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 Motivation and background.
* Recap zero-range process (ZRP):

» Definition.

» Stationary measures.
 Other examples with product stationary measures.
 Condensation...

» On finite lattices and in the thermodynamic limit.
* Result

» Condensation and product stationary measure =>
non-monotone dynamics.

* |dea of proof.
 Monotone condensing systems.



 Monotonicity is a useful tool:

» Coupling techniques used to derive hydrodynamic limits.
[e.g. T. Gobron, E. Saada, Ann. I. H. Poincare (2010)]

» Dynamics of condensation in inhomogeneous systems.
[e.g. C. Landim, Ann. Probab. (1996)]

 Known examples of (homogeneous) condensing systems
are non-monotone;

» for example the ZRP.

* Non-monotonicity indicates a canonical overshoot of
relevant observables.
» Possible links with metastability at the critical point.



& Lattice: A ={1,...,L} R
State space: () = NQL ={0,1,2,...}*
(a priori no upper bound on local occupancy)
\ Configuration: n = (7;).ea  with 7, € Ny y

* Dynamics: continuous time Markov process which conserves the
total number of particles.

» Ergodicon Qp n ={neQy : an =N}.

rEA

» Unique stationary measure on 7L,N called canonical measures.

Assume throughout spatially homogeneous:
TNz €] =7Lnny €] Va,yeA.
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Condensation on fixed L

Let M = -
et Mp(n) := maxn

Condensation occurs on )y, y for L > 2 (fixed) iff
lim lim WL’N[MLZN—K]:l

K—o0o0 N—oo

\

“All but a finite number of particles typically accumulate on a single site.”

A

as N — oo.
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Monotonicity

* Partialorderon Q;,: n<({ < n, <, forall x €A

7 G
4—2—%—3—3- : j—g—g—i—i
e f:Q; — Risincreasing if n < ¢ implies f(n) < f({).

 Partial order on measures:

p < mif u(f) < w(f) for all f increasing.



Monotonicity

* A process is monotone (attractive) if

o <mg — ur <my forall £>0.

* In particular, for any initial conditions with 17 < ( and f increasing

Ep f(ne) < Ec f(G)

» i.e. the process preserves monotonicity.

* For example zero-range process is monotone iff the jump rates are
increasing in the site occupation (no condensation!).



/ero-range process

e (Generator:

Lfn) = pla,y)ulng [fF(n™") = f(n)]

TEA

» p(x,y) irreducible RW on A.
» Assume p(r,y) = q(r — y).

........

[Spitzer (1970), Andjel (1982)]



Stationary measures

e Grand canonical measures:
» Product measures on {);, with marginals

1 T
() w(n)e
e ¢ < ¢. the radius of convergence of z(¢) = Zn w(n)e"

* single site weights (for ZRP):

n

1
wim = 1175

V¢[77:c:n]:

» Density R(¢) = vy(n,y) increasing in ¢.
» Critical density p. = R(¢.) € |0, 00].

pe < oo implies condensation in the thermodynamic limit.



Stationary measures

e (Canonical measures (fixed number of particles N).

» 7TLN |Z’I7$—N]




Other examples

* Misanthrope process

L f ) = Y2 (e ng)p(e,y) (077 = ()

z,yeEA

_ [Cocozza-Thivent ‘85]
Product measures iff Vn>1,m >0

r(n,m) _ r(n,0)r(1,m)
rtcm+1,n—1) r(m+1,0)r(l,n—1)"

and symmetric, or

r(n2,n3)p(2,3)

r(n,m) —r(m,n) =r(n,0) —r(m,0)
then /\I r(ns,14)P(5:4)

H?“].k—]_
o8 $ 3 ¢
k=1

1 2 3 4 5




Other examples

e Generalised ZRP

£ ) = 3 antap(e) (1677~ )

z,yeA [Evans et al. 2004]
Product measures iff

ai(n) = u(k) An — k) ;

- h(n) ay(m2)P(2,3)
r /-\ az(ns)p(5,4)
w(n) = h(n) >
¢
S | i
A
1 2 3 4 5



* Recall condensation in the thermodynamic limit.

Equivalence of ensembles

In the thermodynamic limit N, L — oo with N/L — p

R(¢), ifp < p.

TL.N — Vgy Where _ .
¢ = ¢, itp > pc

P < Pc p > Pe

T« Tlx A
. condensed
fluid (p=pe)L
P> Pe

X
[Jeon, March, Pittel '00; G., Schiitz, Spohn '03; Ferrari, Landim, Sisko '07; Armendariz, Loulakis '09]

X



* Onfinitel
Let My (n) = WAX 1)

Condensation occurs on {1y, y for L > 2 (fixed) iff
lim lim WL,N[ML 2 N—K] =1.

K—oo N—oco

\

“All but a finite number of particles typically accumulate on a single site.”

[e.g. Ferrari et al. 2007]

* Product stationary measure and condensation on finite L iff
sub-exponential grand canonical critical measures



* Onfinite L
Assume lim w(n —1)/w(n) € (0, oo.

n—oo

If there are stationary product measures then there is
condensation for fixed L iff ¢, < oo, vy, exists and

lim  Zoe [ + 12 = N|
N — o0 V¢c [771 = N]

€ (0,00) exists.

* Product stationary measure and condensation on finite L iff
sub-exponential grand canonical critical measures



* Onfinite L
Assume lim w(n —1)/w(n) € (0, oo.

n—oo

If there are stationary product measures then there is
condensation for fixed L iff ¢, < oo, vy, exists and

lim 2o m + 12 = N
11m
N—o0 V.. [?71 :l\/]

€ (0,00) exists.

» Qutside the max the canonical distribution converges in TV to the
critical product measure,
L—1

TL, N m =n1,...,0-1 =nr_1 | M =n1] = H V. m: =n;] as N — c0.
i=1



* Onfinite L
Assume lim w(n —1)/w(n) € (0, oo.

n—oo

If there are stationary product measures then there is
condensation for fixed L iff ¢, < oo, vy, exists and

lim  Zoe [ + 12 = N|
N — o0 V¢c [771 = N]

€ (0,00) exists.

» Examples
o power law tails w(n) ~ n=? for b > 1.

e stretched exponential tails w(n) ~ e~ " for0 <y <1, C > 1.

e almost exponential tails w(n) ~ e~/ log(n)” for 8 > 0.



Connection with the thermodynamic limit.

» Product measure and condensation on fixed L => sub-exponential.
» Sub-exponential and p. < 0o

=> condensation in the thermodynamic limit.

[Armendariz, Loulakis (2011)]

All well studied condensing systems condense both in the
thermodynamic limit and on finite L.

Example condensing for fixed L but not in the thermodynamic
limit:
» power law tails w(n) ~ n=° for b € (1,2).

» First moment not finite.



A (spatially homogeneous) process which condenses for
fixed L and has stationary product measures with p. < oo is
necessarily non monotone.

e Surprisingly general.

» Statement about the dynamics (monotonicity) from hypothesis
on the stationary measures.

The same is true if w(n) ~ n=° with b € (3/2,2].
This case has p. = oo so does not condense in TD limit.
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Preliminary result

Lemma

If the process is monotone then canonical distirbutions 7z,
are ordered in [V,

7TL,N§7TL,N—|—1 for all NEO.

Proof

Fix two intial distributions p and p’ concentrating on Qr n
and (27, yy1 respectively, by

(

1 ity =N,n,=0forx#1

= 4
i) \ 0 otherwise,

(1 ifm =N+1,m =0forz#£1

/
= <
il \0 otherwise,




Preliminary result

Lemma

If the process is monotone then canonical distirbutions 7z,
are ordered in [V,

7TL,N§7TL,N—|—1 for all NEO.

Proof

Fix two intial distributions p and p’ concentrating on Qr n
and Qr ny1 respectively. Clearly p < p'.

ergodicity
' !

. . /
7Ny = lm pp < lim py, = 7 N1
t— 00 t— 00

monotonicity



 The idea of the proof comes from the observation of a
‘canonical overshoot’ in the ZRP.

» Turns out to be more general.

» Examine the background density
WL’N(N — ML)

RP&(N) =
bs() o= NN

RYE(N) = iy v (“density outside max”)

-

An increasing function.

* If the process is monotone, 71 n are ordered in N, so

R*(N) < RPB(N +1).



 The idea of the proof comes from the observation of a
‘canonical overshoot’ in the ZRP.

» Turns out to be more general.

» Examine the background density

[PC., Grosskinsky (2010)]

[Armendariz, Grosskinsky, Loulakis (2013)]
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o (Left) Power law weights w(n) = n~? with b = 5.

o (Right) Log-normal weights w(n) = exp{—(log(n))?}.



* |t turns out that we are unable to check monotonicity of the
background density...

» There is a simpler monotone observable
f(’fI)Z]l(?h —...=1Nr1 :0) .

* Which is decreasing.
w(0)"~1w(N)

AR

7TL,N(f) = 7TL,N[“aH particles on site L”] =

» If the process is monotone then

WL,N(f) > 7TL,N—I—1(f) y
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* |t turns out that we are unable to check monotonicity of the
background density...

» |f the process is monotone then
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» Recall, condensation on fixed L and product stationary
measures implies v,_ is sub-exponential.

» In particular

ZL N

() — Lz(p )" as N — oo for all L > 2.

[Chover, Ney, Wainger (1973)]



* |t turns out that we are unable to check monotonicity of the
background density...

» |f the process is monotone then

AR < 21, N+1

f 11 N>0.
wN) S w(N+1) =

» Recall, condensation on fixed L and product stationary
measures implies v,_ is sub-exponential.

» In particular

ZL N
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* |t turns out that we are unable to check monotonicity of the
background density...

» Monotone implies:

Z1L N 21, N+1
w(N) — w(N +1)

forall N >0.

» Condenses implies:

AR

Lz(¢c)" "' as N L>2.
w(N)% z(de) as N — oo for all

[Chover, Ney, Wainger (1973)]

» We are able to construct a subsequence on which the
convergence is actually from above, which gives a

contradiction. 1 Z1, N
HelN) = G T w(X)




Ha(N)

1
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o (Left) Power law weights w(n) = n=" on two sites L = 2.

o (Right) Log-normal weights w(n) = exp{—(log(n))?}.



Monotone condensing examples

* Non-homogenous processes can be monotone and
condense due to site disorder, e.g. ZRP with one slow
Site.



Monotone condensing examples

* Chipping model [Rajesh, Majumdar (2011)]

LM fm) = Y wl(ng > 0)pla,y) (f(n™) = f(n))

x,yeAr,

+ Y (e > 0)p(.y) (f(n +na(Sy — 62)) — f(n)) -

r,yeN
w p(2,3)




Monotone condensing examples

* Chipping model [Rajesh, Majumdar (2011)]
» No product stationary measures.

» Proving anything on more than 2 sites is hard, but there are
heuristics. If w < 1 it condenses.

w p(2,3)

Y

1 p(5,4)




Monotone condensing examples

* Chipping model [Rajesh, Majumdar (2011)]
» No product stationary measures.

» Proving anything on more than 2 sites is hard, but there are
heuristics. If w < 1 it condenses.
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Density p = N/L



Monotone condensing examples

* The generalised ZRP with w(n) ~n™" with b€ (1,3/2],

i.e. p. = 0o but condenses on fixed L.

£ ) = Y an(ap(e) (1677~ )

x,YyeN

as(n2)p(2,3)

az(ns)p(5,4)

1 2 3 4 5

¢
b
e




Monotone condensing examples

* The generalised ZRP with w(n) ~n™" with b€ (1,3/2],
i.e. p. = 0o but condenses on fixed L.
L ) = Y an(n(en) (077 - 1))

x,YyeN

0 ifk=0o0rn=20,
ap(n) =< kb1 - E)=0 ifpe{1,....,n—1}
1

otherwise.
\ as(n2)p(2,3)

/-\ az(ns)p(5,4)

ﬁ
s 9 8 3

1 2 3 4 5




Overshoot and metastability

* For power law and stretched exponential tails the overshoot
has been observed to be related to metastability in the ZRP.

p. p,(1000)
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* For homogenous systems

» Condensation and product stationary measure =>
non-monotone dynamics.

» General result on dynamics.
* Implications for metastability.

e Connections between condensation on finite L and in
thermodynamic limit.

 Examples of homogeneous condensing process with
product stationary measures.

» They don’t condense in the thermodynamic limit.

Thank you.



