Coarsening dynamics in condensing stochastic particle systems

Watthanan "Mim" Jatuviriyapornchai

Joint work with Dr.Stefan Grosskinsky & Dr.Dario Spano Mathematics Institute, University of Warwick

Condensation phenomena in stochastic systems, University of Bath 4 July 2016

Inclusion processe

Outline

2 Zero-range processes

- Dynamics of empirical processes
- Simulation Results

Inclusion processes

Setting

- Lattice $\Lambda_L = \mathbb{Z}/L\mathbb{Z}$
- State space $\Omega = \mathbb{N}^{\Lambda_L}$
- Configuration $\eta = (\eta_x : x \in \Lambda_L) \in \Omega$
- Jump probability $q(x, y) = \frac{1}{L-1}, \ \forall x \neq y$
- Dynamics are given by the generator

$$(\mathcal{L}f)(\boldsymbol{\eta}) = \sum_{x,y \in \Lambda_L} q(x,y) u(\eta_x) v(\eta_y) (f(\boldsymbol{\eta}^{x \to y}) - f(\boldsymbol{\eta})),$$
(1)

where
$$\eta_z^{x \to y} = \eta_z - \delta(z, x) + \delta(z, y).$$

Inclusion processes

Stationary measures

Under certain conditions¹, the processes admit stationary product measure with marginal

$$\nu_{\phi}[\eta_{x}=n] = \frac{1}{z(\phi)}w(n)\phi^{n}$$
(2)

is stationary, provided that

$$z(\phi) := \sum_{n=0}^{\infty} w(n)\phi^n < \infty,$$

for all $x \in \Lambda_L$. For fixed number of particles,

$$\pi_{L,N} = \nu_{\phi}[\cdot \mid \sum_{x \in \Lambda_L} \eta_x = N]$$
(3)

is the unique stationary measure on $\{\eta : \sum_{x \in \Lambda_L} \eta_x = N\}$.

¹Chleboun, P. and Grosskinsky, S., 2014. Condensation in stochastic particle systems with stationary product measures. Journal of Statistical Physics, 154(1-2), pp.432-465. $\Box \mapsto \langle \overline{\bigcirc} \rangle \leftrightarrow \langle \overline{\bigcirc} \rangle \leftrightarrow \langle \overline{\bigcirc} \rangle \Rightarrow \langle \overline{ } \rangle \Rightarrow \langle \overline{ }$

4 / 44

Inclusion processe

Empirical processes

Define two empirical processes :

site empirical process	size-biased empirical process
$F_{k}(\boldsymbol{\eta}(t)) := \frac{1}{L} \sum_{x \in \Lambda_{L}} \delta_{\eta_{x}(t),k}.$ (4)	$P_{k}(\boldsymbol{\eta}(t)) := \frac{1}{N} \sum_{x \in \Lambda_{L}} k \delta_{\boldsymbol{\eta}_{x}(t),k}.$ (5)

Relation

$${\it kF}_k({\pmb \eta})=
ho{\it P}_k({\pmb \eta})~~{
m for~all}~{\pmb \eta}\in\Omega_{L,N}~{
m and}~k\geq 1$$

□ ▶ ◀ ⓓ ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 ∽ ९... 5/44

Inclusion processe

(6)

Zero-range processes

$$u(k) = g(k), v(k) \equiv 1$$

Jump rate $g:\mathbb{N}
ightarrow [0,\infty)$

$$g(k) = \left\{egin{array}{ccc} 0 & ext{if} & k=0, \ 1+rac{b}{k^\gamma} & ext{otherwise,} \end{array}
ight.$$

for any constant b > 0 and $\gamma \in (0, 1]$.

Figure : ZRP

Inclusion processes

Condensation

For our specific jump rate, the system exhibits a phase transition in the thermodynamic limit $N, L \rightarrow \infty$. If the particle density $\rho = \frac{N}{L}$ is above some critical value ρ_c , the system separates into

- a homogeneous background
- a condensate, which is the excess mass accumulated on a single randomly located lattice site.

Inclusion processe

Theorem $(^2)$

If
$$\rho > \rho_c$$
 then for any $\epsilon > 0$,
$$\lim_{\substack{N,L \to \infty, \frac{N}{L} \to \rho}} \pi_{L,N} \left(\mid \frac{1}{L} \max_{x \in \Lambda_L} \eta_x - \rho - \rho_c \mid > \epsilon \right) = 1.$$

Critical density
$$\rho_c := \mathbb{E}_{\nu_1}[\eta_x].$$
 $\gamma = 1$
 $b > 2, \ \rho_c = \frac{1}{b-2} < \infty$ $\gamma \in (0, 1)$
 $b > 0, \ \rho_c < \infty$

 2 Grosskinsky, S., Schutz, G.M. and Spohn, H., 2003. Condensation in the zero range process: stationary and dynamical properties. Journal of statistical physics, 113(3-4), pp.389-410.

Coarsening

Coarsening Regime

The cluster sites exchange particles through the bulk. This leads to a decreasing number of cluster sites of increasing size.

Figure : Dynamics of ZRP.

Dynamics of empirical processes

2 Zero-range processes

- Dynamics of empirical processes
- Simulation Results

Inclusion processes

4 Conclusion

Dynamics of empirical processes

 $f_k(t)$

Figure : $f_k(t)$. Parameter values are $\gamma = 1$ with b = 4 and L = 1024 Occ

Introduction

Zero-range processes

Inclusion processe

Conclusion 0

Dynamics of empirical processes

 $p_k(t)$

Figure : $p_k(t)$. Parameter values are $\gamma = 1$ with b = 4 and L = 1024.

$$\begin{aligned} (\mathcal{L}F_k)(\eta) &= \sum_{x,y \neq x} \frac{1}{L-1} g(\eta_x) [F_k(\eta^{x \to y}) - F_k(\eta)] \\ &= -g(k) F_k(\eta) - \frac{1}{L-1} \sum_{\substack{x \in \Lambda \\ y \neq x}} g(\eta_x) \frac{\delta_{k,\eta_y}}{L} \\ &+ \frac{1}{L-1} \sum_{\substack{x \in \Lambda \\ y \neq x}} g(\eta_x) \frac{\delta_{k-1,\eta_y}}{L} + g(k+1) F_{k+1}(\eta) \\ &= -(g(k) + \langle g \rangle_{\eta}) F_k(\eta) \\ &+ \langle g \rangle_{\eta} F_{k-1}(\eta) + g(k+1) F_{k+1}(\eta) \\ &+ \frac{1}{L-1} (g(k) - \langle g \rangle_{\eta}) (F_k(\eta) - F_{k-1}(\eta)) . \end{aligned}$$

13/44

Inclusion processes

Dynamics of empirical processes

Evolution equation

Using

$$\frac{d}{dt}\mathbb{E}[F_k(\eta(t))] = \mathbb{E}[(\mathcal{L}F_k)(\eta(t))]$$

with notation $f_k(t) = \mathbb{E}[F_k(\eta)]$ and $\langle g \rangle = \sum_{k=1}^{\infty} g(k) f_k(t)$.

$$\frac{df_k(t)}{dt} = g(k+1)f_{k+1}(t) + \langle g \rangle f_{k-1}(t) - (g(k) + \langle g \rangle)f_k(t),$$
(7)

for all $k \ge 0$ with $f_{-1}(t) = 0$.

Inclusion processes

Dynamics of empirical processes

Birth death process $(Y_t : t \ge 0)$

This is a birth death chain with state space \mathbb{N}_0 with

birth rate $= \langle g \rangle$ death rate = g(k)

Figure : Birth-Death Processes Y_t Diagram.

Inclusion processe

Dynamics of empirical processes

Separated state

Ansatz:

$$f_{k}(t) = \underbrace{f_{k}(t) \mathbb{I}_{[0,1/\sqrt{\epsilon_{t}}]}(k)}_{:=f_{k}^{\text{bulk}}(t)} + \underbrace{f_{k}(t) \mathbb{I}_{(1/\sqrt{\epsilon_{t}},\infty)}(k)}_{:=f_{k}^{\text{cond}}(t)}$$
(8)

Scaling forms³

$$f_k^{\text{cond}}(t) = \epsilon_t^2 h(u), \text{ with } u = k\epsilon_t \text{ and } \epsilon_t = t^{-\frac{1}{\gamma+1}}.$$
 (9)
 $\langle g \rangle \approx 1 + A\epsilon_t^{\gamma},$ (10)

where ϵ_t is the time scale and A is a constant.

 $^{^{3}}$ Godreche, C., 2003. Dynamics of condensation in zero-range processes. Journal of Physics A: Mathematical and General, 36(23), p.6313.

Inclusion processe

Dynamics of empirical processes

Analysis of $P_k(\eta)$

For
$$k = 1$$
,

$$\frac{d}{dt}p_1(t) = -g(1)p_1(t) - \langle g \rangle p_1(t) + \frac{1}{\rho} \langle g \rangle f_0(t) + \frac{1}{2}g(2)p_2(t)$$

$$= \frac{1}{2}g(2)p_2(t) - 2\langle g \rangle p_1(t) + \sum_{k \ge 2} \frac{1}{k}(g(k) - \langle g \rangle)p_k(t).$$

For k > 1,

$$\frac{d}{dt}p_k(t) = \frac{k}{k+1}g(k+1)p_{k+1}(t) + \frac{k}{k-1}\langle g \rangle p_{k-1}(t)$$
$$-\left(\frac{k-1}{k}g(k) + \frac{k+1}{k}\langle g \rangle\right)p_k(t)$$
$$+\frac{1}{k}(\langle g \rangle - g(k))p_k(t).$$

17 / 44

Introduction

Zero-range processes

Inclusion processes

Conclusion 0

Dynamics of empirical processes

Birth death with killing/cloning $(X_t:t\geq 0)$

birth rate	$rac{k+1}{k}\langle g angle$, for $k>0$,
death rate	$rac{k-1}{k}g(k)$, for $k>1$,
rate from <i>k</i> to 1	$rac{1}{k}(g(k)-\langle g angle)_+$, for $k>1$,
cloning rate	$rac{1}{k}(\langle g angle -g(k))_+$, for $k>1$,
killing rate	$\sum\limits_{k>1}rac{1}{k}(\langle g angle -g(k))_+$, for $k=1$,

where we denote by $(\cdot)_+ = \max\{0, (\cdot)\}$ the positive part of the expression and $\langle g \rangle = \rho \sum_{k \ge 1} \frac{g(k)}{k} p_k(t)$

18/44

n	•	r (\sim		0	÷	\sim	m
				10		۰.		ш

Inclusion processe

Dynamics of empirical processes

Relations

$$\begin{split} \rho p_k^{\rm cond}(t) &= k f_k^{\rm cond}(t). \\ \sum_k p_k^{\rm cond}(t) &= \frac{1}{\rho} \sum_k k f_k^{\rm cond}(t) = \frac{\rho - \rho_c}{\rho}. \end{split}$$

Scaling form

$$p_k^{\text{cond}}(t) = \frac{1}{\rho} k f_k^{\text{cond}}(t) = \frac{1}{\rho} u h(u) \epsilon_t.$$

Simulation Results

2 Zero-range processes

- Dynamics of empirical processes
- Simulation Results

Inclusion processes

4 Conclusion

Inclusion processes

Simulation Results

Simulation of BD chains: $\langle g \rangle \approx \langle g \rangle_m$

Inclusion processe

Simulation Results

Subcritical case

Size-biased marginals of stationary measure

$$\bar{\nu}_{\phi}(k) := \frac{k}{R(\phi)} \nu_{\phi}[\eta_{x} = k]$$

Figure : Convergence to the tail distribution of the size-biased marginal. Parameter values are $\gamma = 1$ with b = 2.5, $\rho = 1 < \rho_c = 2$ and $m = 10^5$ $\rightarrow 10^5$

Inclusion processes

Simulation Results

Supercritical case : Phase separation

Figure : X_t ensemble size is $m = 10^5$ with parameter values are $\gamma = 1$, b = 4 and $\rho = 10 > \rho_c = 0.5$.

Introduction

Zero-range processes

Inclusion processe

Simulation Results

Dynamics of X_t

Figure : X_t ensemble size is $m = 10^5$ with parameter values are $\gamma = 1$, b = 4 and $\rho = 10 > \rho_c = 0.5$.

Inclusion process

Simulation Results

Scaling behavior

Figure : X_t ensemble size is $m = 10^5$ with parameter values are $\gamma = 1, \ b = 4$ and $\rho = 10 > \rho_c = 0.5$.

25 / 44

Inclusion processes

Simulation Results

Theoretical comparison $\gamma = 0.5$

$$t^{-\frac{1-\gamma}{1+\gamma}}h''(u) + \left(\frac{u}{(\gamma+1)} + \frac{b}{u^{\gamma}} - A\right)h'(u) + \left(\frac{2}{(\gamma+1)} - \frac{b\gamma}{u^{\gamma+1}}\right)h(u) = 0$$

Figure : Parameter values are b = 4, $\rho = 2$ with $\gamma = 0.5$ and ensemble size L = m = 1024.

Inclusion processe

Simulation Results

Theoretical comparison $\gamma = 1$

$$h''(u) + \left(\frac{1}{2}u - A + \frac{b}{u}\right)h'(u) + \left(1 - \frac{b}{u^2}\right)h(u) = 0.$$

Figure : Parameter values are b = 4, $\rho = 2$ with $\gamma = 1$ and ensemble size L = m = 1024.

introduction	0	000000000000000000000000000000000000000	0000000000		mende		0	lidoloni
Simulation R	esults							
$\sigma^2(t)$								
σ^2	(t)							
	2(.)	T T (. \ 1	∇	(\cdot)	$\sum i^2 c(i)$		

$$\sigma^2(t) = \rho \mathbb{E}[p_k(t)] = \rho \sum_k k p_k(t) = \sum_k k^2 f_k(t).$$

Time evolution of $\sigma^2(t)$

7.

$$\begin{aligned} \frac{d}{dt}\sigma^2(t) &= \frac{d}{dt}\sum_{k\geq 1}k^2 f_k(t) \\ &= 2\rho(\langle g \rangle - 1) + 2\left(\langle g \rangle - b\sum_{k\geq 1}k^{1-\gamma} f_k(t)\right). \end{aligned}$$

28 / 44

Introduction

Zero-range processes

Inclusion processe

Simulation Results

 $f_k(t)$ and $p_k(t)$

Figure : Parameter values are b = 4, m = 1000 and $\rho = 10$, p = 10, p = 10,

Inclusion processe

Simulation Results

$p_k(t)$ and ZRP

Figure : Parameter values are b = 4, $\rho = 2$ and system size L = m = 1024.

Inclusion processes

$$u(n) = n, v(n) = d + n, d > 0$$

$$(\mathcal{L}f)(\boldsymbol{\eta}) = \sum_{x,y \in \Lambda} \frac{1}{L-1} \eta_x (d+\eta_y) (f(\boldsymbol{\eta}^{x \to y}) - f(\boldsymbol{\eta})).$$
(11)

Under the condition of $d \rightarrow 0^4$, the critical density of IP is $\rho_c = 0$. The condensate contains all particles and can be localised on any site of the lattice.

Conclusion

⁴Grosskinsky, S., Redig, F. and Vafayi, K., 2011. Condensation in the inclusion process and related models. Journal of Statistical Physics, 142(5), pp.952-974. ← □ → ← ⑦ → ← ≧ → ← ≧ → ← ≧ → ∈ ≥ → ≧

Inclusion processes

$p_k(t)$ of IP

Figure : IP with L = 1024 and $\rho = 2$.

イロン イボン イモン イモン 三日

Inclusion processes

$f_k(t)$ of IP

With
$$\langle \eta
angle = \sum_{k=1}^\infty k f_k(t) =
ho$$
 ,

$$\frac{d}{dt}f_k(t) = (k+1)(d+\rho)f_{k+1}(t) + \rho(d+(k-1))f_{k-1}(t) - (dk+2\rho k+\rho d)f_k(t),$$

valid for all $k \ge 0$ with the convention $f_{-1}(t) \equiv 0$, $\forall t \ge 0$.

This is a birth death chain with state space \mathbb{N}_0 with

birth rate
$$= \rho(d+k)$$

death rate $= (d+\rho)k$.

<ロト < 回ト < 目ト < 目ト < 目ト 目 の Q (や 33 / 44

Inclusion processes

Case d=0

When d = 0, this leads to a linear birth death chain with birth rate = death rate = ρk

$$\frac{d}{dt}f_{k}(t) = \rho(k+1)f_{k+1}(t) + \rho(k-1)f_{k-1}(t) - 2\rho kf_{k}(t).$$
(12)

We assume that $f_k(t)$ takes the scaling form

$$f_k(t) = \epsilon_t^2 h(u)$$
, with $u = k\epsilon_t$. (13)

With $\epsilon_t = \frac{1}{\rho t}$, we have uh''(u) + (2+u)h'(u) + 2h(u) = 0. (14)

> (□ ▶ ◀ 🗇 ▶ ◀ 볼 ▶ ◀ 볼 ▶ 볼 ∽ Q (~ 34 / 44

Inclusion processes Conclusion

$P_k d=0$

When d = 0 in p_k ,

$$\frac{d}{dt}p_{k}(t) = \rho k p_{k+1}(t) + \rho k p_{k-1}(t) - 2\rho k p_{k}(t), \quad (15)$$

for all $k \ge 1$ with the convention $p_0(t) = p_{-1}(t) = 0$.

$$\sum_{k} k p_k(t) = 2\rho t + C,$$

where $C = \rho + 1$ as it is simply the sized-biased initial condition of $Poi(\rho)$. Hence,

$$\sigma^2(t) = \mathbb{E}[f_k] = \rho \mathbb{E}[\rho_k] = 2\rho^2 t + \rho(\rho + 1)$$

Figure : $\sigma^2(t)$ of system size 1024 from simulation of CGIP d = 0, dL = 1 and the birth-death p_k chain.

Figure : Normalised $uh(u) = \epsilon_t^{-1} \rho p_k(\eta)$ birth-death and IP simulation for L = 1024, d = 0, $\rho = 4$. Plotting against the solution of (14).

37 / 44

Inclusion processes

Self-duality

The SIP⁵ is self-dual with the duality function :

$$D(\boldsymbol{\xi},\boldsymbol{\eta})=\prod_{x}d(\boldsymbol{\xi}_{x},\boldsymbol{\eta}_{x}),$$

where
$$d(k, n) = \frac{n!}{(n-k)!} \frac{\Gamma(d)}{\Gamma(d+k)}$$
.

The self-duality of the SIP is then given by

$$\mathbb{E}_{\boldsymbol{\eta}}[D(\boldsymbol{\xi},\boldsymbol{\eta}(t))] = \mathbb{E}_{\boldsymbol{\xi}}[D(\boldsymbol{\xi}(t),\boldsymbol{\eta}].$$

Conclusion

⁵Giardina, C., Kurchan, J., Redig, F. and Vafayi, K., 2009. Duality and hidden symmetries in interacting particle systems. Journal of Statistical Physics, 135(1), pp.25-55.

Inclusion processes

Time dependent variances $\sigma^2(t)$

Proposition

For $x \neq y \in \Lambda$, and for every initial product measure ν_{ρ} with density ρ and second moment σ_0^2 we have

$$\sigma^2(t) = \sigma_0^2 \mathbb{P}_{x,x}[X_t = Y_t] + \left(\frac{d\rho(1+\rho) + \rho^2}{d}\right) \mathbb{P}_{x,x}[X_t \neq Y_t], \quad (16)$$

where X_t and Y_t denote the particle positions for two SIP-particles.

Inclusion processes

Exact computations for two dual particles

Consider the process with only two particles called Z_t which has only 2 states which is either both particles are on the same site i.e. $Z_t = 0$ or they are on two different sites i.e. $Z_t = 1$. This process has Q-matrix :

$$Q = \begin{pmatrix} -2d(L-1) & 2d(L-1) \\ 2(d+1) & -2(d+1) \end{pmatrix}$$

Diagonalise Q which has eigenvalues 0 and -2(1+dL) to obtain $Q=U\Lambda U^{-1}$ where

$$\Lambda = \left(\begin{array}{cc} 0 & 0 \\ 0 & -2(1+dL) \end{array}\right)$$

Therefore,

$$P_t = \frac{1}{(1+dL)} \begin{pmatrix} (d+1) + d(L-1)e^{-2(1+dL)t} & d(L-1)[1-e^{-2(1+dL)t}] \\ (d+1)[1-e^{-2(1+dL)t}] & d(L-1) + 2(d+1)e^{-2(1+dL)t} \end{pmatrix}.$$

$$\sigma^{2}(t) = \sigma_{0}^{2} \mathbb{P}_{0}[Z_{t} = 0] + \left(\frac{d\rho(1+\rho)+\rho^{2}}{d}\right) \mathbb{P}_{0}[Z_{t} = 1].$$
Using $\mathbb{P}_{0}(Z_{t} = 0) = \frac{1}{1+dL}[(d+1)+d(L-1)e^{-2(1+dL)t}],$

$$\sigma^{2}(t) = \rho(\rho+1) + \frac{\rho^{2}(L-1)}{(1-e^{-2(1+dL)t})}.$$
(17)

$$\sigma^{2}(t) = \rho(\rho+1) + \frac{\rho(L-1)}{1+dL}(1-e^{-2(1+dL)t}).$$
(17)

Figure : The second moment $\sigma^2(t)$ of IP L = 1024.

Conclusion

- The coarsening time scale of CGZRP is $\epsilon_t = t^{-\frac{1}{1+\gamma}}$ for $\gamma \in (0, 1]$.
- The coarsening time scale of CGIP d = 0 is $\epsilon_t = \frac{1}{\rho t}$
- The use of the size-biased birth death chain provides a strong tool to analyze the dynamics without finite size effects and significantly improves statistics.
- This approach is generic and can be adapted to other condensing particle systems such as Inclusion processes (work in progress).

Inclusion processes

For Further Reading

For Further Reading

C Godreche

Dynamics of condensation in zero-range processes. Journal of Physics A: Mathematical and General, vol. 36, no.23, p.6313, 2003.

P. Chleboun and S. Grosskinsky.

Condensation in stochastic particle systems with stationary product measure. Journal of Statistical Physics, vol. 154, no 1-2, pp. 432–465,2014.

M Evans and B Waclaw

Condensation in stochastic mass transport models: beyond the zero-range process.

Journal of Physics A: Mathematical and Theoretical, vol. 17, no. 9, p.

J.Cao, P. Chleboun, and S. Grosskinsky.

Dynamics of condensation in the totally asymmetric inclusion process. Journal of Statistical Physics vol. 155, no 3, pp. 523-543, 2014.

📎 W. J. and S. Grosskinsky,

Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 18, 2016

44 / 44