Subexponential LD & Condensing ZRP

Michail Loulakis

School of Applied Mathematical and Physical Sciences, NTUA

joint work with Inés Armendáriz and Stefan Grosskinsky

Bath, July 4, 2016

A toy example

Suppose $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of i.i.d. r.v.'s with

$$X_i \sim \mathcal{N}(m, \sigma^2).$$

Then,
$$\bar{X}_n := \frac{X_1 + \dots + X_n}{n} \sim \mathcal{N}(m, \frac{\sigma^2}{n})$$

and for any x > m

$$\mathbb{P}\left[\bar{X}_n \ge x\right] = \int_{\frac{\sqrt{n}(x-m)}{\sigma}}^{\infty} e^{-\frac{u^2}{2}} \frac{du}{\sqrt{2\pi}} \sim \frac{\sigma}{\sqrt{2\pi n}(x-m)} e^{-\frac{n(x-m)^2}{2\sigma^2}}$$

< E

A toy example

Suppose $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of i.i.d. r.v.'s with

$$X_i \sim \mathcal{N}(m, \sigma^2).$$

Then,
$$\bar{X}_n := \frac{X_1 + \dots + X_n}{n} \sim \mathcal{N}(m, \frac{\sigma^2}{n})$$

and for any $\boldsymbol{x} > \boldsymbol{m}$

$$\mathbb{P}\left[\bar{X}_n \ge x\right] = \int_{\frac{\sqrt{n}(x-m)}{\sigma}}^{\infty} e^{-\frac{u^2}{2}} \frac{du}{\sqrt{2\pi}} \sim \frac{\sigma}{\sqrt{2\pi n}(x-m)} e^{-\frac{n(x-m)^2}{2\sigma^2}}$$

That is,

$$\frac{1}{n}\log \mathbb{P}\big[\bar{X}_n \ge x\big] \longrightarrow -\frac{(x-m)^2}{2\sigma^2}.$$

- ∢ ≣ ▶

A toy example II

Suppose $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of i.i.d. r.v.'s with $X_i \sim \mathcal{N}(m, \sigma^2).$

Then,

$$X_i - \bar{X}_n \sim \mathcal{N}(0, \frac{(n-1)\sigma^2}{n})$$

and

 $X_i - \bar{X}_n, \, \bar{X}_n$ are independent.

Hence,

$$\mathcal{L}[X_i \mid \bar{X}_n = x] = \mathcal{N}(x, \frac{(n-1)\sigma^2}{n}) \longrightarrow \mathcal{N}(x, \sigma^2).$$

A toy example II

Suppose $\{X_n\}_{n\in\mathbb{N}}$ is a sequence of i.i.d. r.v.'s with

$$X_i \sim \mathcal{N}(m, \sigma^2).$$

With a bit more work we find

$$\mathsf{Cov}(X_i - \bar{X}_n, X_j - \bar{X}_n) = \sigma^2 \delta_{ij} - \frac{\sigma^2}{n}$$

and, if we set $\mathbf{e}^{ op} = (1, 1, \dots, 1)$, then for any $k \in \mathbb{N}$

$$\mathcal{L}[(X_1,\cdots,X_k) \mid \bar{X}_n = x] = \mathcal{N}(x\mathbf{e},\sigma^2 \mathbb{I}_k - \frac{\sigma^2}{n}\mathbf{e}\,\mathbf{e}^\top) \longrightarrow \mu^k$$

where the law μ is $\mathcal{N}(x, \sigma^2)$.

[Cramér 1938]

Cramér's theorem

Suppose $\{X_n\}_{n\in\mathbb{N}}$ are i.i.d. r.v.'s with common law μ and $M(\lambda) = \mathbb{E}[e^{\lambda X_i}] < \infty$, for $|\lambda| \le \lambda_0$. If $x > \mathbb{E}[X_i]$, then $\frac{1}{n} \log \mathbb{P}[\bar{X}_n \ge x] \longrightarrow -I(x)$,

where

Bath 4/7/2016 Subexponential LD & Condensing ZRP

(日)

Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically realised.

$$\mathcal{L}[(X_1, X_2, \dots, X_k) \mid \bar{X}_n \ge x] \longrightarrow \mu_*^k.$$

Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically realised.

$$\mathcal{L}\big[(X_1, X_2, \dots, X_k) \mid \bar{X}_n \ge x\big] \longrightarrow \mu_*^k.$$

 μ_{\ast} solves the following variational problem

$$\inf_{\nu \in \mathcal{I}} H(\nu|\mu), \quad \text{where} \quad \mathcal{I} = \{\nu \in M_1(\mathbb{R}) : \int u \, \nu(du) \ge x\}$$

and

$$H(\nu|\mu) = \begin{cases} \int f \log f \ d\mu & \text{if } \nu \ll \mu \text{ with } f = \frac{d\nu}{d\mu}, \\ +\infty & \text{otherwise} \end{cases}$$

Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically realised.

$$\mathcal{L}\big[(X_1, X_2, \dots, X_k) \mid \bar{X}_n \ge x\big] \longrightarrow \mu_*^k.$$

 μ_{\ast} solves the following variational problem

$$\inf_{\nu \in \mathcal{I}} H(\nu|\mu), \quad \text{where} \quad \mathcal{I} = \{\nu \in M_1(\mathbb{R}) : \int u \, \nu(du) \ge x\}$$

and

$$H(\nu|\mu) = \begin{cases} \int f \log f \ d\mu & \text{if } \nu \ll \mu \text{ with } f = \frac{d\nu}{d\mu}; \\ +\infty & \text{otherwise} \end{cases}$$

We may take $k=k(n)\to\infty$ slowly, but the result is no longer true if k=O(n). [Dembo-Zeitouni 1996].

Subexponential Distributions

The picture is completely different when μ has no exponential moments, i.e. $M(\lambda) = \mathbb{E}[e^{\lambda X_i}] = \infty$ for all $\lambda > 0$. A distribution μ supported on the positive half-line is called subexponential if

$$\lim_{x \to \infty} \frac{\mathbb{P}[X + Y > x]}{\mathbb{P}[X > x]} = 2,$$

where X, Y are independent μ -distributed r.v.'s.

Subexponential Distributions

The picture is completely different when μ has no exponential moments, i.e. $M(\lambda) = \mathbb{E}[e^{\lambda X_i}] = \infty$ for all $\lambda > 0$. A distribution μ supported on the positive half-line is called subexponential if

$$\lim_{x \to \infty} \frac{\mathbb{P}[X + Y > x]}{\mathbb{P}[X > x]} = 2,$$

where X, Y are independent μ -distributed r.v.'s.

Heavy-tailed distributions typically used in applications are all in this class.

- Regularly varying tails: $\mathbb{P}[X_1 > x] \sim x^{-\gamma}L(x)$ with $\gamma > 0$,
- Lognormal type tails: $\mathbb{P}[X_1 > x] \sim x^{-\beta} e^{-\gamma (\log x)^{\lambda}}$, $\lambda > 1$.
- Weibull type tails: $\mathbb{P}[X_1 > x] \sim x^{-\beta} e^{-\gamma x^{\lambda}}$, $\lambda < 1$.

聞 と く ヨ と く ヨ と …

Large Deviation Probabilities

When X_1, X_2, \dots, X_n are i.i.d. and subexponential the large deviations probabilities of their sum are typically given by

 $\mathbb{P}ig[X_1+\dots+X_n>xig]\sim n\mathbb{P}ig[X_1>xig]$ [Heyde 1968, Nagaev 1969,..., Denisov et al 2009]

Large Deviation Probabilities

When X_1, X_2, \dots, X_n are i.i.d. and subexponential the large deviations probabilities of their sum are typically given by

 $\mathbb{P}[X_1 + \dots + X_n > x] \sim n\mathbb{P}[X_1 > x]$ [Heyde 1968, Nagaev 1969,..., Denisov et al 2009]

Note that since it is always true that

$$\mathbb{P}\big[\max\{X_1,\ldots,X_n\} > x\big] \sim n\mathbb{P}\big[X_1 > x\big],$$

subexponentiality implies that a large deviation of the sum is typically realised by a single big jump.

Gibbs conditioning for Subexponential r.v.'s

Theorem (I. Armendáriz, ML)

Let $X_1, X_2...$ be i.i.d. r.v.'s with subexponential distribution μ . Define $\mu_x = \mathcal{L}[X_i \mid X_i > x]$, and

$$\mu_{n,x} = \mathcal{L}\big[(X_1,\ldots,X_n) \mid X_1 + \cdots + X_n > x\big].$$

Then,

$$\lim_{x \to \infty} \sup_{n \le A(x)} \left\| \mu_{n,x} - \frac{1}{n} \sum_{j=1}^n \sigma^j (\mu^{n-1} \times \mu_x) \right\|_{\mathsf{t.v.}} = 0.$$

The maximum entirely absorbs the correlations introduced by conditioning- the bulk becomes asymptotically independent.

→ < ∃→

Idea of the proof

Proof: (for nonnegative r.v.'s) Note that if μ is a probability measure, $\mu[A] > 0$, and $\mu_A[\cdot] = \mu[\cdot | A]$, then μ_A is the solution to the minimization problem

 $\min_{\nu[A]=1} H(\nu|\mu).$

Idea of the proof

Proof: (for nonnegative r.v.'s) Note that if μ is a probability measure, $\mu[A] > 0$, and $\mu_A[\cdot] = \mu[\cdot | A]$, then μ_A is the solution to the minimization problem

$$\min_{\nu[A]=1} H(\nu|\mu).$$

Conditional distribution: $\mu_{n,x} = \mu^n [\cdot |x_1 + \dots + x_n > x].$

Idea of the proof

Proof: (for nonnegative r.v.'s) Note that if μ is a probability measure, $\mu[A] > 0$, and $\mu_A[\cdot] = \mu[\cdot | A]$, then μ_A is the solution to the minimization problem

$$\min_{\nu[A]=1} H(\nu|\mu).$$

Conditional distribution: $\mu_{n,x} = \mu^n \left[\cdot \left| x_1 + \dots + x_n > x \right] \right].$ Candidate distribution: $\mu_{n,x}^* = \frac{1}{n} \sum_{j=1}^n \sigma^j (\mu^{n-1} \times \mu_x).$

Idea of the proof

Proof: (for nonnegative r.v.'s) Note that if μ is a probability measure, $\mu[A] > 0$, and $\mu_A[\cdot] = \mu[\cdot | A]$, then μ_A is the solution to the minimization problem

$$\min_{\nu[A]=1} H(\nu|\mu).$$

Conditional distribution: $\mu_{n,x} = \mu^n \left[\cdot \left| x_1 + \dots + x_n > x \right] \right]$. Candidate distribution: $\mu_{n,x}^* = \frac{1}{n} \sum_{j=1}^n \sigma^j (\mu^{n-1} \times \mu_x)$. By Csiszár's parallelogram identity and Pinsker's inequality

$$\begin{aligned} \|\mu_{n,x} - \mu_{n,x}^*\|_{\mathsf{t.v.}}^2 &\leq H\left(\mu_{n,x}^* \mid \mu^n\right) - H\left(\mu_{n,x} \mid \mu^n\right) \\ &\leq \log\left(\frac{\mathbb{P}[S_n > x]}{n\mathbb{P}[X_1 > x]}\right) + n\mathbb{P}[X_1 > x]. \end{aligned}$$

Gibbs conditioning for Subexponential r.v.'s (local case)

Theorem

Let $X_1, X_2...$ be i.i.d. lattice r.v.'s with subexponential distribution μ . For admissible values of x, define

$$\mu_{n,x} = \mathcal{L}\big[(X_1,\ldots,X_n) \mid S_n = x\big].$$

If $\nu_{n,x}^j$ is a distribution on \mathbb{R}^n with marginal on the co-ordinates other that j equal to μ^{n-1} and conditional distribution of the j-th co-ordinate given the others $\delta_{x-\sum_{i\neq j}x_i}$ then

$$\lim_{x \to \infty} \sup_{n \le A(x)} \|\mu_{n,x} - \frac{1}{n} \sum_{j=1}^n \nu_{n,x}^j \|_{\mathbf{t}.\mathbf{v}.} = 0.$$

The condensing zero-range process

State space:
$$\mathbb{X} = \{0, 1, \ldots\}^{\Lambda}$$
 $\boldsymbol{\eta} = (\eta_x)_{x \in \Lambda}$.

P.

[Evans. 2000]

The condensing zero-range process

State space: $\mathbb{X} = \{0, 1, ...\}^{\Lambda}$ $\eta = (\eta_x)_{x \in \Lambda}$. **Dynamics:** If there are k particles at a site x, one of them leaves after an exponential time with rate g(k), where

 $g:\{0,1,2,\ldots\}\to [0,\infty)$

and goes to $y \in \mathbb{T}$ with probability p(x, y). [Spitzer, 1970)]

Jump rates: $g \downarrow$: effective attraction. A standard model for condensation

 $\begin{cases} g(k) = 1 + \frac{b}{k^{\lambda}} & k \in \mathbb{N} \\ g(0) = 0 \end{cases} \quad \quad \text{for } \lambda \in (0, 1], \ (b > 2 \text{ if } \lambda = 1.) \end{cases}$

Jump probabilities: $p(x,y) \in [0,1]$ $\sum_{y} p(x,y) = \sum_{x} p(x,y) = 1$, walk irreducible.

Conservation of the number of particles

$$\sum_{x \in \Lambda} \eta_x(t) = const.$$

leads to a family of invariant product measures

Grand-canonical measures (fugacity $\phi)$ Product measures over Λ with marginals for η_x

$$\nu_{\phi}\big[k\big] = \frac{1}{z(\phi)} \frac{\phi^k}{g!(k)} \quad \text{where} \quad g!(k) = \prod_{n=1}^k g(n)$$

defined when the partition function $z(\phi) = \sum_k \frac{\phi^k}{g!(k)}$ converges.

Conservation of the number of particles

$$\sum_{x \in \Lambda} \eta_x(t) = const.$$

leads to a family of invariant product measures

Grand-canonical measures (fugacity $\phi)$ Product measures over Λ with marginals for η_x

$$u_{\phi}\big[k\big] = rac{1}{z(\phi)} rac{\phi^k}{g!(k)} \quad ext{where} \quad g!(k) = \prod_{n=1}^k g(n)$$

defined when the partition function $z(\phi) = \sum_k \frac{\phi^k}{g!(k)}$ converges.

$$\frac{1}{g!(k)} \sim \begin{cases} k^{-b} \ , \ \lambda = 1, \ b > 2 \\ \exp(-\frac{b}{1-\lambda} \, k^{1-\lambda}) \ , \ \lambda \in (0,1) \end{cases}$$

Conservation of the number of particles

$$\sum_{x \in \Lambda} \eta_x(t) = const.$$

leads to a family of invariant product measures

Grand-canonical measures (fugacity ϕ) Product measures over Λ with marginals for η_x

$$u_{\phi}\left[k
ight] = rac{1}{z(\phi)} rac{\phi^k}{g!(k)} \quad \text{where} \quad g!(k) = \prod_{n=1}^k g(n)$$

defined for $\phi \leq \phi_c = 1$.

Conservation of the number of particles

$$\sum_{x \in \Lambda} \eta_x(t) = const.$$

伺下 イヨト イヨト

leads to a family of invariant product measures

Grand-canonical measures (fugacity ϕ) Product measures over Λ with marginals for η_x

$$u_{\phi}[k] = rac{1}{z(\phi)} rac{\phi^k}{g!(k)} \quad ext{where} \quad g!(k) = \prod_{n=1}^k g(n)$$

defined for $\phi \leq \phi_c = 1.$

 ${\rm Density} \qquad R(\phi) = \left< \eta_x \right>_{\nu_\phi} = \phi \, \partial_\phi \log z(\phi) \quad \uparrow \quad {\rm in} \ \phi$

Critical density
$$ho_c = \lim_{\phi
earrow \phi_c} R(\phi) < +\infty.$$

Now consider the ZRP with N particles on $|\Lambda_L| = L$ sites.

The process is irreducible over

$$X_{L,N} = \{ \boldsymbol{\eta} \in X_L : S_L(\boldsymbol{\eta}) := \sum_{x \in \Lambda_L} \eta_x = N \}.$$

Canonical measures Invariant measures $\mu_{L,N}$ supported on $X_{L,N}$

$$\mu_{L,N}[\boldsymbol{\eta}] = \frac{\prod_{x \in \Lambda_L} \frac{1}{g!(\eta_x)}}{\sum_{\boldsymbol{\eta}: S_L(\boldsymbol{\eta}) = N} \prod_{x \in \Lambda_L} \frac{1}{g!(\eta_x)}}$$

Now consider the ZRP with N particles on L sites.

The process is irreducible over

$$X_{L,N} = \{ \boldsymbol{\eta} \in X_L : S_L(\boldsymbol{\eta}) := \sum_{x \in \Lambda_L} \eta_x = N \}.$$

Canonical measures Invariant measures $\mu_{L,N}$ supported on $X_{L,N}$

$$\mu_{L,N}ig[\,\cdot\,ig] =
u^L_{oldsymbol{\phi}}igg[\,\,\cdot\,\,\Big|\,\,S_L(oldsymbol{\eta}) = Nigg]$$

Now consider the ZRP with N particles on L sites.

The process is irreducible over

$$X_{L,N} = \{ \boldsymbol{\eta} \in X_L : S_L(\boldsymbol{\eta}) := \sum_{x \in \Lambda_L} \eta_x = N \}.$$

Canonical measures Invariant measures $\mu_{L,N}$ supported on $X_{L,N}$

$$\mu_{L,N}\left[\cdot\right] = \nu_{\phi}^{L}\left[\cdot \mid S_{L}(\boldsymbol{\eta}) = N\right]$$

with $\phi \leq \phi_c = 1$ and

$$\nu_{\phi}[k] \sim \frac{\phi^k}{g!(k)} = \phi^k \times \begin{cases} k^{-b} & \text{if } \lambda = 1, \ b > 2\\ e^{-\frac{b}{1-\lambda}k^{1-\lambda}} & \text{if } \lambda \in (0,1) \end{cases}$$

→ < ∃→

Now consider the ZRP with N particles on L sites.

The process is irreducible over

$$X_{L,N} = \{ \boldsymbol{\eta} \in X_L : S_L(\boldsymbol{\eta}) := \sum_{x \in \Lambda_L} \eta_x = N \}.$$

Canonical measures Invariant measures $\mu_{L,N}$ supported on $X_{L,N}$

$$\mu_{L,N}\left[\cdot\right] = \nu_{\phi}^{L}\left[\cdot \mid S_{L}(\boldsymbol{\eta}) = N\right]$$

Question: How large is $M_L = \max_{x \in \Lambda_L} \eta_x$ under $\mu_{L,N}$?

If $N/L \rightarrow \rho < \rho_c$ there exists a fugacity $\phi(\rho) < \phi_c$ (= 1) such that $\langle \eta_x \rangle_{\nu_{\phi(\rho)}} = \rho.$

- **→** → **→**

< ∃ >

э

If $N/L \to \rho < \rho_c$ there exists a fugacity $\phi(\rho) < \phi_c$ (= 1) such that $\langle \eta_x \rangle_{\nu_{\phi(\rho)}} = \rho$.

Think of
$$\mu_{L,N} \big[\cdot \big] = \nu_{\phi(\rho)}^L \Big[\cdot \Big| S_L(\eta) = N \Big].$$

The event we are conditioning upon is not so unlikely, and locally $\mu_{L,N}$ behaves as a product of $\nu_{\phi(\rho)}$ in the limit (equivalence of ensembles.)

With a bit more work one sees that the typical size of M_L under $\mu_{L,N}$ is the same as under $\nu_{\phi(\rho)}^L$.

If $N/L \to \rho < \rho_c$ there exists a fugacity $\phi(\rho) < \phi_c$ (=1) such that $\langle \eta_x \rangle_{\nu_{\phi(\rho)}} = \rho$.

Think of
$$\mu_{L,N} \big[\cdot \big] = \nu_{\phi(\rho)}^L \big[\cdot \big| S_L(\eta) = N \big].$$

The event we are conditioning upon is not so unlikely, and locally $\mu_{L,N}$ behaves as a product of $\nu_{\phi(\rho)}$ in the limit (equivalence of ensembles.)

With a bit more work one sees that the typical size of M_L under $\mu_{L,N}$ is the same as under $\nu^L_{\phi(\rho)}$.

 $u_{\phi(\rho)}$ has exponentially decaying tails: $u_{\phi(\rho)}[k] \sim \frac{(\phi(\rho))^k}{g!(k)}.$

If $N/L \to \rho < \rho_c$ there exists a fugacity $\phi(\rho) < \phi_c \ (=1)$ such that $\langle \eta_x \rangle_{\nu_{\phi(\rho)}} = \rho.$

Think of
$$\mu_{L,N} \big[\cdot \big] = \nu_{\phi(\rho)}^L \big[\cdot \big| S_L(\eta) = N \big].$$

The event we are conditioning upon is not so unlikely, and locally $\mu_{L,N}$ behaves as a product of $\nu_{\phi(\rho)}$ in the limit (equivalence of ensembles.)

With a bit more work one sees that the typical size of M_L under $\mu_{L,N}$ is the same as under $\nu_{\phi(\rho)}^L$.

 $\nu_{\phi(\rho)}$ has exponentially decaying tails: $\nu_{\phi(\rho)}[k] \sim \frac{(\phi(\rho))^k}{g!(k)}.$

$$\mu_{L,N} \left[\left| \frac{M_L}{\log L} - c(\rho) \right| > \epsilon \right] \longrightarrow 0, \qquad 0 < c(\rho) < +\infty.$$

If $N/L \to \rho > \rho_c$ there exists no fugacity that corresponds to this density.

Now think of
$$\mu_{L,N}[\cdot] = \nu_{\phi_c}^L \left[\cdot \mid S_L(\boldsymbol{\eta}) = N \right].$$

The event we are conditioning upon is a rare event and we need to understand how this large deviation of the sum is typically realised.

Recall that ν_{ϕ_c} is subexponential:

$$\nu_{\phi_c}[k] \sim \begin{cases} k^{-b} & \lambda = 1, b > 2\\ e^{-\frac{b}{1-\lambda} k^{1-\lambda}} & \lambda \in (0, 1) \end{cases}$$

Understanding the invariant measures $\mu_{L,N}$ reduces to Gibbs conditioning for subexponential r.v's

$$\mu_{L,N}\big[\cdot\big] = \nu_{\phi_c}\Big[\cdot\Big|\sum_{x\in\mathbb{T}}\eta_x = N\Big]$$

.

- ● ● ●

Canonical measures and condensation

Equivalence of ensembles [Grosskinsky, Schütz, Spohn '03]

In the thermodynamic limit $\ L,N \rightarrow \infty$, $\ N/L \rightarrow \rho$

$$\mu_{L,N} \xrightarrow{w} \nu_{\phi} \quad \text{where} \quad \begin{cases} R(\phi) = \rho \ , \ \rho \le \rho_c \\ \phi = \phi_c \ , \ \rho \ge \rho_c \end{cases}$$

Bath 4/7/2016 Subexponential LD & Condensing ZRP

Corollaries to the strong invariance principle

Let $M_L = \max_{x \in \mathbb{T}} \eta_x$.

Since M_L+ mass in the bulk = N, μ_{L,N}-a.s we get a conditional stable LT for the maximum from the stable LT for i.i.d. variables. If ν_{ρ_c} has finite variance (b > 3)

$$\mu_{L,N}\left[\frac{M_L - (N - \rho_c L)}{\sigma\sqrt{L}} \le x\right] \longrightarrow \int_{-\infty}^x e^{-y^2/2} \frac{dy}{\sqrt{2\pi}}.$$

(confirming the conjecture obtained from numerical simulations by Godréche & Luck.)

Corollaries to the strong invariance principle

Let $M_L = \max_{x \in \mathbb{T}} \eta_x$.

Since M_L+ mass in the bulk = N, μ_{L,N}-a.s we get a conditional stable LT for the maximum from the stable LT for i.i.d. variables. If ν_{ρ_c} has finite variance (b > 3)

$$\mu_{L,N}\left[\frac{M_L - (N - \rho_c L)}{\sigma\sqrt{L}} \le x\right] \longrightarrow \int_{-\infty}^x e^{-y^2/2} \frac{dy}{\sqrt{2\pi}}.$$

(confirming the conjecture obtained from numerical simulations by Godréche & Luck.)

Conditional k-order statistics converge to unconditional (k-1)-order statistics. E.g. if $M_L^{(2)}$ is the second largest of the $\{\eta_x\}_{x\in\mathbb{T}}$ then

$$\mu_{L,N} \left[M_L^{(2)} \le x \left(\Gamma(b) L \right)^{\frac{1}{b-1}} \right] \to e^{-x^{1-b}}.$$

Around criticality

[Armendáriz, Grosskinsky, L, 2013]

Subcritical density: The maximum $M_L(\eta) = \max_{x \in \Lambda_L} \eta_x$ is $O(\log L)$ with Gumbel fluctuations.

$$\mu_{L,N} \Big[\frac{M_L(\boldsymbol{\eta}) - \alpha(\rho) \log L}{\beta_L} \le x \Big] \longrightarrow e^{-e^{-x}}$$

- **→** → **→**

Around criticality

[Armendáriz, Grosskinsky, L, 2013]

Subcritical density: The maximum $M_L(\eta) = \max_{x \in \Lambda_L} \eta_x$ is $O(\log L)$ with Gumbel fluctuations.

$$\mu_{L,N}\Big[\frac{M_L(\boldsymbol{\eta}) - \alpha(\rho)\log L}{\beta_L} \le x\Big] \longrightarrow e^{-e^{-x}}$$

Supercritical density: The maximum $M_L(\eta)$ is O(L) with gaussian fluctuations.

$$\mu_{L,N}\Big[\frac{M_L(\boldsymbol{\eta}) - (N - \rho_c L)}{\sigma\sqrt{L}} \le x\Big] \longrightarrow \Phi(x).$$

Around criticality

[Armendáriz, Grosskinsky, L, 2013]

Subcritical density: The maximum $M_L(\eta) = \max_{x \in \Lambda_L} \eta_x$ is $O(\log L)$ with Gumbel fluctuations.

$$\mu_{L,N}\Big[\frac{M_L(\boldsymbol{\eta}) - \alpha(\rho)\log L}{\beta_L} \le x\Big] \longrightarrow e^{-e^{-x}}$$

Supercritical density: The maximum $M_L(\eta)$ is O(L) with gaussian fluctuations.

$$\mu_{L,N}\Big[\frac{M_L(\boldsymbol{\eta}) - (N - \rho_c L)}{\sigma\sqrt{L}} \le x\Big] \longrightarrow \Phi(x).$$

Question

How does $M_L(\eta)$ behave as we go through the critical density? In particular, when does the condensate emerge?

Ferrari/ Evans, Majumdar 2008

Small deviations

Let's focus on the case $\lambda = 1$ and b > 3 so that $\sigma^2 < +\infty$.

$$\nu_{\phi_c} \big[\eta_x = k \big] \sim k^{-b}.$$

There is a region around $\rho_c L$ where the distribution of the maximum under $\mu_{L,N}$ asymptotically behaves as the maximum of L independent samples drawn from ν_{ϕ_c} .

Small deviations

Let's focus on the case $\lambda = 1$ and b > 3 so that $\sigma^2 < +\infty$.

$$\nu_{\phi_c} \big[\eta_x = k \big] \sim k^{-b}.$$

There is a region around $\rho_c L$ where the distribution of the maximum under $\mu_{L,N}$ asymptotically behaves as the maximum of L independent samples drawn from ν_{ϕ_c} .

Proposition

If
$$-L^{\frac{b-2}{b-1}} \ll N - \rho_c L \ll \sqrt{L \log L}$$
, then
 $\mu_{L,N} \left[M_L \le x L^{\frac{1}{b-1}} \right] \sim \nu_{\phi_c}^L \left[M_L \le x L^{\frac{1}{b-1}} \right] \to e^{-ux^{1-b}} \quad \forall x > 0.$

Small deviations

Let's focus on the case $\lambda = 1$ and b > 3 so that $\sigma^2 < +\infty$.

$$\nu_{\phi_c} \big[\eta_x = k \big] \sim k^{-b}.$$

There is a region around $\rho_c L$ where the distribution of the maximum under $\mu_{L,N}$ asymptotically behaves as the maximum of L independent samples drawn from ν_{ϕ_c} .

Proposition

If
$$-L^{rac{b-2}{b-1}}\ll N-
ho_cL\ll \sqrt{L\log L}$$
, then

$$\mu_{L,N}\left[M_L \le xL^{\frac{1}{b-1}}\right] \sim \nu_{\phi_c}^L\left[M_L \le xL^{\frac{1}{b-1}}\right] \to e^{-ux^{1-b}} \quad \forall x > 0.$$

Critical behaviour: Typical size of the maximum is $L^{\frac{1}{b-1}}$ with Frechét fluctuations.

Large Deviations

Above the critical scale, the bulk variables become asymptotically independent and the maximum satisfies a law of large numbers and a central limit theorem. That is,

Proposition

If $N - \rho_c L \gg \sqrt{L \log L}$, then

$$\frac{M_L}{N - \rho_c L} \xrightarrow{\mu_{L,N}} 1, \quad \text{and} \quad$$

$$\frac{M_L - (N - \rho_c L)}{\sqrt{\sigma^2 L}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Large Deviations

Above the critical scale, the bulk variables become asymptotically independent and the maximum satisfies a law of large numbers and a central limit theorem. That is,

Proposition

If $N - \rho_c L \gg \sqrt{L \log L}$, then

$$\frac{M_L}{N - \rho_c L} \stackrel{\mu_{L,N}}{\longrightarrow} 1, \quad \text{and} \quad$$

$$\frac{M_L - (N - \rho_c L)}{\sqrt{\sigma^2 L}} \xrightarrow{d} \mathcal{N}(0, 1).$$

Supercritical behaviour: Typical size of the maximum is $N - \rho_c L$ with Gaussian fluctuations.

▲ 同 ▶ → 三 ▶

Large Deviations (downside)

Below the lower critical scale, the asymptotic distribution of the maximum under $\mu_{L,N}$ becomes Gumbel.

Proposition

If
$$\rho_c L - N \gg L^{\frac{b-2}{b-1}}$$
, then
 $\mu_{L,N} \Big[M_L \le A_L + x B_L \Big] \to e^{-e^{-x}},$

where

$$A_L \sim (b-1)L^{\frac{1}{b-1}} \frac{\log J_L}{J_L}, \quad B_L \sim \frac{L^{\frac{1}{b-1}}}{J_L}, \quad J_L = \frac{\rho_c L - N}{L^{\frac{b-2}{b-1}}} \to \infty.$$

- **→** → **→**

Large Deviations (downside)

Below the lower critical scale, the asymptotic distribution of the maximum under $\mu_{L,N}$ becomes Gumbel.

Proposition

If
$$\rho_c L - N \gg L^{\frac{b-2}{b-1}}$$
, then
 $\mu_{L,N} \Big[M_L \le A_L + x B_L \Big] \to e^{-1}$

where

$$A_L \sim (b-1)L^{\frac{1}{b-1}} \frac{\log J_L}{J_L}, \quad B_L \sim \frac{L^{\frac{1}{b-1}}}{J_L}, \quad J_L = \frac{\rho_c L - N}{L^{\frac{b-2}{b-1}}} \to \infty.$$

Subritical behaviour: The size of the maximum gradually reduces from $L^{\frac{1}{b-1}}$ to $\log L$ with Gumbel fluctuations.

Lower Critical Scale

At the lower critical scale the asymptotic distribution of the maximum under $\mu_{L,N}$ changes from Fréchet to Gumbel.

Proposition If $\frac{\rho_c L - N}{L^{\frac{b-2}{b-1}}} \to \omega > 0$, then $\mu_{L,N} \left[M_L \le x L^{\frac{1}{b-1}} \right] \longrightarrow \exp \left\{ -C \int_x^{+\infty} e^{-\omega t} \frac{dt}{t^b} \right\}, \forall x > 0.$

Critical Scale

.

 $N-\rho_c L=O(\sqrt{L\log L})$ is the scale at which the condensate emerges. Define

$$\Delta_L = \sigma \sqrt{(b-3)L \log L}$$

伺 ト イヨト イヨト

э

Critical Scale

.

 $N-\rho_c L=O(\sqrt{L\log L})$ is the scale at which the condensate emerges. Define

$$\Delta_L = \sigma \sqrt{(b-3)L \log L}$$

$$\lim \frac{N - \rho_c L}{\Delta_L} < 1 \qquad \longrightarrow \qquad$$

Critical picture

 $M_L \sim L^{\frac{1}{b-1}}$, Frechét fluctuations.

$$\lim \frac{N - \rho_c L}{\Delta_L} > 1 \qquad \longrightarrow \qquad$$

Supercritical picture

 $M_L \simeq N - \rho_c L$, gaussian fluctuations.

Critical Scale

.

 $N-\rho_c L=O(\sqrt{L\log L})$ is the scale at which the condensate emerges. Define

$$\Delta_L = \sigma \sqrt{(b-3)L \log L}$$

$$\lim \frac{N - \rho_c L}{\Delta_L} < 1 \qquad \longrightarrow \qquad$$

Critical picture

 $M_L \sim L^{\frac{1}{b-1}}$, Frechét fluctuations.

$$\lim \frac{N - \rho_c L}{\Delta_L} > 1 \qquad \longrightarrow \qquad$$

 $M_L \simeq N - \rho_c L$, gaussian fluctuations.

伺 と く き と く き と

Phase transition

If $N - \rho_c L = (1 - \epsilon) \Delta_L$

- The conditional distribution of the maximum is asymptotically equivalent to that of the maximum of independent r.v.'s drawn from ν_{ϕ_c} .
- $M_L = o(\Delta_L)$, and the number of particles in the bulk is $\rho_c L + O(\Delta_L)$.

Phase transition

If $N - \rho_c L = (1 - \epsilon) \Delta_L$

- The conditional distribution of the maximum is asymptotically equivalent to that of the maximum of independent r.v.'s drawn from ν_{ϕ_c} .
- $M_L = o(\Delta_L)$, and the number of particles in the bulk is $\rho_c L + O(\Delta_L)$.
- If $N \rho_c L = (1 + \epsilon) \Delta_L$
 - All L-1 bulk variables become asymptotically independent with marginal distribution ν_{ϕ_c} .
 - $M_L \sim \Delta_L$, and the number of particles in the bulk is $\rho_c L + o(\Delta_L)$.

Phase transition

If $N - \rho_c L = (1 - \epsilon) \Delta_L$

- The conditional distribution of the maximum is asymptotically equivalent to that of the maximum of independent r.v.'s drawn from ν_{ϕ_c} .
- $M_L = o(\Delta_L)$, and the number of particles in the bulk is $\rho_c L + O(\Delta_L)$.

If $N - \rho_c L = (1 + \epsilon) \Delta_L$

- All L-1 bulk variables become asymptotically independent with marginal distribution ν_{ϕ_c} .
- $M_L \sim \Delta_L$, and the number of particles in the bulk is $\rho_c L + o(\Delta_L)$.

The condensate appears with the removal of particles from the bulk. The correlations shift from being entirely absorbed by the bulk, to being entirely absorbed by the maximum.

At the critical point

Suppose now

$$N - \rho_c L = \Delta_L \left(1 + \frac{b}{2(b-3)} \frac{\log \log L}{\log L} + \frac{\gamma_L}{\log L} \right).$$

- **→** → **→**

At the critical point

Suppose now

$$N - \rho_c L = \Delta_L \left(1 + \frac{b}{2(b-3)} \frac{\log \log L}{\log L} + \frac{\gamma_L}{\log L} \right).$$

 $\gamma_L \to -\infty \longrightarrow Critical picture$ $\gamma_L \to +\infty \longrightarrow Supercritical picture$

< E

At the critical point

Suppose now

$$N - \rho_c L = \Delta_L \Big(1 + \frac{b}{2(b-3)} \frac{\log \log L}{\log L} + \frac{\gamma_L}{\log L} \Big).$$

 $\gamma_L \rightarrow -\infty \longrightarrow$ Critical picture $\gamma_L \rightarrow +\infty \longrightarrow$ Supercritical picture

Proposition

If $\gamma_L o \gamma \in \mathbb{R}$,

$$\frac{M_L}{N - \rho_c L} \xrightarrow{\mu_{L,N}} Be(p_\gamma),$$

where $p_{\gamma} \in (0,1)$ is such that $p_{\gamma} \to 0(1)$ as $\gamma \to -\infty(+\infty)$.

The law of large numbers when $\lambda < 1$.

Comparison of the law of large numbers for the power law and the stretched exponential case.

Conclusion

- We saw how large deviations for subexponential r.v.'s are typically realised: one variable assumes a big value and the bulk becomes asymptotically independent.
- We used this knowledge to obtain refined results for the typical size of the condensate and its fluctuations at supercritical densities.
- Emergence of the giant component: LLN & fluctuations for the maximum if $N=\rho_c L+o(L)$
- Metastability \longrightarrow stay tuned for the following talk by I. Armendáriz!

Conclusion

- We saw how large deviations for subexponential r.v.'s are typically realised: one variable assumes a big value and the bulk becomes asymptotically independent.
- We used this knowledge to obtain refined results for the typical size of the condensate and its fluctuations at supercritical densities.
- Emergence of the giant component: LLN & fluctuations for the maximum if $N=\rho_c L+o(L)$
- Metastability \longrightarrow stay tuned for the following talk by I. Armendáriz!

Thank you for your attention