupied and he joins the queue, or one till is free, and
he bigins to be served as soon as he enters.

This model is usually called M/M/N meaning that the arrivals and service times are exponentially distributed,
with respective parameters λ and µ, and that there are N tills.

The question is the following: do you need to add more tills so that the length of the queue does not explode?
Quite an important question for router, post office or server management.

Example 3.3: The M/M/1 queue (cf. Figure 4)
Let us first focus on the case where there is a unique till in the post office. Let Xt be the number of clients

inside the post office (queue + till) at time t. Then (Xt)t≥0 is indeed a Markov process and its generator is the
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following infinite matrix:

Q =



−λ λ 0 · · ·

µ −(µ+ λ) λ 0 · · ·

0 µ −(µ+ λ) λ 0 · · ·

. . .


.

This information can be represented as follows:

0 1 2 3 4

λ λ λ λ λ

µ µ µ µ µ

It is possible to prove that πx := ρx(1 − ρ), where ρ := λ/µ, is an invariant probability of the queue, as soon as
ρ < 1. If ρ ≥ 1, then, the queue admits no invariant probability and is thus transient. It means that our queue will
explode. Can you calculate the probability that a newly arrived client will have to queue before being served?

Exercise 3.1: Can you give the generator of the queue M/M/∞?

Example 3.4: In the queues described above, the M/M/N , the capacity of the queue is infinite, meaning that the
queue can become arbitrarily large. One can also describe queues with finite capacity K: the queues M/M/N/K.
It behaves as the M/M/N , except that when the queue is full (i.e. contains K clients), any client arriving to the
shop cannot enter the shop and evaporates.

Can you give the generator of such a queue? What is its invariant probability?

4 Continuous time martingales
4.1 Definitions and first properties
Let (Ω,F ,P) a probability space.
Definition 4.1

A continuous time process (Mt)t≥0 is a martingale for the filtration (Ft)t≥0 if and only if, for all t ≥ 0,

(i) Mt is Ft-measurable;

(ii) Mt is integrable; and

(iii) for all s < t, E[Mt|Fs] = Ms.

Definition 4.2
Replacing (iii) in the above definition by

• for all s < t, E[Mt|Fs] ≤Ms gives the definition of a super-martingale.

• for all s < t, E[Mt|Fs] ≥Ms gives the definition of a sub-martingale.

Example 4.1: The Yule tree (cf. Figure 5)
Let us consider the stochastic process (Yt)t≥0 defined as follows. At time zero, there is one particle in the system:

Y0 = 1. Each particle dies and gives birth to two new particles after an exponentially distributed random time,
independently from the other particles. Let us denote by Yt the number of particles alive at time t.
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time

Figure 5 – A realisation of the Yule tree

time

Figure 6 – A realisation of the multi-type branching process defined by the initial

composition t(0, 1) and the replacement matrix R =
(

a b
c d

)
.

Can you find (mt)t≥0 a function such that Mt := m−1
t Yt is a martingale?

Example 4.2: Multi-type branching process (cf. Figure 6)
A multi-type branching process is the embedding in continuous time of a Pólya urn. It is defined by an initial

composition U(0) =t (α, β) and a replacement matrix

R =
(
a b
c d

)
.

The vector composition of the urn at time t is given by U(t) =t (Xt, Yt), where Xt is the number of red balls and
Yt the number of black balls at time t in the urn. Each ball in the urn will split after an exponentially distributed
random time into

• a+ 1 red balls and b black balls if it is a red ball;

• or c red balls and d+ 1 black balls if it is a black ball,

independently for the other balls.
Assume that the replacement matrix is balanced: a+ b = c+ d = S. What can you say about the total number

of balls in the urn at time t? Can you prove that Mt := e−tAU(t) is a vector valued martingale, where A =tR?

4.2 Stopping times
Definition 4.3

A random variable T is a stopping time for the filtration (Ft)t≥0 if and only if, for all t ≥ 0, the event {T ≤ t}
is Ft-measurable.
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Lemma 4.4
For all martingale (Mt)t≥0, and for all stopping time T , the stopped process (MT

t := Mt∧T )t≥0 is a martingale,
(where ∧ denotes the minimum between its two terms).

Theorem 4.5
Stopping theorem Let (Mt)t≥0 be a martingale, let S and T two bounded stopping times such that, S ≤ T
almost surely. Then, almost surely,

E[MT |FS ] = MS .

4.3 Doob’s inequalities
Proposition 4.6

Let (Mt)t≥0 a non-negative sub-martingale such that EM0 < +∞. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EMt

α

Corollary 4.7
Let (Mt)t≥0 be a square integrable martingale. Then, for all α > 0,

P(max
s≤t

Ms ≥ α) ≤ EM2
t

α2 .

4.4 Convergence of continuous time martingales
Definition 4.8

A sequence of random variables (Xt)n≥0 is bounded in Lp if and only if

sup
t≥0

E|Xt|p < +∞.

The sequence is uniformly integrable if and only if

lim
x→+∞

sup
t≥0

E[Xt1Xt>x]→ 0,

when x→ +∞.

Theorem 4.9
A martingale bounded in L2 converges in L2, meaning that there exists a random variable M∞ such that

lim
t→+∞

E[|Mt −M∞|2] = 0.

Theorem 4.10 (Doob’s Theorem)
Let (Mt)t≥0 be a sub-martingale such that

sup
t≥0

EXt1Xt≥0 < +∞.
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Figure 7 – The n i.i.d. random variables E1, . . . , En are represented by the length
of the vertical sticks. The Si are independent random variables exponentially

distributed, of respective parameters n − i.

Then, Mt converges almost surely to an integrable random variable M∞.

Corollary 4.11
All non negative super-martingale (Mt)t≥0 converges almost surely to an integrable random variable M∞ and

EM∞ ≤ lim inf
t→+∞

EMt.

Example 4.3: The Yule tree martingale (cf. Example 4.1)
The process (Mt := e−tYt is a non negative martingale and thus converges almost surely to a limit random

variable W . Let us prove that this random variable is exponentially distributed.
For all t ≥ 0, P(Yt ≥ n) = P(τn ≤ t) where τn is the time of the nth split in the Yule process. Remark that, by

definition, τn =
∑n
i=1 Ti where Ti is exponentially distributed of parameter i and the (Ti)i=1..n are independent of

each other.
Let us consider E1, . . . , En being n i.i.d. random variable exponentially distributed of parameter 1. Let us

denote by mn their maximum. Remark that mn =
∑n−1
i=0 Si where Si is exponentially distributed of parameter

n− i and the (Si)i=1..n are independent of each other (see Figure 7).
Thus,

P(τn ≤ t) = P(mn ≤ t) = P(Ei ≤ t ∀1 ≤ i ≤ n) = (1− e−t)n.

It implies that, for all t ≥ 0, for all x ≥ 0,

P(Mt ≥ x) = P(Yt ≥ xet) = (1− e−t)xet

→ e−x,

when t→ +∞. Thus, for all x ≥ 0,
P(W ≥ x) = e−x,

and W is exponentially distributed of parameter 1.
Theorem 4.12

Let (Mt)t≥0 be a martingale. The three following propositions are equivalent:

(i) Mt converges in L1 to an integrable random variable M∞;

(ii) (Mt)t≥0 is bounded in L1 and there exists a random variable M∞ such that

E[M∞|Ft] = Mt (for all t ≥ 0);
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(iii) (Mt)t≥0 is uniformly integrable.

Such a martingale is called regular. It implies in particular that, for all t ≥ 0, EMt = EM∞.

Corollary 4.13
Any martingale bounded in Lp (p > 1) converges in Lp.

5 Exercises
Exercise 5.1: Simple random walk

Let us consider the biased random walk on Z defined as follows: choose p ∈ (0, 1) and denote q = 1 − p, when
the walker is in state x, it jumps to x+ 1 with probability p and to x− 1 with probability q.

(1) Prove that the unbiased random walk on Z is recurrent but has no invariant probability: it is thus null recurrent.

(2) A gambler enters a casino with a GBP and begins to play heads or tails with the casino. The casino has b
GBP when the gambler begins to play. The coin is biased and gives heads with probability p and tails with
probability q. The gambler gives one pound to the casino when its heads and the casino gives him one pound
when its tails. The game ends when either the gambler or the casino is ruined. What is the probability that
the gambler gets ruined?
Hint: Denote by Xn the wealth of the gambler at time n, τ0 := inf{s ≥ 0 | Xs = 0} and τa+b := inf{s ≥
0 | Xs = a+ b}. It is a good idea to define ux := P(τ0 < τa+b | X0 = x}, for all x ∈ Z.

Exercise 5.2: The original Pólya urns
Consider the Pólya urn with initial composition vector t(1, 1) and replacement matrix I2. Let us denote by

t(Xn, Yn) the composition vector of the urn process at time n.

(1) Prove that Xn is a Markov chain and give its transition probabilities.

(2) Let X̄n = Xn

Xn+Yn
= Xn

n+2 be the proportion of balls of type 1 in the urn at time n. Prove that (X̄n)n≥0 is a
martingale.

(3) Prove that (X̄n)n≥0 converges almost surely and in L1 to a limit X∞.

(4) Let

Z(k)
n := Xn(Xn + 1) · · · (Xn + k − 1)

(n+ 2)(n+ 3) · · · (n+ k + 1) .

Prove that (Z(k)
n )n≥0 is a martingale for all k ≥ 1.

(5) Prove that, for all k ≥ 1, EXk
∞ = EZ(k)

0 = 1
k+1 and deduce from it that X∞ has uniform law on [0, 1].

Exercise 5.3: Queue with finite capacity
Let us study the queue M/M/1/K, corresponding to a queue with arrivals of rate λ, service times of rate µ,

with 1 tills and K maximum places in the queue. The number of costumers in the post office is a Markov jump
process on {0, . . . ,K}:

(1) write its generator Q and its transition matrix (P (t))t≥0;

(2) convince yourself that the process is irreducible, and calculate its invariant probability;

(3) what is the average number of costumers in the system?
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