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Nonequilibrium path ensembles



Stochastic thermodynamics

• a new paradigm: extending the notion of statistical ensembles

to dynamical trajectories

[Maes (1999), Crooks (2000), Seifert (2005), Lecome et al (2007), Harris and

Schütz (2007), Jack and Sollich (2010), Chetrite and Touchette (2013)]

• closely connected to the mathematical theory of large

deviations

• for a given stochastic process, one is interested in

I calculating statistics of time-integrated observable AT [x ]

P(AT = a) =

∫
D[x ]P[x ]δ(AT [x ]− a),

I understanding how the event AT [x ] = A occured
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Examples

AT [x ] =
1

T

∫ T

0

f (xt)dt +


1
T

∑
0≤t≤T

∆X (t)6=0
g(X (t−),X (t+)) jump

1
T

∫ T

0
g(X (t)) ◦ dxt diffusion

• action functional: f = 0, g(x , y) = lnw(x ,y)
w(y ,x)

[Lebowitz and Spohn (1999)]

• probability history: f = 0, g(x , y) = ln w(x ,y)∑
y w(x ,y)

[Lecomte et al (2007)]

• particle current in driven diffusive systems

[Bodineau and Derrida (2004)]

• dynamical activity: f = 0, g(x , y) = 1

[Merolle et al (2005); Garrahan et al (2005); Jack et al (2006)]
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Path ensembles: microcanonical vs. canonical

Microcanonical path ensemble:

P[X |AT = a] =
P[X ,AT = a]

P(AT = a)

• in general difficult to work with

Canonical path ensemble:

Ps [x ] =
P[x ]esAT [x]

〈esAT 〉

• s plays the role of inverse temperature

• other names: s-ensemble, driven or tilted or biased process 4/27



Path ensembles and their (in)equivalence

• mathematical proof by [Chetrite and Touchette (2014), (2015)]

lim
T→∞

1

T
ln
P[x |AT = a]

Ps [x ]
= 0,

Conditions:

I AT satisfies large deviation principle

P(AT = a) � e−TI (a), T →∞

I I (a) is a convex function of a
I if I (a) is differentiable, then s = I ′(a)

inequivalence
?←→ condensation
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Random walk bridges



Random walk bridges: definition

• a discrete-time and continuous-space random walk:

Xt = Xt−1 + ηt , X0 = 0,

• jump probability density is φ(ηt) and

Eφ[ηt ] = µ, Varφ[ηt ] = σ2

• random walk bridge: conditioning on fixed

AT =
XT − X0

T
= a
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Random walk bridges: path probability

• path probability density:

P[X |XT = aT ] =
1

P(XT = aT )

T∏
t=1

w(Xt |Xt−1)δ (XT − aT )

=
1

P(XT = aT )

T∏
t=1

φ(Xt − Xt−1)δ (XT − aT )

=
1

P
(∑T

t=1 ηt = aT
) T∏

t=1

φ(ηt)δ

(
T∑
t=1

ηt − aT

)

→ same as factorised steady states in mass-transfer models
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Random walk bridges: standard condensation

• condensation occurs when φ(ηt) is heavy tailed, i.e. when∫
dηφ(η)ekη =∞ for all k > 0,

• sums of iid heavy-tailed random variables [Linnik (1961), Nagaev

(1969)]:

P(XT/T = a) = Tφ(a− µ), T →∞,
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Random walk bridges: constraint-driven condensation

• φ(ηt) can be light-tailed if there are two constraints:

XT =
T∑
t=1

ηt = aT

T∑
t=1

(Xt − Xt−1)2

︸ ︷︷ ︸
realised variance

=
T∑
t=1

η2
t = bT

• mechanism: [JSN, Evans and Majumdar (2014)]

φ(ηt) −→
exp.tilting

φ(ηt)e
−rηt −→

ξt=η2
t

φ(ξ
1/2
t ) e−rξ

1/2
t︸ ︷︷ ︸

Weibull tail

−→ condensation

9/27



Random walks conditioned on fixed

area and local time



Reflected random walk

• definition:

xt = max{0, xt−1 + ηt}

ηt are iid random variables with probability density φ(ηt)
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• (generalised) transition probability density:

w(xt |xt−1) = δ(xt)

∫ −xt−1

−∞
φ(η)dη + φ(xt − xt−1)
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Conditioning on fixed area and local time

• area AT [x ] under the path x :

AT [x ] =
T∑
t=1

xt = A ≡ (σ/µ)T

• local time lT [x ] (number of returns to the origin):

lT [x ] =
T∑
t=1

δ(xt) = N ≡ (1/µ)T

• path probability density for paths conditioned on fixed value of
AT and lT :

P[x |AT = A, lT = N] =
1

ZN(A,T )

T∏
t=1

w(xt |xt−1)δ(lT−N)δ(AT−A)
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Fixing local time explicitly

• definitions:
I ti is time of i-th return to the origin, i = 1, . . . ,N
I excursion is path between to successive returns to the origin

I i-th excursion has duration τi and area ai ,

τi = ti+1 − ti , ai =

ti+1∑
t=ti

xt
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Random walk excursions under two constraints

• we can now rewrite the partition function in terms of random
walk excursions:

ZN(A,T ) =

∫ ∞
0

dx1 . . .

∫ ∞
0

dxT

T∏
i=1

w(xt |xt−1)δ(lT − N)δ(AT − A)

=
∑
{τi}

∫ ∞
0

da1, . . . daN

N∏
i=1

f (ai , τi )δ

 N∑
j=1

aj − A

 δ

(
N∑

k=1

τk − T

)

f (ai , τi ) is joint probability density for ai and τi

• key simplification: pairs of random variables (ai , τi ) are

mutually independent!

• difficulty: f (a, τ) explicitly known only for the simple lattice

random walk [Takács (1993)] and Brownian motion [Majumdar and

Comtet (2005)]
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Explicit calculation for the Laplace jump distribution

• consider the random walk starting from x0 = x ≥ 0 and let

f (x , a, τ) denotes the corresponding joint probability density

• integral equation for f (x , a, τ):

f (x , a, τ) =

δ(x − a)
∫ 0
−∞ dx1φ(x1 − x), τ = 1∫∞

0 dx1 φ(x1 − x)f (x1, a− x , τ − 1), τ > 1

• the Laplace transform/moment-generating function is given

by:

g(x , p, z) =

∫ ∞
0

da e−pa
∞∑
τ=1

f (x , a, τ)zτ .
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Explicit calculation for the Laplace jump distribution (cont’d)

• the integral equation for g(x , p, z):

g(x , p, z) = ze−px
∫ ∞

0
dx1 φ(x1 − x)G (x1, p, z)

+zepx
∫ 0

−∞
dx1φ(x1 − x).

• key simplification for φ(x) = exp(−|x |)/2:

d2

dx2
e−|y−x | = e−|y−x | − 2δ(x − y)

• differential equation for g(x , p, z):

d2g

dx2
−2p

dg

dx
+(p2−1+zepx)g = 0→ g(p, z) =

z1/2J2/p(2z1/2/p)

J2/p−1(2z1/2/p)
.
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Properties of f (a, τ)

• Laplace transform:∫ ∞
0

da e−paf (a, τ) =
4τ

p2τ−1
στ (2/p − 1)

στ (ν) is the Rayleigh function [Kishore (1963)]

• marginal f (τ) (the Sparre-Andersen theorem)

f (τ) =
1

22τ−1τ

(
2τ − 2

τ − 1

)
• scaling limit [Takacś (1993), Denisov et al (2015)]:

f (a, τ) ≈ 1

2
√

2πτ3
fAiry

( a

21/2τ3/2

)
, τ →∞

fAiry(x) is the Airy distribution [Majumdar and Comtet (2005)]
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Analysis of the partition function: saddle point equations

• Laplace transform of the partition function:

ZN(p, z) =
∞∑

T=0

zT
∫ ∞

0
dA e−pAZN(T ,A) = [g(p, z)]N

• the partition function is then given by:

ZN(A,T ) =

∫ c+i∞

c−i∞

dp

2πi
epA
∮
γ

dz

2πi

[g(p, z)]N

zT+1
,

→ for N large we can try the saddle point method

• amounts to solve the following saddle point equations

µ = z
∂

∂z
lng(p, z), σ = − ∂

∂p
lng(p, z)
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Analysis of the partition function: condensation transition

• define auxiliary probability density ω(a, τ)

ω(a, τ ; p, z) =
f (a, τ)zτe−pa

g(p, z)

• the saddle point equations then become

µ = Eω[τ ](p, z), σ = Eω[a](p, z)

• the first equation can be solved for any µ > 1→ gives z0(p;µ)

• the second equation has no solution for σ > σc , where σc is

given by

σc = Eω[a](0, z0(0, µ)) <∞
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Analysis of the partition function: phase diagram

σc(μ)
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σc(µ) =
1

12µ
[
ln
(

µ
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)
− 1

2µ−1

]
19/27



Nature of the condensate

• the microcanonical partition function is given by:

ZN(A,T ) =

∫ ∞
0

da1 . . . daN
∑
{τi}

N∏
i=1

f (ai , τi )δ

(
N∑

k=1

τk − T

)
δ

 N∑
j=1

aj − A


• the canonical partition function is given by:

ZN(p, z) =

∫ ∞
0

da1 . . . daN
∑
{τi}

N∏
i=1

f (ai , τi )e
−pai zτi = [g(p, z)]N

• condensation means that ZN(A,T ) is not equivalent to

ZN(p, z) for σ > σc
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Nature of the condensate (cont’d)

• for σ > σc , ZN(A,T ) is equivalent to the mixed
canonical-microcanonical partition function YN(A, z)

YN(A, z0) =

∫ ∞
0

da1 . . . daN

 N∏
i=1

∑
{τi}

f (ai , τi )z
τi
0

 δ
 N∑

j=1

aj − A


= [g(0, z0)]NP

(
N∑
i=1

ai = A

)

P

(
N∑
i=1

ai = A

)
=

∫ ∞
0

da1, . . .daN

N∏
i=1

ω(ai )δ

 N∑
j=1

aj − A


ω(a) =

∞∑
τ=1

ω(a, τ ; 0, z0) =

∑∞
τ=1 f (a, τ)zτ0
g(0, z0)

,

∫ ∞
0

da aω(a) = σc
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Nature of the condensate: tail of ω(a)

• tail of ω(a): an open problem

• heuristic argument that ω(a) has a Weibull-like tail:

I one can show that f (a, τ) behaves for large a as

f (a, τ) = cτe−
2a

τ−1 −O
(

e−
2a

τ−2

)
, τ ≥ 2, a→∞

where the coefficient cτ is given by

cτ =
(τ − 1)2τ−3

4τ−1[(τ − 1)!]2
, τ ≥ 2.

I the largest contribution to ω(a) is then

∞∑
τ=2

cτe−2a/(τ−1)zτ0 ∼ e−κ
√
a, a→∞,
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Large deviation theory of

spatially-extended condensation



Pair-factorised steady states

• generalisation to the zero-range process: hopping rate

u(mi−1,mi ,mi+1) depends on the surrounding environment

[Evans, Zia and Majumdar (2006)]

• if u(mi−1,mi ,mi+1) = α(mi−1,mi )β(mi ,mi+1) and

α(l ,m) =
g(l ,m − 1)

g(l ,m)
, β(m, n) =

g(m − 1, n)

g(m, n)

then the steady state has a pair-factorised probability

P[{mi}] =
1

ZL(M)

L∏
i=1

g(mi ,mi+1)δ

 L∑
j=1

mj −M


• choice: g(mi ,mi+1) = e−J|mi+1−mi |+ 1

2
U0(δmi ,0

+δmi+1,0
)
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Spatially-extended (interaction-driven) condensation

ρ > ρc

ρ < ρc

ρc =
1

e2J(1− e−U)2 − 1
[Majumdar, Evans and Zia (2005)]
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Mapping to the reflected (lattice) random walk paths

• the partition function:

ZL(M) =
∑
{mi≥0}

[
L∏

i=1

e−J|mi+1−mi |

]
eU
∑L

j=1 δ(mj )δ

 L∑
j=1

mi −M

 .

• transition probability for the (discrete) Laplace distribution:

w(mi+1|mi ) =

(
eJ − 1

eJ + 1

)
e−J|mi+1−mi |︸ ︷︷ ︸

φ(mi+1−mi )

eRδ(mi+1), R = J−ln(eJ−1)
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Mapping to the reflected (lattice) random walk paths (cont’d)

• altogether gives the following partition function:

ZL(M) =
∑
{mi≥0}

L∏
i=1

w(mi+1|mi )e
(U−R)

∑L
j=1 δ(mj )δ

 L∑
j=1

mi −M

 .

• we assume that P(lL = λN) satisfies large deviation principle

P(lL = λN) ∼ e−LI (λ), L→∞,

• then one can choose λ, I ′(λ) = U − R, such that

ZL(M) ∼ ZL(M,N)

ZL(M,N) =
∑
{mi≥0}

L∏
i=1

w(mi+1|mi )δ

 L∑
j=1

δ(mj)− N

 δ

 L∑
j=1

mi −M

 ,
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