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A toy example

Suppose {Xn}n∈N is a sequence of i.i.d. r.v.’s with

Xi ∼ N (m,σ2).

Then, X̄n :=
X1 + · · ·+Xn

n
∼ N (m,

σ2

n
)

and for any x > m

P
[
X̄n ≥ x

]
=

∫ ∞
√
n(x−m)
σ

e−
u2

2
du√
2π
∼ σ√

2πn(x−m)
e−

n(x−m)2

2σ2 .

That is,
1

n
logP

[
X̄n ≥ x

]
−→ −(x−m)2

2σ2
.
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A toy example II

Suppose {Xn}n∈N is a sequence of i.i.d. r.v.’s with

Xi ∼ N (m,σ2).

Then,

Xi − X̄n ∼ N (0,
(n− 1)σ2

n
)

and
Xi − X̄n, X̄n are independent.

Hence,

L
[
Xi | X̄n = x

]
= N (x,

(n− 1)σ2

n
) −→ N (x, σ2).

With a bit more work we find

Cov(Xi − X̄n, Xj − X̄n) = σ2δij −
σ2

n

and, if we set e> = (1, 1, . . . , 1), then for any k ∈ N

L
[
(X1, · · · , Xk) | X̄n = x

]
= N (xe, σ2

Ik −
σ2

n
e e>) −→ µk

where the law µ is N (x, σ2).
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Cramér’s theorem

Suppose {Xn}n∈N are i.i.d. r.v.’s with common law µ and

M(λ) = E
[
eλXi

]
<∞, for |λ| ≤ λ0.

If x > E
[
Xi

]
, then

1

n
logP

[
X̄n ≥ x

]
−→ −I(x),

where
I(x) = sup

λ

(
λx− logM(λ)

)

E[X]

[Cramér 1938].
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Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically
realised.

L
[
(X1, X2, . . . , Xk) |X̄n ≥ x

]
−→ µk∗.

µ∗ solves the following variational problem

inf
ν∈I

H(ν|µ), where I = {ν ∈M1(R) :

∫
u ν(du) ≥ x}

and

H(ν|µ) =

{∫
f log f dµ if ν � µ with f = dν

dµ ,

+∞ otherwise

We may take k = k(n)→∞ slowly, but the result is no longer
true if k = O(n). [Dembo-Zeitouni 1996].

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Example Cramér Definitions LD Probabilities Results

Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically
realised.

L
[
(X1, X2, . . . , Xk) |X̄n ≥ x

]
−→ µk∗.

µ∗ solves the following variational problem

inf
ν∈I

H(ν|µ), where I = {ν ∈M1(R) :

∫
u ν(du) ≥ x}

and

H(ν|µ) =

{∫
f log f dµ if ν � µ with f = dν

dµ ,

+∞ otherwise

We may take k = k(n)→∞ slowly, but the result is no longer
true if k = O(n). [Dembo-Zeitouni 1996].

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Example Cramér Definitions LD Probabilities Results

Gibbs conditioning

Gibbs conditioning principle explains how the rare event is typically
realised.

L
[
(X1, X2, . . . , Xk) |X̄n ≥ x

]
−→ µk∗.

µ∗ solves the following variational problem

inf
ν∈I

H(ν|µ), where I = {ν ∈M1(R) :

∫
u ν(du) ≥ x}

and

H(ν|µ) =

{∫
f log f dµ if ν � µ with f = dν

dµ ,

+∞ otherwise

We may take k = k(n)→∞ slowly, but the result is no longer
true if k = O(n). [Dembo-Zeitouni 1996].

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Example Cramér Definitions LD Probabilities Results

Subexponential Distributions

The picture is completely different when µ has no exponential
moments, i.e. M(λ) = E

[
eλXi

]
=∞ for all λ > 0. A distribution

µ supported on the positive half-line is called subexponential if

lim
x→∞

P
[
X + Y > x

]
P
[
X > x

] = 2,

where X,Y are independent µ-distributed r.v.’s.

Heavy-tailed distributions typically used in applications are all in
this class.

Regularly varying tails: P
[
X1 > x

]
∼ x−γL(x) with γ > 0,

Lognormal type tails: P
[
X1 > x

]
∼ x−βe−γ(log x)λ , λ > 1.

Weibull type tails: P
[
X1 > x

]
∼ x−βe−γxλ , λ < 1.
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Large Deviation Probabilities

When X1, X2, · · · , Xn are i.i.d. and subexponential the large
deviations probabilities of their sum are typically given by

P
[
X1 + · · ·+Xn > x

]
∼ nP

[
X1 > x

]
[Heyde 1968, Nagaev 1969,..., Denisov et al 2009]

Note that since it is always true that

P
[

max{X1, . . . , Xn} > x
]
∼ nP

[
X1 > x

]
,

subexponentiality implies that a large deviation of the sum is
typically realised by a single big jump.

i

X i

i

X i
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Gibbs conditioning for Subexponential r.v.’s

Theorem (I. Armendáriz, ML)

Let X1, X2 . . . be i.i.d. r.v.’s with subexponential distribution µ.
Define µx = L

[
Xi | Xi > x

]
, and

µn,x = L
[
(X1, . . . , Xn) | X1 + · · ·+Xn > x

]
.

Then,

lim
x→∞

sup
n≤A(x)

∥∥∥µn,x − 1

n

n∑
j=1

σj(µn−1 × µx)
∥∥∥

t.v.
= 0.

The maximum entirely absorbs the correlations introduced by
conditioning- the bulk becomes asymptotically independent.
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Idea of the proof

Proof: (for nonnegative r.v.’s) Note that if µ is a probability
measure, µ

[
A
]
> 0, and µA

[
·
]

= µ
[
· |A

]
, then µA is the solution

to the minimization problem

min
ν[A]=1

H(ν|µ).

Conditional distribution: µn,x = µn
[
·
∣∣x1 + · · ·+ xn > x

]
.

Candidate distribution: µ∗n,x = 1
n

∑n
j=1 σ

j(µn−1 × µx). By
Csiszár’s parallelogram identity and Pinsker’s inequality

‖µn,x − µ∗n,x‖2t.v. ≤ H
(
µ∗n,x |µn

)
−H

(
µn,x |µn

)
≤ log

(
P
[
Sn > x

]
nP
[
X1 > x

])+ nP
[
X1 > x

]
.
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Gibbs conditioning for Subexponential r.v.’s (local case)

Theorem

Let X1, X2 . . . be i.i.d. lattice r.v.’s with subexponential
distribution µ. For admissible values of x, define

µn,x = L
[
(X1, . . . , Xn) | Sn = x

]
.

If νjn,x is a distribution on Rn with marginal on the co-ordinates
other that j equal to µn−1 and conditional distribution of the j-th
co-ordinate given the others δx−

∑
i6=j xi

then

lim
x→∞

sup
n≤A(x)

‖µn,x −
1

n

n∑
j=1

νjn,x‖t.v. = 0.
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The condensing zero-range process

State space: X = {0, 1, . . .}Λ η = (ηx)x∈Λ.

Dynamics: If there are k particles at a site x, one of them leaves
after an exponential time with rate g(k), where

g : {0, 1, 2, . . .} → [0,∞)

and goes to y ∈ T with probability p(x, y). [Spitzer, 1970)]

Jump rates: g ↓ : effective attraction.
A standard model for condensation [Evans, 2000]{

g(k) = 1 + b
kλ

k ∈ N
g(0) = 0

for λ ∈ (0, 1], (b > 2 if λ = 1.)

Jump probabilities: p(x, y) ∈ [0, 1]∑
y

p(x, y) =
∑
x

p(x, y) = 1, walk irreducible.
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Invariant product measures

Conservation of the number of particles
∑
x∈Λ

ηx(t) = const.

leads to a family of invariant product measures

Grand-canonical measures (fugacity φ) Product measures over Λ
with marginals for ηx

νφ
[
k
]

=
1

z(φ)

φk

g!(k)
where g!(k) =

k∏
n=1

g(n)

defined when the partition function z(φ) =
∑

k
φk

g!(k) converges.

1

g!(k)
∼
{

k−b , λ = 1, b > 2

exp(− b
1−λ k

1−λ) , λ ∈ (0, 1)
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k
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=
1

z(φ)

φk

g!(k)
where g!(k) =

k∏
n=1

g(n)

defined for φ ≤ φc = 1.

Density R(φ) =
〈
ηx
〉
νφ

= φ∂φ log z(φ) ↑ in φ

Critical density ρc = lim
φ↗φc

R(φ) < +∞.
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Canonical ensembles

Now consider the ZRP with N particles on |ΛL| = L sites.

The process is irreducible over

XL,N =
{
η ∈ XL : SL(η) :=

∑
x∈ΛL

ηx = N
}
.

Canonical measures Invariant measures µL,N supported on XL,N

µL,N
[
η
]

=

∏
x∈ΛL

1
g!(ηx)∑

η:SL(η)=N

∏
x∈ΛL

1
g!(ηx)
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k
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{
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e−
b

1−λ k
1−λ

if λ ∈ (0, 1)
.
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Canonical ensembles

Now consider the ZRP with N particles on L sites.

The process is irreducible over

XL,N =
{
η ∈ XL : SL(η) :=

∑
x∈ΛL

ηx = N
}
.

Canonical measures Invariant measures µL,N supported on XL,N

µL,N
[
·
]

= νLφ

[
·
∣∣∣ SL(η) = N

]
Question: How large is ML = max

x∈ΛL
ηx under µL,N?

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Definitions Maximum Supercritical equivalence

Subcritical Densities

If N/L→ ρ < ρc there exists a fugacity φ(ρ) < φc (= 1) such that
〈ηx〉νφ(ρ) = ρ.

Think of µL,N
[
·
]

= νLφ(ρ)

[
·
∣∣∣ SL(η) = N

]
.

The event we are conditioning upon is not so unlikely, and locally
µL,N behaves as a product of νφ(ρ) in the limit (equivalence of
ensembles.)

With a bit more work one sees that the typical size of ML under
µL,N is the same as under νLφ(ρ).

νφ(ρ) has exponentially decaying tails: νφ(ρ)

[
k
]
∼
(
φ(ρ)

)k
g!(k)

.

µL,N

[ ∣∣∣∣ ML

logL
− c(ρ)

∣∣∣∣ > ε

]
−→ 0, 0 < c(ρ) < +∞.
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With a bit more work one sees that the typical size of ML under
µL,N is the same as under νLφ(ρ).

νφ(ρ) has exponentially decaying tails: νφ(ρ)

[
k
]
∼
(
φ(ρ)

)k
g!(k)

.

µL,N

[ ∣∣∣∣ ML

logL
− c(ρ)

∣∣∣∣ > ε

]
−→ 0, 0 < c(ρ) < +∞.

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Definitions Maximum Supercritical equivalence

Subcritical Densities

If N/L→ ρ < ρc there exists a fugacity φ(ρ) < φc (= 1) such that
〈ηx〉νφ(ρ) = ρ.

Think of µL,N
[
·
]

= νLφ(ρ)

[
·
∣∣∣ SL(η) = N

]
.

The event we are conditioning upon is not so unlikely, and locally
µL,N behaves as a product of νφ(ρ) in the limit (equivalence of
ensembles.)

With a bit more work one sees that the typical size of ML under
µL,N is the same as under νLφ(ρ).

νφ(ρ) has exponentially decaying tails: νφ(ρ)

[
k
]
∼
(
φ(ρ)

)k
g!(k)

.

µL,N

[ ∣∣∣∣ ML

logL
− c(ρ)

∣∣∣∣ > ε

]
−→ 0, 0 < c(ρ) < +∞.

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion Definitions Maximum Supercritical equivalence

Supercritical Densities

If N/L→ ρ > ρc there exists no fugacity that corresponds to this
density.

Now think of µL,N
[
·
]

= νLφc

[
·
∣∣∣ SL(η) = N

]
.

The event we are conditioning upon is a rare event and we need to
understand how this large deviation of the sum is typically realised.

Recall that νφc is subexponential:

νφc [k] ∼

{
k−b λ = 1, b > 2

e−
b

1−λ k
1−λ

λ ∈ (0, 1)

Understanding the invariant measures µL,N reduces to Gibbs
conditioning for subexponential r.v’s

µL,N
[
·
]

= νφc

[
·
∣∣∣ ∑
x∈T

ηx = N
]
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Canonical measures and condensation

Equivalence of ensembles [Grosskinsky, Schütz, Spohn ’03]

In the thermodynamic limit L,N →∞ , N/L→ ρ

µL,N
w−→ νφ where

{
R(φ) = ρ , ρ ≤ ρc
φ = φc , ρ ≥ ρc

.

fluid

x
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ΡcHbL
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Ρ
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x
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Corollaries to the strong invariance principle

Let ML = maxx∈T ηx.

1 Since ML+ mass in the bulk = N , µL,N -a.s we get a
conditional stable LT for the maximum from the stable LT for
i.i.d. variables. If νρc has finite variance (b > 3)

µL,N

[
ML − (N − ρcL)

σ
√
L

≤ x
]
−→

∫ x

−∞
e−y

2/2 dy√
2π
.

(confirming the conjecture obtained from numerical
simulations by Godréche & Luck.)

2 Conditional k-order statistics converge to unconditional

(k − 1)-order statistics. E.g. if M
(2)
L is the second largest of

the {ηx}x∈T then

µL,N
[
M

(2)
L ≤ x

(
Γ(b)L

) 1
b−1
]
→ e−x

1−b
.
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Around criticality [Armendáriz, Grosskinsky, L, 2013]

Subcritical density: The maximum ML(η) = maxx∈ΛL ηx is
O(logL) with Gumbel fluctuations.

µL,N

[ML(η)− α(ρ) logL

βL
≤ x

]
−→ e−e

−x
.

Supercritical density: The maximum ML(η) is O(L) with
gaussian fluctuations.

µL,N

[ML(η)− (N − ρcL)

σ
√
L

≤ x
]
−→ Φ(x).

Question

How does ML(η) behave as we go
through the critical density? In particular,
when does the condensate emerge?

Ferrari/ Evans, Majumdar 2008
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condensed

MLêLÆr-rc
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Small deviations

Let’s focus on the case λ = 1 and b > 3 so that σ2 < +∞.

νφc
[
ηx = k

]
∼ k−b.

There is a region around ρcL where the distribution of the
maximum under µL,N asymptotically behaves as the maximum of
L independent samples drawn from νφc .

Proposition

If −L
b−2
b−1 � N − ρcL�

√
L logL, then

µL,N

[
ML ≤ xL

1
b−1

]
∼ νLφc

[
ML ≤ xL

1
b−1

]
→ e−ux

1−b ∀x > 0.

Critical behaviour: Typical size of the maximum is L
1
b−1 with

Frechét fluctuations.
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Large Deviations

Above the critical scale, the bulk variables become asymptotically
independent and the maximum satisfies a law of large numbers and
a central limit theorem. That is,

Proposition

If N − ρcL�
√
L logL, then

ML

N − ρcL
µL,N−→ 1, and

ML − (N − ρcL)√
σ2L

d−→ N (0, 1).

Supercritical behaviour: Typical size of the maximum is N − ρcL
with Gaussian fluctuations.
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Large Deviations (downside)

Below the lower critical scale, the asymptotic distribution of the
maximum under µL,N becomes Gumbel.

Proposition

If ρcL−N � L
b−2
b−1 , then

µL,N

[
ML ≤ AL + xBL

]
→ e−e

−x
,

where

AL ∼ (b− 1)L
1
b−1

log JL
JL

, BL ∼
L

1
b−1

JL
, JL =

ρcL−N

L
b−2
b−1

→∞.

Subritical behaviour: The size of the maximum gradually reduces

from L
1
b−1 to logL with Gumbel fluctuations.
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Lower Critical Scale

At the lower critical scale the asymptotic distribution of the
maximum under µL,N changes from Fréchet to Gumbel.

Proposition

If
ρcL−N

L
b−2
b−1

→ ω > 0, then

µL,N

[
ML ≤ xL

1
b−1

]
−→ exp

{
−C

∫ +∞

x
e−ωt

dt

tb

}
, ∀x > 0.
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Critical Scale

N − ρcL = O(
√
L logL) is the scale at which the condensate

emerges. Define
∆L = σ

√
(b− 3)L logL

.

lim
N − ρcL

∆L
< 1 −→ Critical picture

ML ∼ L
1
b−1 , Frechét fluctuations.

lim
N − ρcL

∆L
> 1 −→ Supercritical picture

ML ' N − ρcL, gaussian fluctuations.
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Phase transition

If N − ρcL = (1− ε)∆L

The conditional distribution of the maximum is asymptotically
equivalent to that of the maximum of independent r.v.’s
drawn from νφc .

ML = o
(
∆L

)
, and the number of particles in the bulk is

ρcL+O
(
∆L

)
.

If N − ρcL = (1 + ε)∆L

All L− 1 bulk variables become asymptotically independent
with marginal distribution νφc .

ML ∼ ∆L, and the number of particles in the bulk is
ρcL+ o

(
∆L

)
.

The condensate appears with the removal of particles from the
bulk. The correlations shift from being entirely absorbed by the
bulk, to being entirely absorbed by the maximum.
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At the critical point

Suppose now

N − ρcL = ∆L

(
1 +

b

2(b− 3)

log logL

logL
+

γL
logL

)
.

γL → −∞ −→ Critical picture

γL → +∞ −→ Supercritical picture

Proposition

If γL → γ ∈ R,

ML

N − ρcL
µL,N−→ Be(pγ),

where pγ ∈ (0, 1) is such that pγ → 0(1) as γ → −∞(+∞).
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The law of large numbers when λ < 1.

Comparison of the law of large numbers for the power law and the
stretched exponential case.

Λ=1

ΛÎH0,1L

1 2
lim

HN - L ΡcL
DL

0

1

2 Λ

1+Λ

lim
ML

HN - L ΡcL
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Conclusion

We saw how large deviations for subexponential r.v.’s are
typically realised: one variable assumes a big value and the
bulk becomes asymptotically independent.

We used this knowledge to obtain refined results for the
typical size of the condensate and its fluctuations at
supercritical densities.

Emergence of the giant component: LLN & fluctuations for
the maximum if N = ρcL+ o(L)

Metastability −→ stay tuned for the following talk by I.
Armendáriz!

Thank you for your attention

Bath 4/7/2016 Subexponential LD & Condensing ZRP



LD Subexp SuperCr-ZRP Cr-ZRP Conclusion

Conclusion

We saw how large deviations for subexponential r.v.’s are
typically realised: one variable assumes a big value and the
bulk becomes asymptotically independent.

We used this knowledge to obtain refined results for the
typical size of the condensate and its fluctuations at
supercritical densities.

Emergence of the giant component: LLN & fluctuations for
the maximum if N = ρcL+ o(L)

Metastability −→ stay tuned for the following talk by I.
Armendáriz!
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