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1. Definitions and old results
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Spatial random permutations: finite volume

I X ⊂ Rd locally finite set,
Λ ⊂ Rd bounded domain,
XΛ = X ∩ Λ.

I Periodic boundary conditions.

I SΛ = set of permutations
π : XΛ → XΛ.

I Typical example for a measure
on SΛ:

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

|π(x)− x|2
)
.

I Penalization parameter α determines expected jump length.

I Aim: Study the infinite volume limit at density ρ = 1:

V,N →∞, N
V = 1

I First question: Existence of the infinite volume limit.
I Exciting questions: Existence and geometry of long cycles.
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Spatial random permutations are not Gibbs
measures

I Try to view SRP as a collection of XΛ-valued spins
(π(x))x∈XΛ

.

I Product reference measure:

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

ξ
(
π(x)− x

))
.

I But to get to permutations, we need the infinite range, hard
core condition

π(x) 6= π(y) for all x 6= y ∈ XΛ.

I None of the Gibbs measures techniques work!

V. Betz (Darmstadt) Spatial random permutations



Spatial random permutations are not Gibbs
measures

I Try to view SRP as a collection of XΛ-valued spins
(π(x))x∈XΛ

.

I Product reference measure:

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

ξ
(
π(x)− x

))
.

I But to get to permutations, we need the infinite range, hard
core condition

π(x) 6= π(y) for all x 6= y ∈ XΛ.

I None of the Gibbs measures techniques work!

V. Betz (Darmstadt) Spatial random permutations



Spatial random permutations are not Gibbs
measures

I Try to view SRP as a collection of XΛ-valued spins
(π(x))x∈XΛ

.

I Product reference measure:

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

ξ
(
π(x)− x

))
.

I But to get to permutations, we need the infinite range, hard
core condition

π(x) 6= π(y) for all x 6= y ∈ XΛ.

I None of the Gibbs measures techniques work!

V. Betz (Darmstadt) Spatial random permutations



Spatial random permutations are not Gibbs
measures

I Try to view SRP as a collection of XΛ-valued spins
(π(x))x∈XΛ

.

I Product reference measure:

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

ξ
(
π(x)− x

))
.

I But to get to permutations, we need the infinite range, hard
core condition

π(x) 6= π(y) for all x 6= y ∈ XΛ.

I None of the Gibbs measures techniques work!

V. Betz (Darmstadt) Spatial random permutations



Infinite cycles: a phase transition

PΛ(π) =
1

Z(Λ)
exp

(
− α

∑
x∈XΛ

∣∣π(x)− x
∣∣2)

I Fix a point x (e.g. the origin). Write Cx(π) for the cycle of π
containing x.

I Question: How long is Cx typically?

I For α large enough, Cx is short:

∃δ > 0 : lim sup
|Λ|→∞

EΛ( eδ|Cx| ) <∞

.I For dimension d > 3, we expect a phase transition to a
regime of infinite cycles:

∃αc > 0 : pα := lim
K→∞

lim inf
|Λ|→∞

PΛ(|Cx| > K) > 0 iff α < αc

I We do not even know monotonicity of pα.
I Only result so far: in d = 1 with convex potential, there is no

(nontrivial) phase transition. [Biskup, Richthammer 2014].
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SRP: what is known

PΛ(π) =
1

Z(Λ)
exp

(
− α

∑
x∈XΛ

ξ(π(x)− x)
)

I [B. 14]: Existence of the infinite volume limit if X is a regular
lattice with periodic bc, and if for some δ > 0:∑

x∈X
e−(α−δ)ξ(x) <∞

I [B., Ueltschi 09]: Absence of infinite cycles for large α.
I [Biskup, Richthammer 14]: Rather complete theory for d = 1

and convex ξ.
I [B., U. 09-11]: Phase transition for the annealed model:

PL,N (π) =
1

Z(L)N !

∫
[−L,L]dN

exp
(
−α

N∑
i=1

ξ(xπ(i)−xi)
) N∏
i=1

dxi
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Phase transition for annealed SRP

PL,N (π) =
1

Z(L)N !

∫
[−L,L]dN

exp
(
− α

N∑
i=1

ξ(xπ(i) − xi)
) N∏
i=1

dxi

Assume positivity of the Fourier transform of e−ξ .

Define ε(k) through e−ε(k) =

∫
Rd

e−2πikx e−ξ(x) dx,

`(j)(π) = the length of the j-th longest cycle in π.

Critical density: ρc :=

∫
Rd

1

eε(k) − 1
dk 6∞.

Theorem: [B.-Ueltschi 2011]

a) The expected fraction of points in infinite cycles is

lim
K→∞

lim
V,N→∞,N/V=ρ

E
( 1

N

∑
j:`(j)>K

`(j)
)

= ν = max
(

0, 1− ρc

ρ

)
.

b) For ν > 0, long cycles are Poisson-Dirichlet distributed:

lim
V,N→∞

(`(1)

νN
,
`(2)

νN
, . . .

)
= PD(1) in distribution.

V. Betz (Darmstadt) Spatial random permutations



Phase transition for annealed SRP

PL,N (π) =
1

Z(L)N !

∫
[−L,L]dN

exp
(
− α

N∑
i=1

ξ(xπ(i) − xi)
) N∏
i=1

dxi

Assume positivity of the Fourier transform of e−ξ .

Define ε(k) through e−ε(k) =

∫
Rd

e−2πikx e−ξ(x) dx,

`(j)(π) = the length of the j-th longest cycle in π.

Critical density: ρc :=

∫
Rd

1

eε(k) − 1
dk 6∞.

Theorem: [B.-Ueltschi 2011]

a) The expected fraction of points in infinite cycles is

lim
K→∞

lim
V,N→∞,N/V=ρ

E
( 1

N

∑
j:`(j)>K

`(j)
)

= ν = max
(

0, 1− ρc

ρ

)
.

b) For ν > 0, long cycles are Poisson-Dirichlet distributed:

lim
V,N→∞

(`(1)

νN
,
`(2)

νN
, . . .

)
= PD(1) in distribution.

V. Betz (Darmstadt) Spatial random permutations



2. From BEC to SRP
(and back ?)
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Bose-Einstein condensation

Very cold quantum gases (e.g. 23Na) behave radically different
from classical gases:
A finite fraction of particles will be in the quantum state with
momentum 0. (Bose-Einstein Kondensation)
Classical gases: Boltzmann-distribution.
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Many body quantum mechanics
at positive temperature

I Hamilton-Operator for N particles with pair potential U on
ΛN ⊂ RdN , periodic b.c.:

H = −
N∑
i=1

∆i +
∑

1 6 i<j 6 N

U(xi − xj).

I particles are indistinguishable Bosons, therefore:
H is defined on L2

symm(ΛN ) (periodic b.c.).

I At positive temperature 1/β the density matrix e−βH

describes the system: the expected value of an observable A
(self-adjoint operator) is given by

〈A〉β =
Tr Symm(A e−βH )

Tr Symm( e−βH )
=

Tr (SA e−βH )

Tr (S e−βH)

(S is symmetrisation operator, A commutes with S.)
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From BEC to SRP: trace formula

We want an expression for Tr e−βH for all β > 0.
Trace formula:

Tr ( e−βH ) =

∫
Kβ(x, x) dx,

where Kβ is the integral kernel of e−βH :

e−βH f(x) =

∫
Kβ(x, y)f(y) dy.

Symmetrisation: H on L2
symm(ΛN ),

integral kernel Kβ(x,y) of e−βH , x = (x1, . . . , xN ):

Tr Symm( e−βH ) = Tr (S e−βH ) =
1

N !

∑
π∈SN

∫
ΛN

Kβ(xπ,x) dx.

with xπ = (xπ(1), . . . , xπ(N)).
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From BEC to SRP: Feynman-Kac formula

For a Schrödinger operator H = −∆ + V with e.g. V ∈ L∞:

e−βH (x, y) =
1

(8πβ)3/2
e−|x−y|

2/8β

∫
e−

∫ 4β
0 V (ωs) ds Ŵ4β

x,y(dω),

where Ŵ4β
x,y is Brownian bridge.

For H = −
N∑
i=1

∆i +
∑

1 6 i<j 6 N

U(xi − xj) on L2
sym(ΛN ) we get

Tr (S e−βH ) = 1
N !(8πβ)dN/2

∑
π∈SN

∫
ΛN

e
− 1

8β

∑N
i=1 |xi−xπ(i)|2 eHI(x,π)

N∏
i=1

dxi,

with Λ = [−L,L]d and

eHI(x,π) =
[ N∏
i=1

∫
dŴ 4β

xi,xπ(i)
(ωi)

]
e−

∑
1 6 i<j 6 N

∫ 4β
0 U(ωi(s)−ωj(s))ds .
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Connection to SRP

Tr e−βH =
1

N !(8πβ)3N/2

∑
π∈SN

∫
ΛN

dx e
− 1

8β

∑N
i=1 |xi−xπ(i)|2 eHI(x,π) .

This is the partition function of the annealed SRP measure

PN ({π}) :=
1

ZNN !

∫
ΛN

dx e
− 1

8β

∑N
i=1 |xi−xπ(i)|2 eHI(x,π) .

C1(π) := Length of the cycle containing 1. Feynmans claim:

BEC ⇔ ∃ε > 0 : lim inf
N→∞

PN (C1 > εN) > 0.

For U = 0 we can show this, what about U 6= 0?
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Expected fraction of particles in (free) ground state

Number operator wrt. φ ∈ L2(Λ):

[Nφψ](x1, . . . , xN ) =

N∑
j=1

φ(xj)
〈
φ, ψ(x1, . . . , xj−1, · , xj+1, . . . , xN

〉
L2(Λ)

measures ’total overlap’ of particles in ψ with φ.

Note that Nφ

commutes with S; when φ = 1√
V

is the ground state of a free gas

particle,

gρ,β := lim
V→∞,N/V=ρ

1

Tr ( e−βH S)
Tr
( 1

N
Nφ e−βH S

)
is the expected fraction of particles overlapping with φ, at
inverse temperature β and density ρ. By definition:

BEC ⇔ gρ,β 6= 0.
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[Nφψ](x1, . . . , xN ) =

N∑
j=1

φ(xj)
〈
φ, ψ(x1, . . . , xj−1, · , xj+1, . . . , xN

〉
L2(Λ)

measures ’total overlap’ of particles in ψ with φ. Note that Nφ

commutes with S; when φ = 1√
V

is the ground state of a free gas

particle,

gρ,β := lim
V→∞,N/V=ρ

1

Tr ( e−βH S)
Tr
( 1

N
Nφ e−βH S

)
is the expected fraction of particles overlapping with φ, at
inverse temperature β and density ρ. By definition:

BEC ⇔ gρ,β 6= 0.
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Permutations with open cycles

Daniel Ueltschi [PRL 97, 170601 (2006)] observed:

Tr (Nφ e−βH S) =
1

ρV 2

∫
Λ2

dxdy Yx→y(β,N, V ),

where Yx→y(β,N, V ) is the partition function of SRP with one
open cycle from x to y.

We have

gρ,β = lim
V→∞,N/V=ρ

1

ρV 2

∫
Λ2

dxdy
Yx→y(β,N, V )

Y (β,N, V )
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ODLRO, open cycles and infinite cycles

gρ,β = lim
V→∞,N/V=ρ

1

ρV 2

∫
Λ2

dx dy
Yx→y(β,N, V )

Y (β,N, V )

If things are nice, we expect:

gρ,β > 0⇔ Yx→y(β,N, V )

Y (β,N, V )
does not decay as |x− y| → ∞

(this is ODLRO in a different language)

⇔ The large N asymptotics of the two partition functions

are comparable uniformly in |x− y|
⇔ Cycles connecting x and y are not rare

even when not enforced, uniformly in |x− y|.
⇔ Annealed SRP has infinite cycles

There is no rigorous proof of these connections.
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Back to lattice SRP: lattice Bosons
Force the Bosons to live on a lattice Zd ∩ Λ:

H = −
N∑
i=1

∆i +
∑

1 6 i<j 6 N

U(xi − xj),

on L2(Zd ∩ Λ), where now ∆i is the discrete Laplacian.

Special case: Formally put U(xi − xj) =∞1{xi=xj}. ’hard-core’
lattice gas.

Famous result by Dyson, Lieb, Simon: ODRLO holds for half-filling
in the grand canonical ensemble.

Feynman-Kac-representation:

PN ({π}) :=
1

ZNN !

∑
x∈ΛN∩ZNd

N∏
i=1

pβ(xi, xπ(i)) eHI(x,π) .

pβ(x, y) ist the transition kernel of continuous time RW.

Balint Toth (93): Representation of the hard core Bose-Gas via an
ensemble of self-avoiding random walks.
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A radical simplification

PN ({π}) :=
1

ZNN !

∑
x∈ΛN∩ZNd

N∏
i=1

pβ(xi, xπ(i)) eHI(x,π) .

with

eHI(x,π) =
[ N∏
i=1

∫
dQ̂2β

xi,xπ(i)
(ωi)

]
e−

∑
1 6 i<j 6 N

∫ 2β
0 U(ωi(s)−ωj(s))ds .

Radical Simplification: Replace the term eHI(x,π) by the condition
that the particles do not meet at the beginning and the end of the
run time β only (see also Feynman 1953!).

P̃N ({π}) :=
1

ZNN !

∑
x∈AN

N∏
i=1

pβ(xi, xπ(i)),

AN = {x ∈ ΛN ∩ ZNd : xi 6= xj if i 6= j}.
Lattice SRP is this model at ’full filling’, i.e. exactly as many
particles as there are places.
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3. Lattice permutations:
numerics and some results.
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SRP and Self-avoiding random walks

I Nearest neighbor SRP with forced long cycle, Λ = [−L,L]d

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

|π(x)− x|2
)

1{|π(x)−x| 6 1},

with the condition that π((L/2, 0, . . . , 0)) = (0, . . . , 0).

I Self-avoiding walk from 0 to L = (L/2, 0, . . . , 0):
γ self-avoiding path of length |γ| from 0 to L,

PL(γ) = 1
ZL

e−α|γ|

I [Duminil-Copin, Kozma, Yadin ’12]: γ is ’weakly space filling’
as L→∞ if eα < µ = connective constant of SARW.

I [B., Taggi ’16]: ∃α0 with eα0 < µ, such that ∀α > α0, there
are no infinite cycles in the standard nearest neighbor SRP.

I [Kovchegov ’02]: For eα > µ, the SARW from 0 to L
converges to a Brownian Bridge in diffusive scaling.

I [B., Taggi ’16]: Nearest neighbor SRP with a forced cycle
does the same for large enough α.
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Geometry of SRP in two dimensions

Λ a finite box in Z2

PΛ({π}) =
1

Z(Λ)
exp

(
− α

∑
x∈Λ

|π(x)− x|2
)
.

I Numerical results [Gandolfo, Ruiz, Ueltschi 07] show: The origin (or any
point) is not in an infinite cycle with probability one.

I But if we focus on the longest cycle or force cycles through
the system, interesting things happen!

I We show a snapshot of the equilibrated Metropolis dynamics
in a box of side length 1000.

I The 10 longest cycles are shown, color coded in (red, blue,
green, black, dark gray, not so dark gray, etc).
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SRP for parameter α = 1.1
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SRP for parameter α = 1.0
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SRP for parameter α = 0.9
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SRP for parameter α = 0.8
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SRP for parameter α = 0.75
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SRP for parameter α = 0.7

V. Betz (Darmstadt) Spatial random permutations



SRP for parameter α = 0.6
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SRP for parameter α = 0.5
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SRP for parameter α = 0.4
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SRP for parameter α = 0.3
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Kosterlitz-Thouless transition
I The rate of decay of P(|Cx| > K) changes from exponential

to algebraic: P(|Cx| > K) ∼ K−p(α).
I K 7→ P(Cx > K) is algebraic iff the two-point function

P(y ∈ Cx) decays algebraically in |x− y|.
I Kosterlitz-Thouless phase transition, known from 2d models

with a continuous symmetry.

Log-log-plot of K 7→ P(|Cx| > K) for α = 0.5
and box side length 1000, 2000, 4000.
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Kosterlitz-Thouless transition: Numerics
In [B. 14] the decay behaviour of φ(K) = P(|Cx| > K) is investigated
systematically, in order to estimate the critical parameter αc.

Amazing universality predictions by general (physics) KT-theory:

I For α < αc, φ(K) ∼ K−p(α), and p(α) is approximately linear
and limα→αc p(α) = 0.25.

I For α > αc, φ(K) ∼ e−r(α)K , and there exist constants D, γ
such that r(α) = D exp(− γ

|α−αc|1/2
).

Here are the numerical results, predicting αc ≈ 0.64:
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Measured power law p(α) ≈ 0.019 + 0.415α.
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Α
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rHΑL

Measured inverse correlation length (exp decay rate)

r(α) ≈ 20.99 exp(−3.434/|α− αc|1/2).
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Fractal dimension

I Compute the box-counting dimension:

dbox = lim
ε→0

ln(# of ε-boxes needed to cover longest cycle)

ln(1/ε)

I Sample with 2000× 2000 points in Λ = [0, 1]2, with
1/1000 6 ε 6 1/10:

I Linear fitting gives dbox(α) ≈ 2− 7
10α for small α.

Loglog plot of the number of boxes needed

to cover the longest cycle vs the box side

length

0.0 0.5 1.0 1.5
Α1.0

1.2
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1.8

2.0

dHΑL

Box counting dimension as function of the

temperature
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I Good agreement for square and triangular lattice; domain
Markov property; symmetries;

I Conjecture: two-dimensional SRP cycles are distributed like
SLE curves, at least for α < αc.
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Thank you for your attention!
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